用户名: 密码: 验证码:
冲积河流冲淤量计算模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的数学模型、实体模型和水工程泥沙试验、河道整治、航道整治研究等,均建立在河道实测冲淤变化资料的基础上,因此河道的冲淤数量及其分布是科学试验、工程调度和河道演变及整治研究的重要基础资料。断面地形法、网格地形法和输沙量平衡法是计算河道冲淤量广泛采用的三种模式。而在生产实践中,分别采用断面地形法和输沙率量平衡法计算的同一河段、同一时段冲淤量往往差别很大,甚至部分河段、部分时段存在冲淤性质相反情况。
     本文采用大量的实测水沙、地形资料,运用断面法、网格地形法和输沙量平衡法,计算了三峡水库蓄水后三峡坝下游宜昌至监利河段的河床冲淤量。对不同计算方法中影响计算精度的因素进行了研究。运用非线性分形理论对河床起伏程度与断面代表性关系进行了研究。对水文测验和河道测量观测布置提出了合理性建议。具体研究内容和所得主要结论如下。
     (1)河道冲淤量计算结果若要达到一定的精度,除在弯道、汉道断面宜布置相对较密的断面外,在河道急剧放宽和束窄的局部河段断面不宜太稀。若采用断面地形法计算宜枝河段河段冲淤量,断而间距不宜大于2倍河宽。断面面积采用椎体法和梯形法计算河道冲淤量,差异很小,两种方法均能满足要求。
     (2)随着网格尺寸增大,河道真实地形被“坦化”,局部地形的细微变化弱化,同水位级下河槽槽蓄量减小,河道冲淤量也呈减小趋势;利用地形测图数据进行网格地形法计算时,网格尺寸不宜大于地形施测断面点间距。对1:10000地形图而言,在60m以内为宜;对1:5000地形图而言,在30m以内为宜。DEM克里格法插值优于其他插值方法,能相对准确地还原原始地形。
     (3)采用长江水利委员会水文局临底悬沙观测试验资料,探讨了三峡坝下游实测悬移质输沙量改正问题。常规悬沙测验中,三峡坝下游河段悬移质泥沙测验需要考虑临底悬沙含沙量较大问题。另外,采砂河段需要准确的采砂量,分流河段要考虑分沙量和口门至水文站河道冲淤量。对实测成果进行修正后,输沙量平衡法才能得到准确结果,否则该方法计算的冲淤量明显偏小
     (4)采用分形几何理论和方法探讨了断面、河床表面起伏度与冲淤量的关系。得到:荆江河段固定断而间距大,弯道、分汉河段的固定断面控制不了地形变化,两种方法计算结果差异大。荆江局部河段固定断面代表性不强,需要适当加密固定断面,有些断面方向需要调整。冲淤量差值百分数及床面分形维数有一定的相关关系,床面分形维度越大的河段,网格法与断而法冲淤量差异也越大。
     (5)对三种不同计算方法精度进行了综合评价。影响输沙量平衡法计算精度的因素主要有低含沙量、冲刷河段临底悬沙含沙量大、采砂量估算误差和口常简测法输沙量测验的系统误差等。网格地形法计算精度主要有地形测量精度,特别是水深测量精度和局部不易实测的局部空白区,以及网格插值方法和分辨率大小等。断面法测量精度主要影响因素除断面测量精度,特别是水深测量误差,以及断面代表性和断面间距量算误差等。
A large amount of research on mathematical models, physical models, sediment experiments, river training, and channel regulation is based on the data of channel scouring and siltation. Consequently, the amount and distribution of deposits are important basic data in scientific experiments, project scheduling and river evolution and regulation. The section topographical method, grid topographical method, and sediment discharge balance method are widely adopted in the calculation of channel erosion-deposition amount. In theory, the calculated results of erosion-deposition amounts should be equal or much the same with different methods within the same river reach and period of time, nonetheless, researchers have found it may not be the case in production practice as well as scientific researches.
     In this paper, the channel erosion-deposition amount of Yichang-Jianli river reach (which is located in the downstream of the Three Gorges Dam) after the impoundment of the Three Gorges Reservoir have been calculated based on a large number of measured water and sediment data as well as topography data, by using the section topographical method, grid topographical method, and sediment discharge balance method. Some factors influencing the calculation accuracy have been comprehensively researched. The nonlinear fractal theory has been used to study the relation between bed fluctuation degree and section representative. Reasonable proposals for arrangement of observational sections in hydro logical tests and channel measurement are put forward. Specific research contents and main conclusions are as follows:
     (1) If we want to achieve the calculation accuracy, sections should not be too few in contractive and expansive reaches, as well as bend and braided reaches. When using section topographical method, the distance between sections should be less than2times of river width. The difference between cone and trapezoid method in the calculation of sectional area is small, and both can meet requirements.
     (2)As grid dimension increases, the true terrain of river channel flats, subtle changes of local topography are weakened, storage capacity under the same water level reduces, and river channel erosion-deposition amount decreases. The grid dimension should not be larger than the distance between measuring cross-sections in calculation when topographic map is used. For topographic map with scale of1:10000, the grid dimension should be less than60m; and for topographic map with scale of 1:10000, the grid dimension should be less than30m; DEM Kriging interpolation is better than the others, and can simulate the original topography relatively exactly.
     (3) According to the observation data of close-to-bed suspended load from the hydrology bureau of the Changjiang Water Resources Commission, the problem of suspended sediment miss-measurement in the downstream of the Three Gorges Dam is discussed. Miss-measurement exists in the conventional suspension load test in the downstream of the Three Gorges Dam. In addition, accurate amounts of sand mining and sediment diversion are required in sand mining river reaches and distributary channels respectively. After the measured results are modified, the accurate results can be got by the sediment discharge equilibrium method, otherwise, the erosion-deposition amount will be obviously less.
     (4) The distance between fixed cross-sections in Jingjiang reach is large, and the fixed cross-sections in bend and braided reaches cannot control the terrain variation, thus the results of the two calculational methods have great difference. The representative of fixed cross-sections in local reaches of Jingjiang is not strong, and it's need to increase fixed cross-sections and adjust the direction of some cross-sections. The difference percentage of erosion-deposition amount has a certain relationship with fractal dimension of bed surface. The difference of results between the grid method and the fixed cross-section method is bigger, as the fractal dimension of the bed surface increases.
     (5)The precision of three calculational methods are comprehensively evaluated. The main factors influncing the calculation accuracy of sediment discharge balance method include low sediment concentration, miss-measurement of close-to-bed sediment load in the scouring reach, the error of sand mining and the system error of the conventional sediment discharge. The main factors influncing the calculation accuracy of grid topographical mothod mainly include the topography measurement accuracy, especially the measurement accuracy of water depth and some local areas which are difficult to measure, as well as the grid interpolation method and the resolution ratio. The main factors influncing the calculation accuracy of section method mainly include the representative of the cross-section and the measurement error of section distance, apart from the cross-section measurement accuracy and water depth measurement error.
引文
[1]长江水利委员会水文局.长江防洪规划1966~1998年长江中下游干流河段断面地形法冲淤计算报告[C],2000.5.
    [2]Chien,N., and Wan,Z., Mechanics of Sediment Transport,ASCE,1999.
    [3]Morris G L and Fan J. Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use, McGraw-Hill, New York,1997.
    [4]Darcy Bazin.RecherchesHydrauliques.Paris,1865.
    [5]Jiahua Fan and Gregory L. Morris. RESERVOIR SEDIMENTATION. I:DELTA AND DENSITY, Journal of Hydraulic Engineering, Vol.118, No.3, March,1992. ASCE.
    [6]Gleiek P.H., ed.Water in Crisis:A Guide to the world's Fresh Water Resources.Oxford University Press,Oxford,xxiv+473pp,1993.
    [7]Tan, G. M., Shu, C. W., and Wang, J., Simplified Flume Experimental Study on the Eroding Influence by Consolidation Time[C]. The 10th International Symposium on River Sedimentation. Moscow,Russia,2007a.Vol.III.pp.393-401.
    [8]D.Coles.The law of wake in the turbulent boundary layer[J].Fluid Mech.l956,(1):191-226.
    [9]Colby B.R. and Hombre.C.H., Computations of Total Sediment Discharge. Niobrara River Near Cody, Nebraska, USGS Water-Supply Paper 1357,1955.
    [10]ICOLD. World Register of Dams,UPdate. Inteational Commissionon Large Dams, Paris,1988.
    [11]Jianfang ZHANG,the calculation formulae and experiment estimating methods error propagation(C), The 4th Internaional Conference on Quality and Reliability (ICQR2005),113-128.
    [12]Kandula VNsarma, Lakshminarayama P, Lakshmana RaoNS. Velocity Distribution in Smooth Rectangular Open Channels[J]. Journal of Hy-draulic Engineering,1983,109(2):270-289.
    [13]Lane, E. W., and Koelzer, V. A. Density of sediments deposited in reservoirs, Report No.9 of "A study of methods used in measurement and analysis of sediment loads in streams", St. Pail U. S Engineering District, St. Paul, Minneapolis.1953.
    [14]Long Y and Zhang Q. Sediment regulation Problems in Sanmenxia Reservoir:Water Supply and Management,1981.Vol.5(4), pp.351-360.
    [15]Mahmood K., Reservoir sedimentation-impact extent and mitigation. World Bank Technical Paper Number 71,1987.
    [16]M. M. He and Q. W. Han, Rassing of Backwater Elevation during Reservoir Sedimentation, Proc. Of the 4th Inter. Symp on River Sedimentation, Vol. Ⅱ, China Ocean Press,1989,999-1006.
    [17]Morris G L,Fan J. Reservoir sedimentation handbook: design and management of dams,reservoirs, and watersheds for sustainable use, McGraw-Hill,New York,1997.
    [18]Lisheng SUO. River Management And Ecosystem Conservation InChina. Proceedings of the Ninth Symposium on the Sedimentation October,2004,Yichang,China.
    [19]Q. W. Han, Y. C.Wang and X. L. Xiang, Erosion and Recovery of Sediment Concentration in the River Channel Downstress from Danjiangkou Reservoir, Proc. Of the Excter symp. Tub 1982 IAHS PUBI.No.137:145-152.
    [20]Stevens, h. H. Jr.,Computer Program for Computation of Total Sediment Discharge by the Modified Einstein Procedure. Water Resources Investigations Report 85-4047, USGS, Lakewood,Colorado,1985.
    [21]Tan, G. M., Wang, J., and Shu, C. W. etc. Effects of consolidation time and particle size on scour rates of cohesive sediment[J]. Journal of Hydrodynamics, Ser.B,2007b.19(2), pp.160-164.
    [22]牛古,弓增喜,胡跃斌,刘炜.设断面测算河道水库容积及冲淤量的数学解析与概化[J],泥沙研究,2004,(4):61-67.
    [23]申冠卿,姜乃迁,张原锋,尚红霞.黄河下游断面法与沙量法冲淤计算成果比较及输沙率资料修正[J],泥沙研究,2006,(1):32-37.
    [24]程龙渊,薛晟,李杨俊,张松林,李峰旭,曹卫东,王玉平.走出沙平衡法计算河段冲淤量的误区[J],人民黄河,2008,(2):26-27,30.
    [25]程龙渊,刘拴明,肖俊法,张留柱,李连祥.黄河下游河道冲淤量计算问题研究[J],人民黄河,1998, (2):4-7.
    [26]程龙渊,弓增喜,和瑞莉,李静,宋海松.沙量平衡法计算冲淤量的不确定度-兰州到花园口河段[J],泥沙研究,2001,(1):70-76.
    [27]张留柱,崔广柏.输沙量差法计算河道冲淤量的误差分析[J],人民黄河,2005,(3):28-30.
    [28]李义天,邓金运,孙昭华,黄颖.输沙量法和地形法计算螺山汉口河段淤积量比较[J],泥沙研究,2002(4):20-24.
    [29]董耀华.输沙量法与地形法估算河道冲淤量的对比研究[J],长江科学院院报,2009,(8):1-5.
    [30]王小艳,下会让。潼关至三门峡河段断面法与输沙率法淤积测量成果偏离原因的分析[J],西北水资源与水工程,1997,(1):26-31.
    [31]苏运启,李勇,尚红霞,汪大鹏.弯曲性河道断面布设对断面法冲淤成果的影响[J],人民黄河,2004,(5):17-19.
    [32]舒彩文。库区冲淤量化计算计算分析与研究[C],武汉大学博士论文,2009.1.
    [33]韩其为。粗颗粒悬移质测验误差分析[J],水文,2008,(1):1-6.
    [34]长江水利委员会水文局荆江水文水资源勘测局,2011年度沙市、监利站临底悬移质泥沙观测试验成果分析报告[C],2012.3.
    [35]Mandelbrot B B.The Fractal Geometry of Nature.San Francisco[M].Free man,1982.
    [36]何隆华,赵宏.水系的分形维数及其意义.地理科学[J],1996, (2):124-128.
    [37]罗文锋,李后强Horton定律及分枝网络结构的分形描述[J],水科学进展,1998,9(2)118-123.
    [38]Andre Robert and Andre G.Roy. On the fractal interpretation of the mainstream length-drainage area relationship[J], Water Resources Research,1990,26 (5):839-842
    [39]Renzo Rosso,Baldassare Bacchi and Paolo La Barbera.Fractal relation of mainstream length to catchment area in river networks[J], Water Resources Research,1991,27 (3):381-387.
    [30]Sean P.Breyer and R.Scott Snow.Drainage basin perimeters:a fractal significance[C] 。 In:R.S.Snow and L.Mayer (Editors), Fractal in Geomorphology. Geomorphology,1992,5: 143-157.
    [41]张捷,包浩生.分形理论及其在地貌学中的应用[J].地理研究,1994,13(3):104-111.
    [42]朱嘉伟,赵云章,闫振鹏,徐莉,田明中.黄河.下游河道地貌分形分维特征研究[J],测绘科学,2005 30(5):28-30.
    [43]孙祝友,杜国云,朱大奎,张永战.莱州湾东岸河流的分形特征与流域地貌发育研究[J],地理科学,2010,(5):755-758.
    [44]白玉川,黄涛,许栋.蜿蜒河流平面形态的几何分形及统计分析[J],天津大学学报,2008,(9):1052-1056.
    [45]陈彦光,李宝林.吉林省水系构成的分形研究[J],地球科学进展,2003,(2):178-183.
    [46]朱建刚,余新晓,李晶,张振明.图像分析计算水系分形维数的改进方法与应用[J],地球信息科学学报,2009,(5):610-616.
    [47]沈晓华,邹乐君,阳峰,张震峰,方大钧.长江河道分形与流域构造特征的关系[J],浙江大学学报(理学版),2001,(11):107-111.
    [48]孙桂凯,宫兴龙,莫崇勋,刘方贵,流域水系分形维数研究[J],水力发电,2009,(10):56-62.
    [49]Nikota V I. Fractal sturctures of river plan forms [J], Water Resour. Res.,1991,27 (6):1327-1333.
    [50]Nikora VI, SapozhnikovVB. River network fractal geometry and its computer simulation[J].Water Resour Res,1993,29 (10):3569-3575.
    [51]Sapozhnikov V B, Foufpula-Georgou E. Self-affinity in braided rivers[J],Water Resour Res,1996,32 (5):1429-1439.
    [52]冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,7(4):324-330.
    [53]朱嘉伟,赵云章等黄河下游河道地貌分形分维特征研究[J].测绘科学,2005,30(5)28-30.
    [54]宗永臣,分形下的河道演变初探—以尼洋河为例[J],水资源与水工程学报,2011,(5)27-32.
    [55]潘威.基于分形理论的1915——2000年渭河泾河口—潼关段河道演变研究[J],沉积学报,2011,29(5):946-952.
    [56]Robert.A. Statistical properties of sediment bed profiles in alluvial channels [J], Math.Geol., 1988,20:205-225.
    [57]金德生,陈浩,郭庆伍。河道纵剖面分形-非线性形态特征[J],地理学报,1997,52(2):154-162.
    [58]许光祥,钟亮,河道剖面轮廓的一元分形插值模拟[J],人民长江,2012,43(3):20-23.
    [59]钟亮,许光祥,床面粗糙形态的分形插值模拟[J],水科学进展,2011,22(5):662-667.
    [640]周银军,陈立,刘欣桐,许文盛。河床表面分形特征及其分形维数计算方法[J],华东师范大学学报:自然科学版,2009, (3):170-178.
    [6l]周银军,陈立,欧阳娟,刘金.三峡蓄水后典型河段分形维数的变化分析[J],水科学进展,2010,21(3):300-306.
    [62]周银军.河床形态冲刷调整量化及其对阻力的影响初步研究[C],武汉大学博士论文,2010.5.
    [63]Tokinaga S, MoriyasuH, Miyazaki A,et al. Forecasting of time series with fractalgeometry by using scale transformations and parameter esti-mations obtained by the wavelettransform[J], Electronics and Communications in Japan, Part 3,1997,80 (9):2054-2062.
    [64]刘德平.分形理论在水文过程形态特征分析中的应用[J].水利学报,1998(2):20-25.
    [65]丁2晶,刘国东.日径流过程分维估计[J].四川水力发电,1999,18(4):74-76.
    [66]利华,许晓路.金衢盆地旱涝统计特征初步分析[J],水科学进展,1999,10(1):84-88.
    [67]冯平,王仁超.水文干旱的时间分形特征探讨[J],水利水电技术,1997,28(11)48-51.
    [68]清傅家谟,罗章仁,杨干然.西北江三角洲来水来沙的非线性分形特征[J],泥沙研究,2002年06期:15-18.
    [69]方崇惠,郭生练,段亚辉.应用分形理论划分洪水分期的两种新途径[J],科学通报,2009,54(11):1613-1617.
    [70]刘德平.分形理论在水文过程形态特征分析中的应用[J],水利学报,1998, (2):20-25.
    [71]吴佳鹏,陈凯麒.分形理论在水文情势影响评价中的应用[J],水电能源科学,2008,(10):26-32.
    [72]倪志辉,张绪进,胥润生.长江黄河含沙量垂线分布的分形研究[J],人民长江,2011,42(19):73-76.
    [73]韩杰,陆桂华,戴科伟,分形维数在洪水分期的应用,长江流域资源与环境[J],2008,17(4):656-660.
    [74]张之湘,惠仕兵,沈焕荣.宽级配卵石推移质输移随机过程的分维研究[J]。泥沙研究,2000(4):60-64.
    [75]P.J. Shang, Santi K.Fractal nature of time series in the sediment transport phenomenon[J], Chaos, Solitons and Fractals,2005,26:997-1007.
    [76]陈欢欢,李星,丁文秀Surfer 8.0等值线绘制中的十二种插值方法[J],工程地球物理学报,2007,4(1):53-57.
    [77]吴敬文,周丰年,赵辉基于格网节点的土方量计算方法研究[J],测绘通报,2006,(11):43-45.
    [78]罗亦泳,张立亭,陈竹安,杨伟.基于Surfer的数据网格化与体积计算精度分析[J],测绘科学,2009,34(5):97-99.
    [79]何必.基于克里金法的数字高程模型插值研究[J],科技信息,2011, (9):22-31.
    [80]靳国栋,刘衍聪,牛文杰.距离加权反比插值法和克里金插值法的比较[J],长春工业大学学报,2003,24(3):53-57.
    [81]陈竹安,罗亦泳,张立亭.基于Surfer的土地整理土石方量计算及精度分析[J],工程勘察,2010,(5):33-56.
    [82]匡威,宋星原,梅军亚,王驰,刘超Surfer8.0(?)(?)合GeoHydrology的河道冲淤分析[J],人民长江,2010,41(15):31-33.
    [83]余光华.基于Surfer的网格法储量计算研究[J],内蒙古石油化工,2010, (9):9-11.
    [84]王丽华,寿顺宝.利用DEM进行冲淤分析[J],中国港湾建设,2004,132(5):12-15.
    [85]胡学宁,高明,石铁矛.应用Maplnfo 7和(?)Surfer 8.0计算土方工程量[j],沈阳建筑大学学报(自然科学版),2006,22(3):491-494.
    [86]朱红春,张友顺,汤国安.基于DEM的黄土地貌类型提取与制图—以黄土高原丘陵沟壑实验样区为例[J],地球信息科学,2003, (4):110-113.
    [87]ChangK,TsaiB. The effect of DEM resolution on slope and aspect mapping[J], Cartography and Geographic InformationSystems,1991, (1):69-71.
    [88]Florinskyl. V. Accuracy of local topographic variables derived from digital elevation model [J]. International Journal ofGeographical Information Science,1998,12 (1):47-61.
    [89]Gao J.Resolution and accuracy of terrain representation by grid DEM satamicroscale[J], International Journal of Geo2graphical Information Science,1997,11 (2):199-212.
    [90]汤国安,龚健雅,陈正江.数字高程模型地形描述精度量化模拟[J],研究测绘学报,2001,30(4):361-365.
    [91]史明昌,沈晶玉。不同地貌起伏状况下网格尺寸与DEM精度关系研究[J],水土保持研究,2006,13(3):35-38.
    [92]刘黎明,段光磊.荆江文村夹堤段近岸河床演变分析[J],水利水电快报,2003,24(22):21-24.
    [93]熊贵枢,孙桐先.黄河下游输沙及冲淤量测验资料误差分析[A].第二届国际河流泥沙会议论文集[C],北京:水利出版社,1983.
    [94]李松恒,龙毓骞.黄河下游输沙率修正方法和应用[J],泥沙研究,1994, (3):40-49.
    [95]申冠卿,姜乃迁,张原锋,尚红霞.黄河下游断面法与沙量法冲淤计算成果比较及输沙率资料修正[J],泥沙研究,2006, (1):32-37.
    [96]熊贵枢,黄伯鑫。黄河悬沙测验中漏测底沙的误差分析[J],人民黄河,1984, (5)31-37.
    [97]龙毓骞,林斌文,熊贵枢.输沙率测验误差的初步分析[J],泥沙研究,1982,(4):52-59.
    [98]长江水利委员会水文局,2006-2007年度临底悬移质输沙观测试验成果分析[C],2007.6.
    [99]长江水利委员会水文局荆江水文水资源勘测局,2011年度沙市站临底悬移质泥沙观测试验成果分析报告[C],2012.3.
    [100]长江水利委员会水文局荆江水文水资源勘测局,2011年度监利站临底悬移质泥沙观测试验成果分析报告[C],2012.3.
    [101]陈臣,谢伶莉,严向东,黄永文.宜吕市饮用水源地保护问题及对策,环境科学与管理,2009,34(7):14-17.
    [1022]长江水利委员会水文局,三峡水库蓄水以来进出库水沙特性、水库淤积及下游河道冲刷分析[C],2007.4.
    [103]长江水利委员会水文局,三峡水库进出库水沙特性、水库淤积及坝下游河道冲刷分析(2008年度),2009.5.
    [104]Clark K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J], Computers and Geoscience,1986,12 (5):713-722.
    [105]Xie H, Wang J A, Stein E. Direct fractal measurement and multifractal properties of fracture surface [J], Physics Letters A,1998, A242:41-50.
    [106]Xie H, Wang J A, Kwasniewski M A. Multifractal characterization of rock fracture surfaces[J], Int. J. Rock Mech. Min. Sci.,1999,35 (1):19-27.
    [107]Zhou H W, Xie H. Direct estimation of the fractal dimensions of afracture surface of rock[J], Surface Review and Letters,2003,10 (5):751-762.
    [108]Clark K C. Computation of the Fractal Dimention of Topographic Surfaces Usingthe Triangular Prism Surface Area Method [J]. Computer and Geoscience,1986,12(5):713-722.
    [109]董云,柴贺军。石混合料剪切面分形特征试验研究[J],岩土力学,2007,28(5):1015-1020.
    [110]王金安,谢和平,田晓燕。一种新的断裂表面分形测量方法[J],,北京科技大学学报,1999,21(1):6-9.
    [111]李松恒,龙毓骞,黄河下游输沙率修正方法和应用[J],泥沙研究,1994,(3):40-49
    [112]赵伯良,张海敏,王雄世.悬移质泥沙测验方法的实验研究[J],黄委会水文局,人民黄河,1986,(1):49-53.
    [113]长江水利委员会水文局,水下测深技术综合性试验试验报告[C],2006.5.
    [114]刘伯胜,雷家煜,水声学原理[M],哈尔滨工程大学出版社,2010.3.
    [115]冯晓辉,李军敏,等高线生成DEM以及三维地形建模的研究[J],计算机光盘软件与应用,2012,(10):116-117.
    [116]张春亢,沙晋明,钟新科.TIN向规则格网DEM转换的新算法[J],地理空间信息,2012,(2):122-124.
    [117]顾春雷,杨漾,朱志春,几种建立DEM模型插值方法精度的交叉验证[J],测绘与空间地理信息,2011,35(2):114-116.
    [118]靳国栋,刘衍聪,牛文杰.距离反比插值算法与Kriging插值算法的比较[J],长春工业大学学报,2003,24(3):54-57.
    [119]苏姝,林爱文,刘庆华,普通Kriging法在空间内插中的运用[J],江南大学学报(自然科学版),2004,3(1):18-21.
    [120]庞博,王振清,基于Mat lab的数据处理与三维模拟[J],微计算机信息,2004,20(1):112-113.
    [121]杜国明,汪光松,吴超羽,刘秋海.克里格在珠江河道地形空间数据内插中的应用,中山大学学报(自然科学版),2007,46(1):119-122.
    [122]吴敬文,周丰年,赵辉.基于格网节点的土方量计算方法研究[J],测绘通报,2006,(11):43-45.
    [123]史明吕,沈晶玉.不同地貌起伏状况下网格尺寸与DEM精度关系研究[J],水土保持研究,2006,13(3):35-38.
    [124]申成磊,马劲松.栅格尺度对DEM分析中地形因子的影响[J],现代测绘,2007,30(6):3-6.
    [125]陈楠,王饮敏,汤国安.基于单个栅格的DEM坡度与分辨率关系研究[J],中国矿业大学学报,2007,36(4):499-506.
    [126]牛占,弓增喜,胡跃斌,刘炜.布设断面测算河道水库容积及冲淤量的数学解析与概化[J],泥沙研究,2008,(4):61-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700