用户名: 密码: 验证码:
广东凡口铅锌矿床成矿机制与成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东凡口铅锌矿床是我国著名的大型-超大型铅锌矿床,隶属广东省韶关市仁化县辖区,位于华夏地块粤北曲仁盆地的北缘,在我国矿产资源中占有极其重要的地位。
     多年来,国内外众多学者从不同角度,采用不同手段,对该矿床做了大量研究并积累了丰富的基础资料,并对矿床的成矿作用、控矿条件等提出不少认识,然就其成矿物质来源,矿床成因机制等关键地质问题的研究仍显薄弱。本文以矿床学、层控矿床学、地球化学等现代成矿理论为指导,以野外地质观察为基础,重点从地球化学的角度进行深入研究,探讨了该矿床的成矿物质来源、控矿因素、矿床成因、成矿作用过程,最终建立了综合成矿模式。
     大量基础地质资料研究显示,凡口矿区主要出露寒武系、泥盆系、石炭系、二叠系等地层。区内褶皱、断裂构造发育,构造控矿特征明显,主要有NWW向、NW向、NNE向及NE向断裂带等。沉积地层形成以后,在石炭系壶天群(C2ht)和泥盆系天子岭下亚组(D3ta)之间的部分或全部的地层缺失,形成几米到几十米不等碎裂泥质物或劈理化岩层(即“破乱层”),北部大体呈NWW向。之后是NW向断裂带(前人认为NW向断裂带就是指F203)形成,在矿区南部的活动有可能与NWW向断裂带复合,F203可能就是二者的复合断裂,F203发育持续时间长,贯穿整个成矿期,在成矿期后仍有活动。之后为NNE向断裂带的发育,出现了F1-F1o等断层,为矿区主要的导矿容矿构造。NE断裂带为NNE断裂带的更次一级构造,包括Flo0、Flo1、F102、F104等断层,该组断层与NNE向断裂带的交汇处是矿体形成的理想场所。
     赋矿围岩及矿石的微量元素及稀土元素特征显示,Fe主要来自矿区上部的碳酸盐岩地层;后期热液使矿区的含矿地层体系发生不同程度的蚀变,影响了地层中微量元素和稀土元素的分布;不同层位的岩层稀土元素分布特征相似,说明矿区各地层受到同种性质热液作用的影响。
     碳、氧、锶同位素研究显示,凡口矿区奥陶系(O)δ13C=-6.5%o,δ18O=14.9‰,碳、氧值最低,主要受陆源碎屑物质的影响;石炭系(C2ht) δ13C=2.17‰,δ18O值=21.9‰,碳、氧值最高,主要受地层岩性的影响;泥盆系为主要成矿层位,碳、氧、锶值随着地层蚀变程度减弱而逐渐降低,说明其除了岩性及海相沉积旋回的影响,主要受后期热液作用的影响。
     铅、硫同位素研究显示,矿石中的铅同位素主要来源于上地壳物质,围岩铅与矿石铅应属同源;矿石中的硫主要来自海水硫酸盐。黄铁矿、闪锌矿和方铅矿的硫同位素分布规律为:δ34S黄铁矿>δ34S闪锌矿>δ34S方铅矿。
     流体包裹体研究显示,浅色闪锌矿流体包裹体均一温度集中在110-170℃区间,高于200℃的流体包裹体较少,冰点温度为-2.1~-1.4℃,盐度约为3wt%NaCl,含有少量的NaCl;深色闪锌矿均一温度主要在110-150℃和110-250℃两个区间,冰点温度为-0.2--0.1℃,盐度为0.18wt%~0.35wt%NaCl,基本不含NaCl。方解石中流体包裹体的均一温度分布较广,为170-310℃,盐度较高,主要在14wt%NaCl左右,也有盐度较低的流体,几乎不含NaCl,与形成闪锌矿低盐度流体区间相同。流体包裹体成分主要为H2O(液相)-H2O(气相)、NaCl-H2O体系,未发现NaCl的子结晶,含少量CH4等有机成分,以及HCl、CO等气体,成矿作用过程有机质参与成矿,但参与程度较小。
     凡口矿床的成矿年代基本在86.8-138Ma,该阶段形成地层为白垩纪红层,对应于燕山运动晚期,该阶段形成的地层为白垩纪红层。凡口铅锌矿床的形成虽然与岩浆活动无关,但该时期与华南地区广泛发育红层盆地时代相对应,且凡口矿区的赋矿地层发生了白云石化作用,也正好与区域上发生的大面积白云石化相对应,矿区底部含铅锌的成矿流体可能这号来源于区域的红层盆地卤水。
     综合研究显示,凡口矿床形成于一个大的热液成矿期,该成矿期分为三个成矿阶段:早期成矿阶段主要以块状黄铁矿为主,铅锌含量极少;主成矿阶段值方铅矿闪锌矿阶段,伴随少量黄铁矿的形成;晚期成矿阶段以粗粒亮黄色黄铁矿的出现为标志,主要是成矿期残余热液作用的产物。成矿流体主要有两大类:第一类为矿区底部的盆地卤水,可能来源于区域白垩系红层的盆地卤水;第二类为矿区上部碳酸盐岩中的原地层水,主要来源于大气降水。两类流体在特定的条件下,合适的场所相遇,金属元素发生反应,生成金属硫化物沉淀,最终形成巨大的铅锌矿体。
     将凡口铅锌矿床与典型MVT铅锌矿床对比分析显示,二者具有众多的相似特征,但凡口矿床具有成矿温度较高、有机质参与少、坍塌角砾岩少见、胶状或草莓状矿石结构不发育等特点与MVT铅锌矿床不同。综合来讲,凡口矿床应属于非典型的MVT铅锌矿床,只是具有其特殊性。
The Fankou lead-zinc deposit is a famous large-extra large scale lead-zinc deposit where located in Shaoguan of Guangdong Province, China. The tectonic located at the north of Quren in North Guangdong. It is play an extremely vital role in the mineral resources.
     Over the years, many scholars researched the deposit, using different methods and different angles, and accumulated a wealth of basic information, and proposed form the mineralization and ore-controlling conditions of the deposit, but its sources of minerals, deposit genesis mechanism research remains unclear. Based on study of minerals deposit, stratabound ore deposits, geochemical and other modern metallogenic theory as the instruction, on the basis of field geological observation, focused research from geochemistry, and probes into the source of ore-forming materials, ore-controlling factors, genesis of deposit and mineralization process, comprehensive metallogenic model is established finally.
     A large number of basic geological information show that, Stratums of Cambrian, Devonian, Carboniferous and Permian developed in the ground in Fankou mining area. Fankou mining area included NWW, NW, NNE and NE fault belts. After the formation of the sedimentary strata, loss of part or all of the stratums in between C2ht and D3ta, lack of them formed several to dozens of meters fragmentation mud or cleavage of strata, which is named as "The broken layers", and it is the upper boundary in Fankou deposit. The northern range is generally NWW to lack of stratum; then NW trending fault zone (former NW trending fault zone is referred to as F203) formation, NW trending fault zone may be in the south area of the mine activities associated with the NWW trending fault zone compound, Fracture F203composed of NWW and NW trending fault zone. The NW fault belt is a lower boundary of mining area, between the formation of ore bodies should be two.F203development NNE to the secondary fracture zone, there was F1~F10fault, the fault is the main ore-bearing structure of ore. NE fault zone as a NNE fault zone more secondary structures, including F100, F101, F102, F104fault, the fault and NNE trending fault zone interchange is an ideal place for the formation of ore bodies.
     Trace and rare earth elements of rock and ore shows that, the element of Fe mainly come from carbonate of mining area. The stratums of Fankou mining area of alteration in different degree due to late hydrothermal, affected the values of trace and rare earth elements, Similar characteristics of the different stratums indicated layers of Fankou mining area are affactd by same properties hydrothermal.
     Stable isotope showed that, the813C value is-6.5‰and δ18O value is14.9%o with Ordovician, it is the lowest of all and mainly affected by terrigenous detrital materials. The δ13C value is2.17‰and δ18O value is21.9%o with Carboniferous, it is greater than other stratums and affected by lithology. Devonian as the main metallogenic formation, From deep to shallow, the values of carbon, oxygen and strontium are decreased along with hydrothermal alteration weaken, its in addition to the impacts of lithology and marine sedimentary cycle, mainly affected by the late hydrothermal process.
     The lead isotopes in ores are mainly originated from ancient crustal material. The lead isotopes are the mixture of multiple sources, Surrouding rocks similar with the source. The sulfur of the ore came from sulfates in the seawater, and experienced the reduction of organic matter. The relative abundance of pyrite, sphalerite, and galena is:δ34S value of pyrite> δ34S value of sphalerite>δ34S value of galena.
     The ore-forming fluid temperature concentrated in110~150℃and160~210℃, Fluid inclusions of light brown sphalerite, homogenization temperature is109℃in average, and usually low salinity(<4wt%NaCl). The main content of the fluid is H2O (liquid)-H2O (gaseous), NaCl-H2O, not found Sodium chloride crystal, and organic matter such as CH4, HCl, CO, a few of organic matters involved in mineralizationg.
     The formation of Fankou lead-zinc deposit is closely related to the regional dolomitization. The time of ore-forming is basically during86.8~90.7Ma, it corresponds to the period which red bed basin was widely developed in Southern China. Further, and the ore-bearing stratums are dolomitized, which is also correspond to the large scale dolomitization in this region.
     This study suggests that Fankou lead-zinc deposit is mainly formed during a period of hydrothermal mineralization. There are three metallogenic stages:early, main and late metallogenic stage. Early stage is mainly the formation of pyrite ore body and nearly absent of lead-zinc, main stage is the formation of lead-zinc ore body with pyrite, late stage is marked by the presence of coarse grained bright yellow colored pyrite, produced by the effect of hydrotherm of late mineralization period. Two main categories of ore-forming fluid in Fankou lead-zinc deposit:the first is the deep fluid at the bottom of the mining area, which is possibly originated from the basin brine of regional Cretaceous red strata. The second is the original formation water in carbonate rocks in upper part of the mining area, mainly from atmospheric water. The two types of fluid meet at specific condition at proper place, the metallic elements of two fluids were responsed, caused aggregation and concentrate. Finally, they formed giant ore body.
     Fankou lead-zinc deposit and MVT deposit have many similarities,but the differences are higher temperature, lesser organic matter, fewer collapse breccia, fewer colloidal from texture than MVT deposit. But geological and geochemical characteristics, ore-forming fluid transport, sulphides deposition are similar with MVT deposit, Fankou lead-zinc deposit as a whole belongs to this model of MVT deposit.
引文
[1]Tikkanen, G. D.,1986, World resources and supply of lead and zinc, in Bush, W. R., ed., Economics of Internationally Traded Minerals:Society of Mining Engineers, Inc., p. 242-250.
    [2]赖应篯.广东泥盆系的含矿性[J].地质评论,1981,27(1):8-14.
    [3]赖应篯.凡口铅锌矿床的成因[J].地质论评.1988,34(3):220-230.
    [4]吴健民,张声炎.论广东凡口铅锌矿床成矿作用及双源卤水成矿模式讨论[J].矿产与地质,1987,1(1):46-55.
    [5]朱上庆,池三川.层控矿床及找矿[M].北京:地质出版社,1992.
    [6]陈学明,邓军,翟裕生.凡口铅锌矿床海底热泉喷溢成矿的物理化学环境[J].矿床地质,1998,17(3):240-246.
    [7]陈学明,邓军,翟裕生.凡口铅锌矿床地球化学特征及成矿作用分析[J].地质地球化学.1999,27(1):6-14.
    [8]陈学明,邓军,沈崇辉.凡口超大型铅锌矿床成矿流体的物理特征和地球化学特征[J].地球科学-中国地质大学学报,2000,25(4):438-442.
    [9]张术根,马国秋.凡口东矿带成矿规律与成矿预测[R]*.中南大学,2001.
    [10]张术根,周建普,黄满湘.凡口铅锌(银)矿床成矿流体来源研究[J].矿产与地质.2002,16(4):199-202.
    [11]张术根,丁存根,李明高等.凡口铅锌矿区闪锌矿的成因矿物学特征研究[J].岩石矿物学杂志,2009,28(4):364-374.
    [12]戴自希,盛继福,白冶等.世界铅锌矿的分布于潜力[M].地震出版社.2005,15-17.
    [13]李如满,汪树栋.锡铁山铅锌矿床地质特征、矿床成因及找矿标志[J].矿产与地质,2003,17(3):218-221.
    [14]祝新友,邓吉牛,王京彬等.锡铁山矿床两类喷流沉积成因的铅锌矿体研究[J].矿床地质,2006,25(3):252-262.
    [15]坚润堂,李峰,徐国瑞.锡铁山SEDEX型铅锌矿床成矿物质来源综述[J].矿产与地质,2007,21(6):642-648.
    [16]白金刚,池三川,覃功炯.云南白牛厂沉积喷流型银多金属矿床沉积环境分析[J].有色金属矿产与勘查,1996,5(3):140-145.
    [17]黄玉春.白银厂及其小外围块状硫化物矿床产出特征[J].西北地质,1991,12(3):33-35.
    [18]黄玉春.白银厂块状硫化物矿床成矿地球化学环境[J].西北地质科学,1992,13(1):17-26.
    [19]廖桂香,王世称,许亚明等.白银厂矿区及外围区域地质背景、地球化学异常特征及找矿潜力[J].地质与勘探,2007,43(2):28-32.
    [20]蒋坤.白银厂铜矿床地质特征[J].中国西部科技,2010,9(35):21-23.
    [21]祝新友,汪东波,王书来.新疆阿克陶县塔木-卡兰古铅锌矿带矿体地质特征[J].地质与勘探,2000,36(6):32-35.
    [22]匡文龙,高珍权,印建平等.西昆仑地区塔木MVT型铅锌矿床成矿作用和成矿物质来源探讨[J].矿物岩石地球化学通报,2002,21(4):253-257.
    [23]田朝江.塔卡矿区MVT、Sedex型矿床特征及成因探讨[J].新疆有色金属,2008,6:6-8.
    [24]雷良奇,宋慈安,赵东军.大瑶山隆起西南缘MVT矿带含矿岩系及流体成矿[J].桂林工学院学报,2006,26(2):153-161.
    [25]刘宏林,胡庆雯,田培仁.关于新疆乌恰盆地中新生代砂岩型铅锌铜铀层次成矿问题浅析[J].矿产与地质,2010,24(2):113-119.
    [26]周建平,陈武,陈克.荣江西冷水斑岩型银铅锌矿床矿物的稳定同位素特征[J].南京大学学报,1989,25(3):158-166.
    [27]孟祥金,侯增谦,董光裕等.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限[J].地质学报,2009,83(12):1951-1967.
    [28]李玉平,陈世益,彭柏兴.广西佛子冲铅锌矿田含矿围岩稀土元素地球化学特征与矿床成因探讨[J].广西地质,1993,6(1):50-61.
    [29]王登红,张长青、王永磊.广西佛子冲铅锌矿总结研究报告[R]*.2012.
    [30]胡志坚,吴永芳.水口山矿田矿床定位模式及找矿远景区评价[J].地质与勘探,2005,41(5):17-21.
    [31]谭建湘,宛克勇.湖南水口山铅锌金银矿床地球化学特征[J].地质与勘探,2008,44(3):22-27.
    [32]谷俐.黄沙坪铅锌多金属矿床的成因分析[J].湖南地质,1997,16(4):232-238.
    [33]雷泽恒,陈富文,陈郑辉等.黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义[J].地球学报,2010,31(4):532-540.
    [34]张林奎,范文玉,高大发.西藏林周县勒青拉铅锌多金属矿床地质特征及成因[J].地质与勘探,2008,44(5):10-16.
    [35]张林奎,范文玉.高大发.西藏勒青拉铁铅锌矿床成矿模式探讨[J].地球学报,2012,33(4):673-680.
    [36]陈大经,杨佑,梁磊等.洪岩头式中生代陆相火山喷流沉积型铅锌(银)矿床的地质特征及成矿模式[J].矿产与地质,1995,9(3):160-167.
    [37]王喻亮.江西德兴银山多金属矿床特征[J].矿物学报,2011,增刊:99-100.
    [38]张万虎.江西银山矿田九龙铅锌矿带深、边部成矿预测研究[D].湖南科技大学,2011.
    [39]王育民.试论中国铅锌矿床类型及其基本特征[J].矿床地质,1983,2(1):21-29.
    [40]Paradis, S., Nelson, J.L. Metallogeny of the Robb Lake carbonate-hosted zinc-lead district, northeastern British Columbia, in Good fellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods:Geological Association of Canada, Mineral Deposits Division,2007,5,633-654.
    [41]Sangster, D.F. Mississippi Valley-type and SEDEX lead-zinc deposits:a comparative examination:Institution of Mining and Metallurgy, Transactions, Section B:Applied Earth Science,1990,99,21-42.
    [42]Leach D L and Sangster D F. Mississippi Valley-type lead-zinc de-posits [J]. Geological Association of Canada Special Paper,1993,40:289-314.
    [43]Leach, D.L., Viets, J.B., Foley-Ayuso, N., and Klein, D.P. Mississippi Valley-Type Pb-Zn deposits (Models 32a, b; Briskey,1986 a, b), in DuBray, E. A., ed., Preliminary Compilation of Descriptive Geo environmental Mineral Deposit Models:U.S. Government Consulting Group,1995, Open File Report 95-831,234-243.
    [44]Foley, N.K. Chapter E-Environmental geochemistry of platform carbonate- hosted sulphide deposits, http://pubs.usgs.gov/of/2002/of02-195/ChE.Txt.
    [45]Hannigan, P. Metallogeny of the Pine Point Mississippi Valley-Types zinc-lead district, Southern Northwest Territories, in Goodfellow, W.D.,ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods:Geological Association of Canada, Mineral Deposits Division,2007,5,609-632.
    [46]Dewing, K., Turner, E., and Harrison, J.C. Geological history, mineral occurrences and mineral potential of the sedimentary rocks of the Canadian Arctic Archipelago, in Good fellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division,,2007,5,733-753.
    [47]张长青,于金杰,毛景文等.密西西比型铅锌矿床研究进展[J].矿床地质,2009,28(2):195-210.
    [48]Titley S.R. Characteristics of high temperature, carbonate-hosted replacement ores and some comparisons with Mississippi Valley-type ores [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol.1996,4:244-254.
    [49]Smith D.M. Sedimentary basins and origin of intrusion-related carbonate-hosted Zn-Pb-Ag deposits [A]. In:Sangster D F, ed. Carbonate hosted lead-zinc deposits [C]. Soc. Econ. Ge(?) 1996,4:255-263.
    [50]Megaw P.K.M., Barton M.D., and Falce J.I. Carbonate-hosted lead-zinc (Ag-Cu-Au) deposits of Northern Chihuaha, Mexico [A]. In:Sangster, D.F, ed. Carbonate-hosted lead-zinc deposits [C].Soc. Econ. Geol.1996,4:277-289.
    [51]Sheppard S.M.F, Charef A and Bouhel S. Diapirs and Zn-Pb mineralization:A general model based on Tunisian (N. Africa) and Gulf Coast (USA) deposits [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.1996,4:230-243
    [52]Misra, K.C., Lopp, O.C., Paris T. A., Linkous. M.A.1989.Mississippi valley-type fluorite-barite- sphalerite mineralization in the sweetwater district, Tennessee [J]. Carbonates and Evaporites,4(2):211-230.
    [53]Rowan E.L, Thibieroz J, Bethke C.M and Marsily D.G. Geo-chemical and hydrologic conditions for fluorite mineralization in regions of continental extension:An example from the Albigeois district, France [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.1996,4:448-464.
    [54]Hitzman M.W and Beaty D.W.1996. The Irish Zn-Pb (-Ba) ore field [A]. In:Sangster D.F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:112-143.
    [55]Leach, D.L., Bradley D.C., Lewchuck, M., Symons D.T.A., Brannon J., and Marsily G. de. Mississippi Valley-type lead-zinc deposits through geological time:Implications from recent age-dating research. Mineralium Deposita,2001,36:711-740.
    [56]周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床[J].地质地球化学.1997,1:65-75
    [57]刘英超,侯增谦,杨竹森,田世洪,宋玉财,杨志明,王召林,李政.密西西比河谷型(MVT)铅锌矿床:认识与进展[J].矿床地质,2008,27(4):253-264.
    [58]Bradley, D.C., and Leach, D.L. Tectonic controls of Mississippi Valley-Type lead-zinc mineralization in orogenic forelands [J]. Mineralium Deposita,2003,38:652-667.
    [59]Dunham, K. Ore genesis in the English Pennines, a fluoritic subtype:international conference on Mississippi Valley-type lead-zinc deposits [J]. Proceedings Volume,1983, 271-278.
    [60]Rowan, E.L., Thibieroz, J., Bethke, C.M., and Marsily, G. Geochemical and hydrologic conditions for fluorite mineralization in regions of continental extension:An example from the Albigeois district, France, in Sangster, D.F., ed., Carbonate-hosted lead-zinc deposits [J]. Society of Economic Geologists,1996,4:448-464.
    [61]Misra K.C. Understanding mineral deposits [M], Boston, Ma:Kluwer Academic Publishers. 1999,1-845.
    [62]Sangster D.F. The role of dense brines in the formation of ventdistal sedimentary-exhalative (SEDEX) lead-zinc deposits:field and laboratory evidence [J]. Mineralium Deposita,2002, 37:149-157.
    [63]Brian Hitchon. Lead and zinc in formation waters, Alberta Basin, Canada:Their relation to the Pine Point ore fluid[J]. Applied Geochemistry:2006,21:109-133.
    [64]Jone S. Brown, Towson, and Marryland. Mississippi Valley Type lead-zinc ores [J]. Mineral. Deposita.1970,5:103-119.
    [65]Basuki N I and Spooner E T C. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits:dentifying thresholds for metal transport [J]. Exploration and Mining Geology,2004,11:1-17.
    [66]Garven G and Freeze R.A. Theoretical analysis of the role of groundwater flow in the genesis of strata-bound ore deposits.Mathematical and numerical model Quantitative results [J]. American Journal of Science,1984,284:1085-1174.
    [67]Hitchon B. Geochemisty of formation water, northern Alberta, Canada:Their relation to the Pint Point ore deposit, Edmonton [C], Alberta Geological Survey, Open File Report,1993, 14:99.
    [68]Jackson, S.A and Beales, F.W. An aspect of sedimentary basin evolution:The concentration of Mississippi Valley-type ores during the late stages of diagenesis:Bulletin of Canadian Petroleum Geology,1967,15:393-433.
    [69]Cathles, L.M., and Smith, A.T. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis:Economic Geology,1983,78:983-1002.
    [70]Bethke, C. M. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins [J]. Journal of Geophysical Research,1985,90:6817-6828.
    [71]Adams J J. Numerical modeling of regional gravity-driven flow systems in the Alberta basin (Master of Scince)[D]. Supervisor:Rostron B J and Mendoza. Canada:University of Alberta. 2001,15-23.
    [72]Morrow, D. Regional subsurface dolomitization, models and constraints [J]. Geoscience Canada,1998,25(2):57-70.
    [73]Aulstead, K.L., Spencer, R.J., and Krouse, H.R. Fluid inclusion and isotopic evidence on dolomitization [C], Devonian of Western Canada:Geochimica et Cosmochimica Acta,1988, 52,p.1027-1035.
    [74]Nelson, J., Paradis, S., Christensen, J., and Gabites, J., Canadian Cordilleran Mississippi Valley-type deposits:A case for Devonian-Mississippian back-arc hydrothermal origin[J]. Economic Geology,2002,97,1013-1036.
    [75]Anderson, G.M., and Macqueen, R.W. Ore deposit models-6.Mississippi Valley-type lead-zinc deposits[J]:Geoscience Canada,1982,9,108-117.
    [76]Jackson, S. A and Beales, F. W. An aspect of sedimentary basin evolution:the concentration of Mississippi Valley-type ores during late stages of diagenesis [J]. Bulletin of Canadian Petroleum Geology,1967,15:383-433.
    [77]Anderson, G. M. Precipitation of Mississippi Valley-type ores [J]. Economic Geology.1975, 70:937-942.
    [78]Adams, J.J., Rostron, B.J., and Mendoza, C.A. Evidence for two-fluid mixing at Pine Point, Northwest Territories:Journal of Geochemical Exploration,2000,69-70,103-108.
    [79]Sverjensky, D.A. Oil field brines as ore-forming solutions [J]. Economic Geology.1984,79, 23-27.
    [80]Anderson G. M. Organic maturation and ore precipitation in Southeast Missouri [J]. Economic Geology.1991,86:909-926.
    [81]韩英,王京彬,祝新友等.广东凡口铅锌矿含矿地层C、O同位素地球化学特征[J].矿床地质,2010,29,443-444
    [82]吴延之,黄生文.广东凡口铅锌矿床主要金属矿物的标型特征及其成因意义[J].桂林冶金地质学院学报,1987,7(1):1-10.
    [83]郑庆年.广东凡口铅锌矿[M].冶金工业出版社,1996.108-115.
    [84]李发源,顾雪祥,付绍洪等.MVT铅锌矿床定年方法评述[J].地质找矿丛论,2003,18(3):163-167.
    [85]彭建堂,胡瑞忠,林源贤,等.锡矿山锑矿床热液方解石的Sm-Nd同位素定年[J].科学通报,2002,47(10):789-792.
    [86]安伟,曹志敏,郑建斌.成矿年龄的测定方法及其新进展[J].地质找矿丛论,2004,19(3): 196-203
    [87]Luck J M, Allegre C J. The study of molybdenites through the 187Re-187Os chronometer [J]. Earth and Planetary Science Letters,1982,61:291-296.
    [88]Selby D, Creasera R A, Dewing K, Fowler M. Evaluation of bitumenas a 187Re-187Os geochronometer for hydrocarbon maturation andmigration:a test case from the Polaris MVT deposit, Canada [J]. Earth and Planet,2005,235,1-15
    [89]刘建明,沈洁,赵善仁,霍卫国,姜能.金属矿床同位素精确定年的方法和意义[J].有色金属矿产与勘查,1998,7(2):107-113
    [90]郭洪中.粤北曲仁盆地铅锌矿床地质地球化学[D].中山大学,1994
    [91]邱小平.凡口铅锌矿床燕山期改造富集作用[D].地学研究,1997,165-172
    [92]蒋映德,邱华宁,肖慧娟.闪锌矿流体包裹体40Ar-39Ar法定年探讨-以广东凡口铅锌矿为例[J].岩石学报,2006,22(10):2425-2430.
    [93]邱小平.广东凡口铅锌矿床成矿构造动力研究[D].中国地质科学院.1991.
    [94]Matteo Panseri. U/Pb SHRIMP Analyses methodology and application [C].2007,1-22.
    [95]李洪奎,田秀林,耿科.SHRIMP锆石U-Pb测年方法简介[J].山东国土资源,2011,27(3):24-26
    [96]王瑞廷,毛景文,王东生,等.金属矿床地球化学的研究前沿[C].中国有色金属学会第五届学术年会论文集,2003,北京:63-65
    [97]陈远荣,黄书俊,贾国相,曾永超.论湘南-粤北区域地层地球化学背景与区域矿产的关系[J].矿产地质研究院学报,1986,(2):59-65.
    [98]周国强,周振林.对粤北震旦系乐昌峡群的新认识[J].中国区域地质,1983,5:138-141
    [99]徐义洪.粤北复控型矿床特征及找矿方向[J].中国矿山工程,2007,36(4):11-13.
    [100]兰井志.粤北地区典型矿床矿物标型特征研究[J].中国地质大学(北京),2002.
    [101]张显球,丹霞盆地白至系的划分与对比[J].地层学杂志,1992,16(2):81-95.
    [102]吴志才,彭华.广东丹霞地貌分类研究[J].热带地理,2005,25(4):301-306.
    [103]南颐.中国古生物学会湘、桂、粤地区联合成立大会会议报告[R].古生物学报,1982.
    [104]李水林.粤北曲江-英德上古生界断陷盆地东西向控盆断裂构造及其控矿作用[J].广东科技,2008,(18):196-197.
    [105]南颐,周国强.广东省岩石地层[M].武汉中国地质大学出版社,1996.
    [106]曾允孚,沈德麟,张锦泉等.南岭泥盆系层控矿床[M].地质出版社,1987:80-85.
    [107]曾允孚,张锦泉,刘文均等.中国南方泥盆纪岩相古地国理与成矿作用[M].地质出版社:1993,37-47.
    [108]杨汉壮,陈尚周.广东凡口铅锌矿层间滑动构造及其控矿作用[J].地质与勘探,2006,42(2):44-48.
    [109]孙晓明,柯长桂,张显球,林邵标.粤北丹霞红层地质地貌及超大型矿床[M].北京:地质出版社,1996,115.
    [110]刘德利,刘继顺,郭军,周余国,韩海涛.广东凡口铅锌矿床控矿构造型式[J].矿床地质,2006,25(4):1 83-190.
    [111]梁新权,温淑女.广东凡口铅锌矿床的走滑构造及成矿模式[J].大地构造与成矿学,2009,33(4):556-566.
    [112]李明高.广东韶关市凡口铅锌矿接替资源勘查[R]*.2010.
    [113]彭建堂,胡瑞忠,毕献武,等.湘南郴州钨-锡-多金属矿集区的形成时限及其成矿地球动力学背景[J].岩石地球化学通报,2006,25(1):41-45
    [114]祝新友,王艳丽,汤静如,等.湖南瑶岗仙钨矿典型矿床研究[R]*.北京矿产地质研究院,2012
    [115]王正其,吴烈勤,张国玉等.粤北中洞地区“交点型”铀矿成矿控制因素研究[J].中国核科技报告,2007,2:157-177.
    [116]刘援军.粤北百顺地区晚白垩纪辉绿岩地球化学特征[J].中国科技信息,6(5):37.
    [117]Botynton W. V. Geochemistry of the rare earth elements:meteorite studies. In:Henderson P. (ed), Rare earth element geochemistry. Elservier,1984,63-114.
    [118]陆建军,吴烈勤,凌洪飞,沈渭洲,高剑峰,黄国龙,邓平,谭正中.粤北下庄铀矿田黄破-张光营辉绿岩脉的成因:元素地球化学和Nd-Sr-Pb-O同位素证据[J].岩石学报,2006,22(2):397-406.
    [119]林绍标.凡口超大型铅锌矿床地质特征[J].有色金属(增刊),1998,50:3-12.
    [120]李菊英,侯奎.广东凡口矿区钙藻化石的发现[J].地质科学,1981,1:94-95.
    [121]李荣清.粤北凡口铅锌矿床方解石矿物学特征及其与成矿作用的关系[J].矿物岩石学杂志,1988,4:347-355.
    [122]邱家骧,林景仟.岩石化学[M].北京出版社,1989.
    [123]江纳言,贾荣芬,王子玉等.下扬子区二叠纪古地理和地球化学环境[M].北京,石油工业出版社,1994,59-70.
    [124]黄思静.碳酸盐岩的成岩作用[M].地质出版社,北京,2010.
    [125]赵振华.微量元素地球化学原理[M].科学出版社.1997.
    [126]陈俊.地球化学[J].科学出版社,2004,321.
    [127]沈平,朱惠英,徐永昌.沉积岩中铀、钍、钾分布特征[J].沉积学报,1983,1(3):109-122
    [128]Gromet R. T, Dymek R. F, Haskin L. A., and Korotev RL The "North American Shale Composite":its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta,1984,48,2469-2482.
    [129]於崇文等.南岭地区区域地球化学[M].地质出版社,1987.
    [130]汪贻水.中国实用矿山地质学(上册)[M].广东凡口铅锌矿银赋存状态研究[J].2010,169-172.
    [131]倪志耀,莫怀毅,刘援朝.冕宁前寒武纪沉积岩的铕、铈异常特征及成因解释[J].四川地质学报,1998,18(4):259-265.
    [132]冯洪真.上扬子区早古生代全岩Ce异常与海平面长缓变化[J].中国科学(D辑),2000,30(1):66-71.
    [133]Piepgras D. J, Jacobsen S B. The behavior of rare earth elements in seawater:precise determination of variations in the North Pacific water column [J]. Geochimica et Cosmochimica Acta,1992,56:1851-1862.
    [134]伊海生,林金辉,赵西西,周恳恳,李军鹏,黄华谷.西藏高原沱沱河盆地渐新世—中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探[J].沉积学报,2008,261(1):1-10.
    [135]Haskin M. A., Frey F. A. Dispersed and not-so-rare-earth. Science,1966,152,299-314.
    [136]韩英,王京彬,祝新友等.广东凡口铅锌矿碳氧同位素地球化学特征及其地质意义[J].地质与勘探,2011,47(4):642-648.
    [137]陈国达.成矿大地构造概论[M].中南矿冶学院,1976.
    [138]杨国清.构造地球化学[M].广西师范大学出版社,1990.
    [139]Rimstidt J D, Chermak J A, Gagen PM-Rates of reaction of galena, sphslerite, chalcopyrite, and arsenopyrite with Fe in acidic solutions Environmental geochemistry of sulfide oxidation [J]. American chemical society,1994,3-13.
    [140]涂光炽.我国矿床同位素地球化学若干问题的讨论[J].于津生,李耀菘.中国同位素地球化学研究[C].北京:科学出版社,1997,457-463.
    [141]S. S. Sun, W. F. McDonough. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geologyical Society,1989,42,313-345
    [142]刘德良,孙先如,李振生等.鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J].石油实验地质,2006,28(2):155-161.
    [143]向芳,王成善.锶同位素在沉积学中的应用新进展[J].地质地球化学,2001,29(1):79-82.
    [144]Verizer J and Hoefs J. The nature of 18O/16O and 13C/12C secular trend in sedimentary carbonate rocks. Geochim. Cosmochim. Acta,1976,40:1387-1395.
    [145]陈衍景,刘丛强,陈华勇等.中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J].岩石学报,2000,16(2):233-244.
    [146]祁进平,张静,唐国军.熊耳地体南侧中晚元古代地层碳氧同位素组成:CMF模式的证据[J].岩石学报,2005,21:1365-1372.
    [147]王安甲,初广震,黄文辉,王旭.塔里木盆地奥陶系碳酸盐岩碳氧稳定同位素地球化学特征[J].成都理工大学学报,2008,35(6):700-704.
    [148]杜小弟,刘万洙,王东坡.碳氧同位素与海平面变化-以新疆柯坪地区上震旦统-奥陶系碳氧同位素剖面为例[J].1994,13(3):120-123.
    [149]Veizer J. Possible use of strontium in sedimentary rocks as a paleo-environmental indicator [J]. Sedimentary Geology,1975,5(1):5-22.
    [150]田景春,曾允孚.中国南方二叠纪古海洋锶同位素演化[J].沉积学报,1995,13(4):125-129.
    [151]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53
    [152]Palmer M. R., Edmond J. M. The strontium isotope budget of the modern ocean. Earth Planet, Sci. Lett.,1989,92:11-26.
    [153]Muller D W. McKenzie J A. Mueller P A. Abu Dhabi sabkha, Persian Gulf, revisited: Application of strontium isotopes to test an early dolomitization model [J]. Geology,1990, 18(7):618-621.
    [154]杨振强,杨开旭,黄惠兰.沉积地层中成矿作用的碳同位素特征和含矿缺氧盆地成因新观点[J].岩相古地理,1999,19(6):21-28.
    [155]J. Spangenberg, Z. D. Sharp, L. Fontbote. Apparent stable isotope heterogeneities in gangue carbonates of the Mississippi Valley-type Zn-Pb deposit of San Vicente, central Peru[J]. Mineral Deposita,1995,30,67-74.
    [156]魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988,59-80.
    [157]张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,1988,7(2):55-64.
    [158]陈好寿.我国层控多金属矿床的铅、硫同位素研究[J].矿床地质,1983,3:79-87
    [159]沈渭洲.同位素地质学教程[M].北京:原子能出版社,1997,211-245.
    [160]H. Ohmoto, R.O. Rye. Isotopes of sulfur and carbon. Geochemistry of Hydrothermal ore deposits. NewYork, Wiley-lnterscience,1979,509-567.
    [161]H. hmoto, Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Eeon.Geol,1972,67,551-579.
    [162]郑永飞,陈江峰.稳定同位素地球化学[M],科技出版社,2000.
    [163]张连昌,赵伦山.成矿流体研究的若干进展与动态[J].地质与勘探,2001,37(1):7-10
    [164]卢焕章,范宏瑞,倪培.流体包裹体[M].科学出版社,2004,1.
    [165]喻铁阶,刘月星,吴开华.粤北凡口-大宝山地区铅锌矿床气液包裹体研究[J].冶金工业部地质研究所学报,1983,1(23):23-33.
    [166]卢焕章.广东凡口铅锌矿床的成因研究[J].地球化学,1984,4:357-365.
    [167]McLiman R. K., Barnes H. L., Ohmoto H. Sphalerite 165tratigraphy of the Up Mississppi Valley Lead-Znic, southwest Wisconsin. Econ.Geol.,1980,75:351-361.
    [168]Hall W., Friedman. Composition of fluid inclusions, Cave-in-Rock fluorite district, Iilions and Upper Mississippi Valley zinc-lead district[J]. Econ,Geol.,1963,58:886-911.
    [169]Pinckyney D. M., R. O. Rye Variation of 18O/16O,13C/12C, texture and mineralogy in altered limestone in the Hill mine, Cave-in-Rock District, Illinois[J]. Econ, Geol.,1972, 67:1-18.
    [170]Roedder E.. Data of geochemistry, chaper JJ, Composition of fluid inclusions:U. S. Geol.Surv.,1972,440.
    [171]S. Makhoukhi, Ch. Marignac, J. Pironon, J. M. Schmitt, C. Marrakchi, M. Bouabdelli, A. Bastoul. A queous and hydrocarbon inclusions in dolomite from Touissit-Bou Beker district, Eastern Morocco:a Jurassic carbonate hosted Pb-Zn (Cu) deposit [J]. Journal of Geochemical Exploration,2003,3:545-551.
    [172]A.A. Sicree, H. L. Barnes. Upper Mississippi Valley district ore fluid model:the role of organic complexes[J]. Oer Geology Reciew,1996,11:105-131.
    [173]Andrew P. Gize, H. L. Barnes. The Organic Geochemistry of Two Mississippi Valley-Type Lead-Zinc Deposits [J]. Economic Geology,1987,82:457-470.
    [174]王濮,翁玲宝,陈代璋.粤北凡口铅锌矿床的成因、成矿时代、成矿模式与找矿[J].现代地质.1995,9(1):60-68
    [175]邱小平.凡口超大型铅锌矿矿燕山期改造富集作用[J].地学研究,165-172.1997,
    [176]祝新友,甄世民,韩英.广东凡口铅锌矿典型矿床研究[R]*.北京矿产地质研究院,2012
    [177]Kevin L. Shelton. Jay M Gregg et al. Replacement dolomites and ore sulfides as recorders of multiple fluids and fluid sources in the Southeast Missouri Mississippi Valley-Type district:Halogen 87Sr/86Si、δ18O-δ34S Systematics in the Bonneterre dolomite[J]. Economic Geology,2009,104:733-748.
    [178]韩英.广东凡口铅锌矿床地球化学研究[D]*.昆明理工大学,2011
    [179]童随有,祝新友,王京彬.青藏高原周边地区与新生代盆地卤水活动有关铅锌矿床[J].矿产与地质,2009,23(3):210-213.
    [180]B. Stoffell, J.J Wilkinson, N.A. Mcclfean. T.E. Jefries. Geochemistry and evolution of Mississippi Valley-Type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions [J]. Economic Geology.2008,103:1411-1435.
    [181]Martin S. Appold and Zachary J. Wenz. Composition of ore fluid Inclusions from the Viburnum Trend, Southeast Missouri United States:implications for transport and precipitation mechanisms [J]. Economic Geology.2011,106:55-78.
    [182]宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30.
    [183]侯贵廷,刘玉琳,李江海,金爱文,关于基性岩墙群的U_Pb SHRIMP地质年代学的探讨-以鲁西莱芜辉绿岩岩墙为例[J].岩石矿物学杂志,2005,24(3):180-185
    [184]Hey 1. A. V., Landis G. P., and Zartman R. E. Isotopic evidence for the origin of Mississippi Valley-type mineral deposits:A reviews. Econ. Geol.,1974,69:992-1006.
    [185]谢世业,陈大经,辛厚勤,刘川宁.广西环江县北山地区喷流沉积铅锌矿资源潜力及找矿方向[J].矿产与地质,2004,18(3):217-219.
    [186]刘文均,伊海生,温春齐.城步铺头黄铁矿床再研究[J].沉积学报,1998,16(2):61-67.
    [187]David L. Leach, Ryan D. Taylor. Mississippi Valley-Type lead-zinc deposit model.Open-File Report.2009,1-4.
    [188]Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., and Walters, S.,2005, Sediment-hosted lead -zinc deposits- A global perspective:Society of Economic Geologists, Economic Geology One Hundredth Anniversary Volume,1905-2005, 561-607.
    [189]Sverjensky D. A. The origin of a MVT in the Viburnum Trend, southest Missouri [J]. Economic Geology,1981,76:1848-1872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700