用户名: 密码: 验证码:
辽东湾北部现代沉积作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海,由辽东湾、渤海湾、莱州湾、中央盆地和渤海海峡组成,平均水深18m,通过渤海海峡与外海进行水体交换和能量传递。末次冰消期以来,海水重新覆盖原有的渤海陆相沉积,形成:黄河、滦河、辽河等大型水下三角洲,规模宏大的辽东浅滩潮流沙脊群、辽东湾沿岸15m水深以浅规模不一的离散分布的潮流沙脊单体,北东-南西向延伸的中央盆地泥质沉积区。本文研究区域是辽东湾北部20m水深以浅、130km×100km的海域范围:北部是辽河(我国七大主要河流之一)等多条河流的入海口,发育规模可观的潮滩以及延伸至约30m等深线附近区域的水下河口三角洲,东部和西部沿岸为港湾基岩海岸,东部沿岸水下分布古滨海残留沉积区;研究区海底地形呈现自海岸向海湾中部倾斜态势,其中东、西两岸倾斜坡度较大;研究区潮差大(最大潮差超过5m)、潮流强(2-3节)、冰期长(最长180天),陆海相互作用强度极高。虽然前人已开展过相关方面的研究,但历史调查精度不高、调查区域覆盖不全面、样品测试数量不多、样品测试内容不全面不系统、关注的视角偏重陆地和海岸带,更鲜有细致研究人类活动对近海沉积的影响以及悬浮体对区域现代沉积作用及影响的研究。本文全面依托“我国近海海洋环境综合调查与评价”中CJ01区块A1调查区1:5万大比例尺调查的底质、水体、柱状样资料及辽宁省908专项中“辽宁省海岸带调查”的潮滩柱状样资料,进行了全面的粒度、碎屑矿物、常微量元素、水体(温盐密)、悬浮体(质量浓度和体积浓度)、210Pb放射性测年等测试分析,开展了区域精细的沉积分布特征、现代沉积物质来源、近代人类活动影响记录、悬浮体输运、现代河口沉积动力过程研究,获得以下五个主要方面的基本结论:
     (1)该区域沉积物中粉砂和砂平均含量超过80%,以砂质粉砂和粉砂质砂两种沉积物类型为主,西北部抵近小凌河口的5-10m水深之间的海底沉积物(粉砂)最细,在东南方向近岸水下沙脊区分布最粗的沉积物类型(砂)。表层沉积物的分布与区域海洋动力、海底地貌特征和物源供给密切相关,除东南沿岸砂质残留沉积受现代物质供给影响较小外,绝大多数海域沉积物来源依赖海湾周边河流输入的泥沙,尤以北部四条河流来水来沙为主。
     (2)表层沉积中轻矿物占97.1%,主要矿物是长石,平均含量为59.8%,石英为29.3%,矿物成熟度较低。重矿物不稳定组分含量较高,组合以角闪石-绿帘石-石榴子石-透闪石为主,钾长石和榍石是区域内的特征矿物。研究区以钾长石和角闪石含量高而区别于渤海其他海域。
     (3)常量成分中SiO2和Al2O3平均含量高达67.47%和12.45%,金属元素含量次之,TiO2、P2O5和MnO位居末三位,均小于0.58%。元素组合分析结果显示,陆源碎屑、生物质粗粒沉积是控制元素分布的主要因子。重金属相对含量较高,分布规律符合粒度控制律,所测各金属均与Al有较高的相关性,体现了近源陆相输入物为主的影响。
     (4)210Pb和137Cs测年揭示了北部潮滩的沉积速率和沉积过程。潮滩沉积对河流入海泥沙量敏感度较高,80年代以来沉积速率明显降低,局地出现淤积与侵蚀的交互作用过程。水下三角洲的沉积过程基本稳定,测试结果反映的物质供给和沉积速率未显现出大的波动,基本保持在2~6mm/a的水平。
     (5)悬浮体浓度分布呈现较为明显的自河口向外扩散的分布态势,底层浓度远高于表层;潮流顶托和海面风场增大了悬浮体浓度,尤其是在浅海和东南沿岸海域。盐度28‰为界,悬浮体质量浓度与浊度呈现不同程度的线性关系。现场体积浓度与质量浓度分布规律相近,海水中絮凝体和生物组分含量低,底层悬浮体浓度较高,在河口存在明显的辽河冲淡水锋面。辽河海底谷地、辽河口等水动力作用较强的海域,悬浮体现场平均粒径组成偏粗,可达1-5Φ,其它区域以5-7Φ为主。
     本文以前所未有的站位密度获取了均匀覆盖整个辽东湾北部的研究数据,资料充分、样品数量充足、分析测试方法可信,区域水体、底质、柱状样等载体真实反映悬浮体、粒度、碎屑矿物、地球化学、沉积速率等研究要素的分布及特征。通过全面深入研究,在三个方面有了新的认识:
     (1)从沉积物分布和动力分异方面,细化并更新了辽东湾北部现代沉积特征。研究区中部偏西侧海域、围绕海湾环流分布典型的粘土质粉砂细粒沉积区,海湾东西两侧残留沉积区及水下谷地区粗粒沉积特征明显,陆源碎屑矿物动力分异特征、重金属元素在细粒沉积区富集等均符合上述现代沉积特征。
     (2)河控作用减弱、潮控作用加强,这是辽东湾北部沉积环境改变的显著特点。河流水沙量骤降致使物质供给量减少,北部和东部区域河流冲淡水扩散方式限制了河口悬浮体的输运距离,碎屑矿物扩散能力减弱降低了重矿物分异能力,表层细粒沉积再悬浮搬运减小了原地沉积速率,原有的河流影响沉积区逐渐被潮流沉积体系所代替。
     (3)人类活动是改变和再塑辽东湾北部现代沉积格局和沉积作用的重要影响因素。修建水库水闸严重减少了河流水沙输入量;围填海活动重新塑造了海岸的自然形态和空间分布格局,限制了沿岸浅水区物质参与现代沉积的能力并间接影响了沉积速率变化、碎屑矿物的动力分异、重金属元素的富集和扩散。
The Bohai sea, composed of Liaodong bay, Bohai bay, Laizhou bay, the central basin and Bohai strait, the average depth of18m, through the Bohai Strait interchange sea water and energy with Yellow Sea. Since the last deglaciation periods, sea water re-cover the original land of Bohai deposition to form:a large underwater delta of the Yellow River, Luan River, Liaohe, the scale of Liaodong shoal tidal sand ridge along the Liaodong Bay15m depth shallow-scale mixed the discrete distribution tidal sand ridges monomer, NE-SW extension of the central basin argillaceous sediments District. Study area is20m water depth to shallow130km X100km the waters range of northern Liaodong Bay:northern part is Liaohe (China's seven major rivers) and other river estuaries, developmental sizable intertidal and extends to about30m deep lines near the region's the underwater river deltas; eastern and western along the coast to the harbor bedrock coast, the eastern coast of the underwater distribution of ancient coastal residue deposition area; Seabed terrain rendering of the study area from the coast to the bay central tilt trend, which both sides of the East and West tilt steeper; tidal range in the study area (maximum tidal range more than5m), a strong trend (2-3nmail), glacial length (the longest180days), land-ocean interaction strength is very strong. Predecessors have been carried out related research, but the historical investigation precision is not high, the survey is not comprehensive regional coverage, the small number of sample tests, sample test content is not comprehensive systems perspective concern emphasis on land and in the coastal zone, and more rarely detailed study of the impact of human activities on the offshore sedimentary and the suspension of the role and impact of modern sedimentary area of research. The paper comprehensively relying on "China's coastal marine environment, a comprehensive survey and evaluation" CJ01the blocks Al investigations District1:50,000scale investigation of sediment, water, core sample data and Liaoning Province,"908Liaoning Province Coastal Zone Survey" tidal flat core sample data, the full range of particle size, detrital minerals, macroelement and microelement, the water (temperature, salinity and density), suspension (mass concentration and volume concentration),210Pb radioactive dating test analysis, to carry out a regional fine deposition distribution characteristics of modern sedimentary material sources, modern human activities affecting record suspension transport, the modern estuarine sediment dynamic process research, the basic conclusions of the following five major areas:
     (1) The average compositions of silt and sand are more than80%in regional sediments, mainly sandy silt and silty sand sediment types. The northwest nearly Xiaoling River estuary, between5-10m water depth, seabed sediments (silt) is finest, while seabed sediments (sand) in the southeast direction subaqueous sand ridge is the most coarse. Marine hydrodynamics, submarine geomorphological features and matter source are closely related to the distribution of seabed sediments. In addition to the southeast coast of sandy residue deposition is less affected by the modern material supply, the vast majority of marine sediment source is dependent on input of the rivers surrounding the gulf, especially the four rivers in the northern part.
     (2) In the seabed surface sediments, light minerals accounted for97.1%, and as major mineral, feldspar's average content is59.8%, quartz29.3%. Highly unstable components of heavy mineral, mineral assemblage amphibole-epidote-garnet stone-tremolite, and K-feldspar and sphene are characteristic minerals in the region. The study area is distinguished from other Bohai areas with the high content of K-feldspar and hornblende.
     (3) In compositions of macroelement, the average SiO2and Al2O3content are up to67.47%and12.45%, followed by metal element content, TiO2, P2O5and MnO among the last three are less than0.58%. Element composition analysis shows that terrigenous coarse clastic and biological coarse clastic are the major factor controlling the distribution of elements. Heavy metals content relative higher, and distribution law in line with the granularity control law. Each measured metal remaining higher correlation with Al, reflecting the influence that the input material is near and terrigenous.
     (4)210Pb and137Cs dating reveals the northern intertidal deposition rate and deposition process. Tidal flat sedimentation is sensitive highly to the loads from river. Since the1980s, the deposition rate decreased significantly, and even some parts appear deposition and erosion interactions. The subaqueous delta deposition process is basically stable, and material supply and deposition rate of the test results reflect not show large fluctuations, remained at the level of2~6mm/a.
     (5) The suspension concentration distribution since estuary outward diffusion presents more obviously, and the underlying concentration is much higher than the surface. Tidal current and sea surface wind field increases the concentration of the suspension, especially in shallow water and the southeast coastal waters. Salinity28‰for the sector, the mass concentration of the suspension and turbidity showed varying degrees of linear relationship. Site volume concentration and mass concentration distribution are similar, flocs and biological components in seawater relative lower, the underlying suspension higher, and Liaohe diluted water front in the estuary obviously. In Liaohe undersea valley and Liaohe estury, site average particle size is coarse, about1-5Φ, the other area to5-7Φ.
     At an unprecedented density of stations, obtain research data uniform coverage throughout the northern Liaodong Bay, with full information, an adequate number of samples, credible analytical test methods, then the water, sediment and cores can reflect truly on the distribution and characteristics of suspensions, particle size, detrital minerals, geochemistry, deposition rate. By comprehensive in-depth study, there is a newer understanding in three aspects:
     (1) In the differentiation from the sediment distribution and power, refine and update the modern sedimentary characteristics of northern Liaodong Bay. Around the gulf circulation, in the central part of western study area, is typical clayey silt fine-grained sedimentary distribution area. Residual deposition area in eastern and western bay, and underwater valley remain coarse-grained sedimentary characteristics. The terrigenous detrital mineral power differentiation characteristics, and heavy metal enriched in the fine sediment are in line with the modern sedimentary characteristics.
     (2) River control weakened and influx control enhanced is notable features of sedimentary environment change in northern Liaodong Bay. Sudden drop in the amount of river water and sediment resulting decrease in material supply, and rivers in northern and eastern regions diluted water diffusion limit of suspended transport distance, the proliferation of detrital minerals diminished capacity to reduce the heavy mineral fractionation capacity, surface fine sediment again suspension handling reducing in situ deposition rate, and the original river affective deposition zone gradually trend by tidal deposits.
     (3) Human activity is an important factor of change and remodeling northern Liaodong Bay the modern deposition pattern and deposition. Severe reduction of river water and sediment input to build a reservoir sluice; reclamation activities to reshape the coast's natural shape and spatial distribution pattern, limits the ability of shallow coastal waters during the modern sedimentary, indirect effects of the changes in deposition rate, detrital minerals dynamic fractionation and enrichment and diffusion of heavy metal elements.
引文
[1]鲍永恩、黄水光,辽河口海口沉积特征及潮滩动态预测,沉积学报,1993,11(2):105-112;
    [2]陈静生,邓宝山,陶澍,等,环境地球化学,北京:海洋出版社,1990,196-235;
    [3]陈丽蓉,渤海、黄海、东海沉积物中矿物组合的研究,海洋科学,1989,2:1-8;
    [4]陈丽蓉、申顺喜、许文强等,中国海的碎屑矿物组合及其分布模式的探讨,沉积学报,1986,4(3):87-96;
    [5]陈亮、许冬、李团结,粤西及琼东北海区悬浮体浓度及海水浊度特征分析,热带海洋学报,2012,31(2):80—86;
    [6]陈沈良、张国安等,长江口水域悬沙浓度时空变化与泥沙再悬浮,地理学报,2004,59(2):260-266;
    [7]陈晓玲、袁中智等,基于遥感反演结果的悬浮泥沙时空动态规律研究——以珠江河口及邻近海域为例,武汉大学学报信息科学版,2005,30(8):677-681;
    [8]谌艳珍、方国智等,辽河口海岸线近百年来的变迁,海洋学研究,2010,28(2):14-21;
    [9]程江、何青等,利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布,泥沙研究,2005,1:33-39;
    [10]程鹏、高抒,北黄海西部海底沉积物的粒度特征和净输运趋势,海洋与湖沼,2000,31(6):604-615;
    [11]崔廷伟等,渤海悬浮物分布的遥感研究,海洋学报,2009,31(5):10-18;
    [12]董太禄,渤海现代沉积作用与模式的研究,海洋地质与第四纪地质,1996,16(4):43-53;
    [13]窦亚伟、林敏基,闽江口悬浮泥沙动态分区的遥感分析,台湾海峡,1991,10(2):150-155;
    [14]方晶、全新世辽东半岛海岸冲积低地地形发育和相对海面变化的研究,2009,博士;
    [15]冯慕华等,辽东湾东部浅水区沉积物中重金属潜在生态评价,海洋科学,2003,27(3):52-56;
    [16]符文侠、何宝林等,辽东半岛沿岸新构造运动及其影响,海洋环境科学,1992,11(4):64-71;
    [17]符文侠、李光天等,锦州湾滩地动力地貌特征及其冲淤变化,1994,13(2):11-19;
    [18]符文侠、李光天等,辽东湾潮滩及滨下动力地貌特征,海洋学报,1993,15(1):71-83;
    [19]符文侠、王玉广等,辽宁沿海泥炭堆积于全新世海面变化,黄渤海海洋,1995,13(2):23-32;
    [20]符文侠、周永芝等,辽宁滨岸地区海相地层与海侵特征,海洋通报,1990,9(4):40-46;
    [21]龚旭东、魏宏伟等,辽东湾北部浅海区海洋工程地质特征,海岸工程,2006,25(2):47-54;
    [22]贡献,浊度单位和量程范围选择,化工自动化及仪表,1997,24(6):46-49;
    [23]管秉贤、陈上及,全国海洋综合调查报告,1964;
    [24]郝静、李淑媛,渤海辽东湾沉积物中Cu、Pb、Zn、Cd环境背景值初步研究,海洋学报,1989,11(6):742-748;
    [25]何宝林、刘国贤,辽东湾北部浅海区现代沉积特征,海洋地质与第四纪地质,1991,11(2):7-15,;
    [26]胡诞康,固体悬浮物浓度和浊度测量,世界仪表与自动化,2001,5(2):71-73;
    [27]胡刚、刘健等,现场测量与室内分析悬浮体粒度方法的比较,海洋地质动态,2009,25(11):32-36;
    [28]胡宁静、石学法等,渤海辽东湾表层沉积物中金属元素分布特征,中国环境科学,2010,30(3):380-388;
    [29]黄庆福等,从动物群化石看渤海晚第四纪的古环境演变史,海洋地质与第四纪地质,1985,(1):27-38;
    [30]蒋东辉、高抒、李凤业,渤海海峡区域现代沉积速率分布的数值计算,海洋科学,2003,27(3):32-35;
    [31]雷清清、廖旭等,辽宁省地震构造研究,东北地震研究,2008,24(4):1-10;
    [32]雷清清、廖旭等,辽宁省主要活动断层与地震活动特征分析,震灾防御技术,2008,3(2):111-125;
    [33]李粹中、张富元、王秀昌,东海沉积物成因环境的初步分析,海洋学报,1983,5(6):753-765;
    [34]李凡等(1984)发表了《辽东湾海底残留地貌和残留沉积》,
    [35]李凤业、高抒、贾建军、赵一阳,黄、渤海泥质沉积区现代沉积速率,海洋与湖沼,2002,33(4):364-369;
    [36]李凤业、史玉兰,渤海南部现代沉积物堆积速率和沉积环境,黄渤海海洋,1995,13(2):33-37;
    [37]李凤业、史玉兰,渤海现代沉积的研究,1995,(2):47-50;
    [38]李广雪、刘勇、杨子赓,中国东部陆架沉积环境对末次冰盛期以来海面阶段性上升的响应,海洋地质与第四纪地质,2009,29(4):13-19;
    [39]李广雪、庄振业、韩德亮,末次冰期晚期以来地层序列与地质环境特征——渤海南部地区沉积序列研究,青岛海洋大学学报,1998,28(1):161-166;
    [40]李军、高抒等,1998年11月长江河口悬浮体粒度特征的空间分布,海洋通报,2003,22(6):21-29;
    [41]李琼芳等,人类活动对长江泥沙特性的影响,河海大学学报(自然科学版),2007,35(4):364-368;
    [42]李淑媛、刘国贤,渤海沉积物中重金属分布及环境背景值,中国环境科学,1994,14(5):370-376;
    [43]李学刚、吕晓霞、孙云明等,渤海沉积物中的“活性铁”与其氧化还原环境的关系,海洋环境科学,2003,22(1):20-24;
    [44]廖迎娣、张玮等,运用SeaWiFS遥感数据探测中国东部沿海悬浮泥沙浓度的研究,水动力学研究与进展:A辑,2005,(5):558-564,;
    [45]林美华,大凌河-辽河海底谷系的研究,海洋科学,1983,(2):18-21;
    [46]林晓彤、杜树杰、李巍然,东海外缘碎屑矿物的物源解释——基于BP神经网络的判识分析,海洋科学,2003,27(11):75-80;
    [47]林以安、李炎、唐仁友,长江口絮凝聚沉特征与颗粒表面理化因素作用——Ⅰ.悬浮体颗粒絮凝沉降特征,泥沙研究,1997,1:42-48;
    [48]刘大召、张辰光等,基于高光谱数据的珠江口表层水体悬浮泥沙遥感反演模式,海洋科学,2010,34(7):77-80;
    [49]刘恒魁、张凤林、郑延英,锦州湾重矿物在流场中的分异,海洋与湖沼,1998,29(4):395-402;
    [50]刘建国,全新世渤海泥质沉积物地球化学特征,地球化学,2007,36(6):633-637;
    [51]刘茜,基于高光谱数据和MODIS影像的鄱阳湖悬浮泥沙浓度估算,遥感技术与应用,2008,23(1):7-11;
    [52]刘岳峰、邬伦等,辽河三角洲地区海平面上升趋势及其影响评估,海洋学报,1998,20(2):73-82;
    [53]鹿化煜、安芷生,洛川黄土粒度组成的古气候意义,科学通报,1997,42(1):66-69;
    [54]栾振东等,渤海辽东湾区海底地形分区特征和成因研究,海洋科学,2012,36(1):73-80;
    [55]马超飞、唐军武等,黄、东海区总悬浮泥沙对HY-1CCD数据叶绿素浓度反演的影响,海洋科学进展,2004,22增刊:115-120;
    [56]孟伟、雷坤、郑丙辉等,渤海湾西岸潮间带现代沉积速率研究,海洋学报,2005,(3):67-72;
    [57]苗丰民、李淑媛等,辽东湾北部潮滩及浅海区泥沙运移趋势,海洋地质与第四纪地质,1992,12(3):21-35;
    [58]苗丰民、李淑媛等,辽东湾北部浅海区泥沙输送及其沉积特征,沉积学报,1996,14(4):114-121;
    [59]裴艳东、王宏等,小凌河下游晚全新世地层与环境,地质调查与研究,2007,30(3):192-202;
    [60]秦蕴珊、廖先贵,渤海湾海底沉积作用的初步探讨,海洋与湖沼,1962,4(3/4):199-207;
    [61]任世焱,辽东湾海底不稳定性地质因素分析,中国海上油气(工程),1989,1(5):29-34;
    [62]邵和宾、范德江、张晶等,三峡大坝启用后长江口及邻近海域秋季悬浮体、叶绿素分布特征及影响因素,中国海洋大学学报,2012,42(5):94-104;
    [63]沈焕庭、潘定安,长江口最大浑浊带,北京:海洋出版社,2001,46-63;
    [64]宋有强,辽东湾北部岸带温、盐分布基本特征,海洋通报,1990,9(3):9-13;
    [65]宋云香、战秀文等,辽东湾北部河口区现代沉积特征,海洋学报,1997,19(5):145-149;
    [66]宋云香、张永华,菊花岛海区沉积物类型及矿物特征初探,海洋湖沼通报,1994,(1):9-16;
    [67]宋云香、张永华、郑延英等、辽东湾岸带沉积物中的矿物特征与物质来源,海洋通报,1987,6(4):28-37;
    [68]苏健、汪文胜、孙文心等,渤海中南部悬浮体海洋调查资料分析,青岛海洋大学学报,2001,31(5):647-652;
    [69]孙东环、安芷生、苏瑞侠等,古环境中沉积物粒度组分分离的数学方法及其应用,自然科学进展,2001,11(3):269-276;
    [70]孙洪光,辽东湾北部晚更新世中期以来的沉积特征及环境演化[硕士学位论文],青岛:中国海洋大学,2005;
    [71]孙劭等,2010年渤海海冰灾害特征分析,自然灾害学报,2011,20(6):87-93;
    [72]孙效功、方明,黄、东海陆架区悬浮体输运的时空变化规律,海洋与湖沼,2000,(6):581-587;
    [73]唐荣昌,黄河水浊度与含沙量、泥沙粒度之间的关系,中国给水排水,1989,5(1):10-13;
    [74]王芳、李国胜,海洋悬浮泥沙二元特征参数MODIS遥感反演模型研究,地理研究,2007,26(6):1186-1197;
    [75]王焕松,近20年大、小凌河入海径流量和输沙量变化及其驱动力分析,环境科学研究,2010,23(10):1236-1242;
    [76]王昆山,石学法,李珍,等.东海DGK9617孔岩心重矿物及自生黄铁矿记录,海洋地质与第四纪地质,2005,25(4):41-45;
    [77]王明田、庄振业等,辽东湾中北部浅层埋藏古河道沉积特征及对海上工程的影响,黄渤海海洋,2000,18(2):18-24;
    [78]王先兰,马克俭,陈建林,等.东海海底表层沉积物中的碎屑矿物及地质意义,海洋地质与第四纪地质,1984,4(3):43-55;
    [79]王艳姣、张培群等,悬浮泥沙反射光谱特性和泥沙量估算试验研究,2007,(5):36-41;
    [80]王玉广、何宝林,辽东湾北部浅海区现代冲淤动态分析,海洋湖沼通报,1993,(4):13-19;
    [81]王玉广、李淑媛、苗丽娟,辽东湾两侧砂质海岸侵蚀灾害与防治,海岸工程,2005,24(1):9-18;
    [82]王中波、何起祥等,谢帕德和福克碎屑沉积物分类方法在南黄海表层沉积物编图中的应用与比较,海洋地质与第四纪地质,2008,28(1):1-8;
    [83]王中波、杨守业、李日辉等,黄河水系沉积物碎屑矿物组成及其沉积动力环境约束,海洋地质与第四纪地质,2010,30(4):73-85;
    [84]魏建伟、石学法等,胶州湾悬浮颗粒现场剖面测量与结果分析,海洋科学进展,2006,24(1):74-82;
    [85]夏东兴、刘振夏、李培英等,渤海古沙漠之推测,海洋学报(中文版),1991,(4):540-546;
    [86]徐如彦、赵保仁等,渤海的平均余环流,海洋科学,2006,30(11):47-52;
    [87]许坤、李宏伟等,下辽河平原-辽东湾的新构造运动,2002,24(3):68-74;
    [88]鄢全树,王昆山,石学法.中沙群岛近海表层沉积物重矿物组合分区及物质来源,海洋地质与第四纪地质,2008,28(1):17-24;
    [89]杨连武、韩康等,辽东湾顶极浅海潮流数值计算,水动力学研究与进展,1994,A9(2):170-181;
    [90]杨松林、刘国贤等,用210Pb年代学方法对辽东湾现代沉积速率的研究,沉积学报,1993,11(1):128-135;
    [91]杨作升、郭志刚等,黄东海陆架悬浮体向其东部深海区输送的宏观格局,海洋学报,1992,(2):81-90;
    [92]翟世奎、张怀静、范德江等,长江口及其邻近海域悬浮物浓度和浊度的对应关系,环境科学学报,2005,25(2):693—699;
    [93]张春桂、张星等,福建近岸海域悬浮泥沙浓度遥感定量监测研究,自然资源学报,2008,23(1):150-160;
    [94]张富元、李粹中、王秀昌,东海表层沉积物粒度因子分析结果及其地质意义探索,海洋实践,1982,(3):5-11;
    [95]张雷、秦延文等,环渤海典型海域潮间带沉积物中重金属分布特征及污染评价,环境科学学报,2011,31(8):1676-1684;
    [96]张铭汉,晚更新世末期黄、渤海陆架沉积物分布格局及其沉积特征,海洋与湖沼增刊,1995,26(5):76-82;
    [97]张芸、张鹰等,悬浮泥沙浓度遥感反演模型研究,海洋科学,2008,32(5):32-36;
    [98]赵松龄,晚更新世末期中国陆架沙漠化及其衍生沉积的研究,海洋与湖沼,1991,(3):285-293;
    [99]郑连远,三维潮致拉格朗日余流的数值计算及其在渤海中的应用,青岛海洋大学学报,1992,22(1):39-49;
    [100]中国科学院海洋研究所海洋地质研究室、渤海地质,1985;
    [101]周秀艳等,辽东湾河口底质重金属环境地球化学,地球化学,2004,33(3):286-290;
    [102]周秀艳等,辽东湾湿地重金属污染及潜在生态风险评价,环境科学与技术,2004,27(5):59-63;
    [103]朱龙海,双台子河口潮流沉积体系研究[硕士学位论文],青岛:中国海洋大学,2004;
    [104]朱龙海、吴建政等,现代辽河三角洲潮流沉积,2007,27(2):17-22;
    [105]Baudouin C, Charveron M, TarrouxR,et al. Environ-mental pollutants and skin cancer.Cell Biol Toxicol,2002,18:341-348;
    [106]Bing Xu, Xiaobo Yang, Zhaoyan Gu, et al, The trend and extent of heavy accumulation over last one hundred years in the Liaodong Bay, China, Chemosphere,2009,75(4):442-446;
    [107]Bourcier, L., O. Masson, P. Laj, J. M. Pichon, P. Paulat, E. Freney&K. Sellegri, Comparative trends and seasonal variation of7Be,210Pb and137Cs at two altitude sites in the central part of France. Journal of Environmental Radioactivity,2011,102(3),294-301.
    [108]Feng, H., H. Jiang, W. Gao, M. P. Weinstein, Q. Zhang, W. Zhang, L. Yu, D. Yuan&J. Tao, Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. Journal of Environmental Management,2011,92(4),1185-1197.
    [109]Foster IDL、Millington R、Grew R G, The impact of partical size controls on stream turbidity measurements; some implications for suspended sediment yield estimation, Erosion and sediment transport monitoring programmes in river basins, IAHS2AISH, Publ,1992,210:51-62;
    [110]GaoS、Collins MB、Lanckneus J, et al, Grain size trends associated with net sediment transport patterns:An example from the Belgian contental shelf, Marine Geology,1994,121:171-185;
    [111]Gaspar, L., A. Navas, D. E. Walling, J. Machin&J. Gomez Arozamena, Using137Cs and210Pbex to assess soil redistribution on slopes at different temporal scales. CATENA,2011,0)
    [112]Gippel C J, Pitential of turbidity monitoring for measuring the transport of suspended solids in streams, Hydrology Processes,1995,9:83-97;
    [113]Graeme KA, Pollack Jr C V. Heavy metal toxicity, part I:Arsenic and Mercury J Emergency Med,1998,16:45-56;
    [114]Graeme KA, Pollack Jr C V. Heavy metal toxicity, part II:Lead and Metal Fume Fever J Emergency Med,1998,16:171-177;
    [115]Guo, W., X. Liu, Z. Liu&G. Li, Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Sediments around Dongjiang Harbor, Tianjin. Procedia Environmental Sciences,2010,2(,729-736.
    [116]Hand B M, Differentiation of beach and dune sands, using setting velocities of light and heavy minerals, Jour.Sed.Petrology,1967,37:514-520;
    [117]Hao, L., Fate of three major rivers in the Bohai Sea:A model study. Continental Shelf Research,2011,31(14),1490-1499.
    [118]Hirose, K., Y. Kikawada, T. Doi, C. C. Su&M. Yamamoto,210Pb deposition in the far East Asia:Controlling factors of its spatial and temporal variations. Journal of Environmental Radioactivity,2011,102(5),514-519.
    [119]Klovan J E, The use of factor analysis in determining depositional environments from grain-size distributions, Jour.Sed.Petrology,1966,36:115-125;
    [120]Lewis J, Turbidity2controlled suspended sampling for runoff2eventload estimation, Water Resources Research,1996,32(7):2299-2310;
    [121]Liu, J., A. Li&M. Chen, Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation. Journal of Asian Earth Sciences,2010,38(1-2),26-33.
    [122]Liu, J., A. Li, M. Chen, S. Xiao&S. Wan, Sedimentary changes during the Holocene in the Bohai Sea and its paleoenvironmental implication. Continental Shelf Research,2008,28(10-11),1333-1339.
    [123]MacKenzie, A. B., S. M. L. Hardie, J. G. Farmer, L. J. Eades&I. D. Pulford, Analytical and sampling constraints in210Pb dating. Science of The Total Environment,2011,409(7),1298-1304.
    [124]Mao, X., W. Jiang, P. Zhao&H. Gao, A3-D numerical study of salinity variations in the Bohai Sea during the recent years. Continental Shelf Research,2008,28(19),2689-2699.
    [125]Marsset, T., D. Xia, S. Berne, Z. Liu, J. F. Bourillet&K. Wang, Stratigraphy and sedimentary environments during the Late Quaternary, in the Eastern Bohai Sea (North China Platform). Marine Geology,1996,135(1-4),97-114.
    [126]MENG, W., Y. QIN, B. ZHENG&L. ZHANG, Heavy metal pollution in Tianjin Bohai Bay, China. Journal of Environmental Sciences,2008,20(7),814-819.
    [127]ORMAN E F, MORAD F L, PAUL D K, Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Egypt, Sedimentary Geology,1995,97:22-41;
    [128]Passega R.Grain size representation by CM patterns as a geological tool Jour.Sed.Petrology,1964,34:830-847;
    [129]Pavanelli D, Pagliarani A, Monitoring Water Flow, Turbidity and Suspended Sediment Load, from an Apennine Catchment Basin, Italy, Biosystems Engineering,2002,83(4):463-468;
    [130]Qiao, S., X. Shi, A. Zhu, Y. Liu, N. Bi, X. Fang&G. Yang, Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuarine, Coastal and Shelf Science,2010,86(3),337-344.
    [131]Qiao, S., Z. Yang, J. Liu, X. Sun, R. Xiang, X. Shi, D. Fan&Y. Saito, Records of late-Holocene East Asian winter monsoon in the East China Sea:Key grain-size component of quartz versus bulk sediments. Quaternary International,2011,230(1-2),106-114.
    [132]San Miguel, E. G., A. Boli, X, J. P. Var, A. Garci, X&R. A-Tenorio, Vertical distribution of Th-isotope ratios,210Pb,226Ra and137Cs in sediment cores from an estuary affected by anthropogenic releases. Science of The Total Environment,2004,318(1-3),143-157.
    [133]Shi, W., M. Wang, X. Li&W. G. Pichel, Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements. Remote Sensing of Environment,2011,115(8),1926-1934.
    [134]Spencer D W, The interpretation of grain-size distribution curves of clastic sediments, Jour.Sed.Petrology,1963,33:180-190;
    [135]Su, C.&C. Huh,210Pb,137Cs and239,240Pu in East China Sea sediments:sources, pathways and budgets of sediments and radionuclides. Marine Geology,2002,183(1-4),163-178.
    [136]Uehara, K.&Y. Saito, Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology,2003,162(1-2),25-38.
    [137]WANG, C.&X. WANG, Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. Journal of Environmental Sciences,2007,19(9),1061-1066.
    [138]Wang, H., Z. Yang, Y. Saito, J. P. Liu, X. Sun&Y. Wang, Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):Impacts of climate change and human activities. Global and Planetary Change,2007,57(3-4),331-354.
    [139]Wang, J., S. Chen&T. Xia, Environmental risk assessment of heavy metals in Bohai Sea, North China. Procedia Environmental Sciences,2010,2(,1632-1642.
    [140]Xu, B., X. Yang, Z. Gu, Y. Zhang, Y. Chen&Y. Lv, The trend and extent of heavy metal accumulation over last one hundred years in the Liaodong Bay, China. Chemosphere,2009,75(4),442-446.
    [141]Xue, C., Z. Zhu&H. Lin, Holocene sedimentary sequence, foraminifera and ostracoda in west coastal lowland of Bohai Sea, China. Quaternary Science Reviews,1995,14(5)521-530.
    [142]Yang, Z., Y. Ji, N. Bi, K. Lei&H. Wang, Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison. Estuarine, Coastal and Shelf Science,2011,93(3),173-181.
    [143]Zhang, Z., M. Zhu, Z. Wang&J. Wang, Monitoring and managing pollution load in Bohai Sea, PR China. Ocean& Coastal Management,2006,49(9-10),706-716.
    [144]Zhao, X., H. Zhang, Y. Ni, X. Lu, X. Zhang, F. Su, J. Fan, D. Guan&J. Chen, Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China:Levels, distribution and their influencing factors. Chemosphere,2011,82(9),1262-1267.
    [145]ZhenXia, L., X. DongXing, S. Berne, W. KuiYang, T. Marsset, T. YuXiang&J. F. Bourillet, Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea. Marine Geology,1998,145(3-4),225-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700