用户名: 密码: 验证码:
视场可调节海洋激光雷达实验系统研制与ICCD激光荧光实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种主动遥感海洋探测技术,海洋激光雷达具有探测动态范围大、时间分辨率高、测量效率高等优点,可以用于水体光学性质和海洋荧光的测量,能够实现多种海洋光学参数的探测。
     海水光学特性参数探测方面,海洋激光雷达的优势在于能够通过雷达衰减系数K lidar反演水体的吸收系数a、衰减系数c或漫射衰减系数K d,但由于受到单一视场结构的限制,常规海洋激光雷达仅能测量其中一个参数。因此,发展多视场或可调节视场海洋激光雷达成为必然趋势。另外,如何利用多个接收视场情况的探测回波反演多个海水光学参数,也是海洋激光雷达探测应用的前沿问题。
     海洋荧光探测方面,利用激光诱导荧光分析海表或海水中物质成分,也是海洋激光雷达探测应用的热点问题。时间分辨荧光光谱的探测应用,以及分析饱和激发情况下物质荧光非线性变化对探测结果的影响,对海洋荧光雷达的应用发展具有重要意义。
     本文针对海洋激光雷达的上述问题进行了相关实验研究,成功研制了一套可调节视场的船载海洋激光雷达系统原理样机,并基于ICCD对激光雷达探测海洋荧光进行了实验室研究。根据探测机制不同,本文的研究工作分为两部分。
     第一部分,可调节视场海洋激光雷达系统研制与实验研究。具体内容包括:(1)总结目前涉及视场参量的海洋激光雷达探测水体光学参数理论,模拟不同接收视场情况下海洋激光雷达探测水体光学参数的激光回波,分析激光雷达衰减系数与水体光学参数、c和的反演关系变化;分析对比Walker-McLean模型和Kopilevich模型,提出船载海洋激光雷达应用情况下多个水体光学参数的提取方法;(2)依据激光雷达探测理论计算和噪声分析确定船载可调节视场的设计范围,研制出一套可调节视场海洋激光雷达原理样机,并利用该系统对水体光学参数进行实验测量,分析与接收视场的变化关系,获得与理论一致的趋势。水池实验中,激光雷达所测参数和c值与AC-S测量的值比对一致,误差小于5%。外场实验中对青岛中苑码头浑浊水体进行了测量,实验分析了相同视场情况不同探测高度或不同水质对K lidar反演的影响,结果表明:相同视场情况下,随探测高度增加,值逐渐趋向于参数a;相同视场和探测高度情况下,对比浑浊水体和水池较清洁水体的探测,随着接收视场的变化趋势一致。
     第二部分,基于ICCD的海洋荧光激光雷达实验研究。具体研究内容包括:(1)利用ICCD的时间分辨测量优势,实验分析海水中可溶性有机物和叶绿素荧光寿命与海水Raman存在的响应差异;针对溢油探测,利用不同时刻油样本荧光光谱在主成分特征矢量空间中样本位置点间相关距离的变化,实现油荧光的时序变化差异分析,优化了不同油样本间的区分能力。(2)海洋荧光探测应用中,实验分析了激光能量密度过大(即饱和激发情况)引起的荧光非线性变化对油荧光测量的影响,尝试利用饱和激发情况下油荧光的非线性变化,对普通荧光光谱法和ICCD时间分辨荧光光谱均无法区分的油样本进行分析,建立基于激光能量变化的三维油荧光光谱作为一种荧光指纹,用于优化油样本间的区分。
     本文创新点主要包括:(1)研制可调节视场的船载海洋激光雷达原理样机,在理论计算和噪声分析基础上确定该原理样机的系统设计参数;(2)利用可调节视场海洋激光雷达原理样机,开展水池和近岸水体实验研究,初步实验结果表明该系统能够用于海水光学参数的测量。结合Walker-McLean和Kopilevich激光雷达理论,提出船载探测情况下水体光学参数的提取方法;(3)针对海洋荧光探测应用,基于ICCD开展了激光荧光探测研究,利用不同时刻油荧光光谱特征和基于激光能量参量的三维油荧光谱提高不同油样本间的区分能力。
As an active remote sensing technology for detecting the ocean, Ocean Lidar takesadvantage of larger detection dynamic ranges, higher temporal resolution, and highefficiency measurement. It can be used to measure both the backscattering energyfrom seawater and marine fluorescence in order to obtain a variety of oceanographicparameters. Therefore, the development of Ocean Lidar shows a good perspective forfast and effective oceanographic survey.
     In terms of the estimation of seawater optical parameters by ocean Lidar, the elasticbackscattering power of laser photons is a decaying exponential function of theattenuation lengths through the water. Generally, the Lidar attenuation coefficient(K lidar) from traditional equation cannot be used to estimate more than one parameterof the water optical properties due to the limitation of only once measurement with asingle field-of-view (FOV). Recent researches show that the Lidar attenuationcoefficient of this exponential decay is strongly dependent on the FOV of Lidar andon the optical properties of seawater. Thus, an approach for compensating thedeficiency in the information from traditional Lidar by using return signals obtainedwith a variable FOV receiver becomes a frontier topic in ocean Lidar applications.Developing the Lidar with multiple or variable FOV is becoming a trend in theapplication of oceanographic Lidar.
     On the other hand, in the apppliaction of marine fluorescence detection,time-resolved fluorescence technology can be used to analyze the characteristics offluorescent substances, and to estimate the distribution of fluorescent material inseawater. This is also a hot topic in the application of ocean Lidar.
     In this dissertation, a shipboard ocean Lidar with variable field-of-view is developed to study these two issues and used to detect multiple ocean opticalparameters. According to different probing mechanisms, this work is divided into twoparts.
     The first part is the development of an ocean Lidar with variable FOV and itsexperimental study. The specific content includes three aspects:(1) On the basis ofhistorical models of ocean Lidar to detect water optical properties parameters, Lidarreturn signals are simulated under different FOVs for analyzing the relationshipbetweenK lidarand the water optical parameters, namely the absorption coefficienta, the attenuation coefficient c and the diffuse attenuation coefficientK d. Basedon Walker-McLean model and Kopilevich model, a method for extracting multipleoptical parameters of water was proposed in the case of shipborne ocean Lidar.(2)According to the theoretical simulation results, an appropriateness of FOV should beset at the range from10.0mrad to174.5mrad with considering the impact ofbackground noise, and a shipboard ocean lidar system with variable FOV is designed.In the cases of different FOVs, the optical properties parameters of water bodies aremeasured in the laboratory and Qingdao coastal area. The experimental results showthat this Lidar can be used to measure optical property parameters of seawater.
     The second part is the experimental study of ocean fluorescence lidar based on theICCD, which is divided into the following aspects:(1) In order to effectively analyzethe fluorescence characteristics of seawater, with an excitation source at355nm,ICCD is used to measure fluorescent substances in seawater, i.e. the ChromophoricDissolved Organic Matter (CDOM) and chlorophyll for analyzing the fluorescencelifetimes. And in the application of oil spill detection, time-resolved fluorescencespectroscopies of oil samples are analyzed by using the principal component analysis(PCA) method, and a method for enlarging spectral differences of different delaytimes is used to improve the recognition rate of the oil spill types.(2) The nonlinearfluorescence changes of chlorophyll and oil with saturated excitation are studied forsupporting the measurement of ocean fluorescence Lidar. For oil fluorescence undersaturated excitation, the offset of spectral peak and the nonlinear changes of fluorescence intensity are studied for identifying oil samples which can not bedistinguished from each other by using ordinary fluorescence spectra.
     The innovations of the dissertation included three points:(1) a set of shipboardocean lidar system with variable FOV was designed on the basis of theoreticalderivation and simulation;(2) On the basis of historical models of ocean Lidar, amethod for extracting multiple optical parameters of water was proposed in the caseof shipborne ocean Lidar.(3) The nonlinear changes of oil fluorescence undersaturated excitation are analyzed and the three-dimensional oil fluorescence spectrabased on the excitation light energy are used to identify oil samples.
引文
[1] R. M. Measures. Laser Remote Sensing: Fundamentals and Application.AWiley-Interscience Publication.1984:237-250.
    [2]刘智深,关定华,等.海洋物理学.济南:山东教育出版社,2004.315-345.
    [3] S. Q.Duntley. Light in the sea. J.Opt.Soc.Am.1963,53(2):214-233
    [4] R. C. Smith and J. E. Tyler. Optical Properties of Clear Natural Water. Journal ofthe Optical Society of America.1967,57(5):589-594.
    [5] G. D. Hickman and J. E. Hogg, Remote Sensing of the Environment. New York,Elsevier.1969,1:47–58.
    [6] H. H. Kim, P. O. Ceruenka, and C. B. Lankford. Development of an airbornelaser bathymeter. NASA Technical Note, NASA TN D-8079,1975.1-39.
    [7] F. E. Hoge and R. N. Swift. Airborne simultaneous spectroscopic detection oflaser-induced water Raman backscatter and fluorescence from chlorophyll a andother naturally occurring pigments. Applied Optics.1981,20(18):3197-3205.
    [8] F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, R. E. Berry, and R. Mitchell.Airborne bio-optics survey of the Galapagos Islands margins. Deep-Sea Res. II,1998,45(6):1083–1092.
    [9]陈文革,黄铁侠,卢益民.机载海洋激光雷达发展综述.激光技术.1998,22(3):147-152.
    [10] M. A. Montes, J. Churnside, Z. P. Lee, Richard Gould, Robert Arnone, and AlanWeidemann. Relationships between water attenuation coefficients derived fromactive and passive remote sensing: a case study from two coastal environments.Applied Optics,2011,50(18):2990-2999.
    [11] J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M.Sullivan. Oceanographic lidar profiles compared with estimates from in situ opticalmeasurements. Applied Optics,2013,52(4):786-794.
    [12] B. Billard, R. H. Abbot, and M. F. Penny. Airborne estimation of sea turbidityparameters from the WRELADS laser airborne depth sounder. Applied Optics.1986,25(13):2080-2088.
    [13] M. F. Penny, B. Billard, and R. H. Abbot. LADS—the Australian LaserAirborne Depth Sounder. International Journal of Remote Sensing.1989,10(9):1463-1479.
    [14] S. Mark, P. Hugh, P. Mark, and S. Paul. Fugro Commence New Airborne LidarBathymetry Trials. FIG Working Week2011. Bridging the Gap between Cultures.Marrakech, Morocco,2011:5389-1-5389-8.
    [15] B. Billard. Remote sensing of scattering coefficient for airborne laser hydro-graphy. Applied Optics.1986.25(13):2099-2108.
    [16] J. L. Irish and W. J. Lillycrop. Scanning laser mapping of the coastal zone: theSHOALS system. ISPRS Journal of Photogrammetry&Remote Sensing.1999.54(2-3):123-129.
    [17] P. Kuus, J. H. Clarke, and S. Brucker. SHOALS-3000Surveying Above DenseFields of Aquatic Vegetation–Quantifying and Identifying Bottom Tracking Issues.Proceedings of the Canadian Hydrographic Conference and National SurveyorsConference,2008.1-29.
    [18] W. J. Lillycrop, L.E. Parson, and J. L. Irish. Development and Operation of theSHOALS Airborne Lidar Hydrographic Survey System. In: Victor I. Feigles andYuriji. Kopilevich, eds. Proc. SPIE, Stetersburg: Laser Remote Sensing of NaturalWaters: From Theory to Practice,1996,2694:26-37.
    [19] T. Allouis, Jean-Stéphane Bailly, Y. Pastol, and C. L. Roux. Comparison ofLiDAR waveform processing methods for very shallow water bathymetry usingRaman, near-infrared and green signals. Earth Surf. Process and Landforms,2010,35(6):640–650.
    [20] G. H. Tuell, V. I. Feygels, Y. I. Kopilevich, Alan D. Weidemann, A. GrantCunningham, Reza Mani, Vladimir Podoba, Vinod Ramnath, J. Y. Park, and JenAitken. Measurement of ocean water optical properties and seafloor reflectance withscanning hydrographic operational airborne lidar survey (SHOALS): II. Practicalresults and comparison with independent data. In: R. J. Frouin, M. Babin, S.Sathyendranath, eds. Proc. SPIE, San Diego: Remote Sensing of the Coastal OceanicEnvironment,2005,5885:1-9.
    [21] F. E. Hoge, R. E. Berry, and R. N. Swift. Active-passive airborne ocean colormeasurement.1: Instrumentation. Applied Optics.1986,25(1):39-47.
    [22] C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger.Next-generation NASA airborne oceanographic lidar system. Applied Optics,2001,40(3):336-342.
    [23] D. Allocca, M. London, T. Curran, B. Concannon, V. M. Contarino, J. Prentice,L. Mullen, and T. Kane. Ocean water clarity measurement using shipboard Lidarsystems. In: G. D. Gilbert, R. J. Frouin, eds. Proc. SPIE. San Diego: Ocean Optics:Remote Sensing and Underwater Imaging,2002,4488:106-114.
    [24] J. E. Prentice. K-meter Survey System (KSS) LiDAR Data. ONR HyCODE2001Workshop, Santa Barbara, CA (Report),2002.1-12.
    [25] E. Zege, I. Katsev, A. Prikhach, and A. Malinka. Elastic and Raman LidarSounding of Coastal Waters. Theory, Computer Simulation, Inversion Possibilities.Paris: EARSeL eProceedings,2004.248-260.
    [26] B. M. Concannon and J. E. Prentice. LOCO with a Shipboard Lidar. Naval AirSystems Command, Patuxent River, MD.(Report),2008.
    [27] Scientific and Technical Aerospace Reports, NASA, May,2010.
    [28] F. Castagnoil, G. Cecchi, L. Pantani, B. Radicati, and P. Mazzinghi. A NewLidar System for Applications over Land and Sea. France: Proceedings of the4thInternational Colloquium on Spectral Signatures of Objects in Remote Sensing.1988,287:239-243.
    [29] G. Cecchi, L. Pantani, B. Radicati, D. Tirelli, and G. Valmori. FLidar (*): aMulti-purpose Fluorosensor-Spectrometer. EARSeL eProceedings. Firenze:Advances in Remote Sensing.1992,1(2):72-78.
    [30] G. Cecchi, D. Lognoli, I. Mochi, L. Palombi, V. Raimondi, D. Tirelli, M.Trambusti, and B. Breschi. Lidar Measurement of the Attenuation Coefficient ofNatural Waters. In: Gelsomina Pappalardo and Aldo Amodeo, eds. Matera:22ndInternation Laser Radar Conference,2004,561:827-830.
    [31] D. Wu, R. L. Wang, W. B. Chen, Z. S. Liu, and Z. P. Lee. Ocean Lidar (BLOL)for Measuring Chlorophyll-a Concentration, Diffuse Attenuation Coefficient andWater-Leaving Radiance. ACTA Optica Sinica.1998,18(12):1690-1696.
    [32]吴东,刘智深,张凯临,等。海洋激光雷达测量海中悬移质.光学学报.2003,23(2):245-248.
    [33]张凯临.机载海洋激光荧光雷达软硬件设计与飞行实验:[硕士论文].青岛:中国海洋大学,2005.
    [34]李晓龙.海面溢油机载多通道激光雷达系统硬件设计与实验:[硕士论文].青岛:中国海洋大学,2010.
    [35]李晓龙,赵朝方,齐敏珺,等.多通道海洋激光雷达溢油监测系统高台实验分析,中国海洋大学学报(自然科学版).2010,40(8):145-150.
    [36] J. T. Liu, K. L. Zhang, Q. Q. Zhang, and H. Y. Li. Measuring3D fluorescencespectra of phytoplankton using an ocean lidar. Optoelectronics Letters.2010,6(1):54-56.
    [37]国家863项目课题“赤潮及浮游植物优势物种监测海洋激光雷达”(编号2006AA09Z148)技术报告.
    [38] F. E. Hoge. Oceanic inherent optical properties: proposed single laser lidar andretrieval theory. Applied Optics,2005,44(34):7483-7486.
    [39] C. D. Mobley. Light and water: Radiative transfer in natural waters. AcademicPress,1994.
    [40] R. M. Measures and M. Bristow. The Development of a Laser Fluorosensor forRemote Environmental Probing. Palo Alto: Joint Conference on Sensing ofEnvironmental Pollutants,1970, Technical report N72-31514:1-12.
    [41]陆同兴.激光光谱技术原理及应用.合肥:中国科学技术大学出版社,1999.170-200.
    [42] V. Drozdowska, S. Babichenko, and A. Lisin. Natural water fluorescence chara-cteristics based on lidar investigations of a surface water layer polluted by an oilfilm; the Baltic cruise-May2000. OCEANOLOGIA,2002,44(3):339–354.
    [43] V. S. Shamanaev, G. P. Kokhanenko, M. M. Krekova, and I. E. Penner. Influenceof multiscattering on the results of airborne hydro-optical sensing. OpticalEngineering.2005,44(7):1-6.
    [44] H. R. Gordon. Interpretation of airborne oceanic lidar: effects of multiplescattering. Applied Optics.1982,21(16):2996–3001.
    [45] J. W. McLean, J. D. Freeman, and R. E. Walker. Beam spread function withtime dispersion. Applied Optics.1998,37(21):4701-4711.
    [46] R. E. Walker and J. W. McLean. Lidar equations for turbid media with pulsestretching. Applied Optics.1999,38(12):2384–2397.
    [47] K. Mitra and J. H. Churnside. Transient radiative transfer equation applied tooceanographic lidar. Applied Optics.1999,38(6):889-895.
    [48] P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel. Chlorophyllbiomass in the global oceans: satellite retrieval using inherent optical properties.Applied Optics.2004,43(31):5886-5892.
    [49] F. E. Hoge. Validation of satellite-retrieved oceanic inherent optical properties:proposed two-color elastic backscatter lidar and retrieval theory. Applied Optics.2003,42(36):7197-7201.
    [50] Y. I. Kopilevich and A. G. Surkov. Mathematical modeling of the input signalsof oceanological lidars. J. Opt. Technol.2008,75(5):321-326.
    [51] L. S. Dolin and I. M. Levin. Theory of underwater vision (reference book).Leningrad, Printed in Gidrometeoizdat,1991.
    [52] L. S. Dolin. Theory of lidar method for measurement of the modulation transferfunction of water layers. Applied Optics,2013,52(2):199-207.
    [53]张锦龙.激光雷达探测海水光学参数方法研究:[博士论文].青岛:中国海洋大学,1991.
    [54]杜竹峰,卢益民,黄铁侠.多次后向散射激光雷达接收信号的解析计算.华中理工大学学报.1998,26(1):52-54.
    [55]杜竹峰,卢益民,杨宗凯,等.多次散射激光雷达接收信号的模拟.量子电子学报.1998,15(5):503-508.
    [56]卢益民,杜竹峰,黄铁侠,等.激光雷达视场角的研究.激光技术.1999,23(1):46-50.
    [57] V. I. Feygels, C. W. Wright, Y. I. Kopilevich, and A. Surkov. Narrow field-of-view bathymetric lidar: theory and field test. In: R. J. Frouin, G. D. Gilbert, D. Pan,eds. Proc. SPIE. Bellingham: Ocean Remote Sensing and Imaging II,2003,5155:1-11.
    [58] D. Arnush. Underwater light-beam propagation in the small-angle approxim-ation. J. Opt. Soc. Am.1972,62(9):1109–1111.
    [59] H. C. van de Hulst and G. W. Kattawar. Exact spread function for pulsedcollimated beam in a medium with small-angle scattering. Applied Optics.1994,33(24):5820–5829.
    [60] Y. A. Ilyushin and V. P. Budak. Narrow beams in scattering media: the advancedsmall-angle approximation. J. Opt. Soc. Am.2011,28(7):1358-1363.
    [61] N. adalli, D. C. Munson Jr., and A. C. Singer. Bistatic Receiver Model forAirborne Lidar Returns Incident on an Imaging Array from Underwater Objects.Applied Optics.2002,41(18):3638-3649.
    [62] J. W. McLean and K. J. Voss. Point spread function in ocean water: comparisonbetween theory and experiment. Applied Optics.1991,30(15):2027-2030.
    [63] R. F. Lutomirski, A. P. Ciervo, and G. J. Hall. Moments of multiple scattering.Applied Optics,1995,34(30):7125-7136.
    [64] D. B. Rogozkin. Propagation of light pulse in a medium with stronglyanisotropic scattering. Izv. Acad. Sci. Atmos. Oceanic Phys.1987,23(10):275–281.
    [65] Y. I. Kopilevich and V. I. Feigels. Characteristics of light backscattered by seawater and lidar sounding of water column. In: H. C. Eilertsen, eds. Proc. SPIE,Tromso: Underwater Light Measurements,1994,2048:85–94.
    [66] V. I. Feigels and Y. I. Kopilevich. Applicability of lidar remote sensing methodsfor vertical structure investigation of ocean optic properties distribution. In: J. S.Jaffe, eds. Proc. SPIE, Ocean Optics XII,1994,2258:449–457.
    [67] R. T. V. Kung and I. Itzkan. Absolute oil fluorescence conversion efficiency.Applied Optics,1976,15(2):409-415.
    [68] K. Y. Kondratyev. Radiation in the Atmosphere, International Geophysics SeriesNew York, Printed in Academic,1969.367-383
    [69] V. I. Feygels, Y. I. Kopilevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld.Airborne lidar system with variable field-of-view receiver for water opticalproperties measurement. In: R. J. Frouin, G. D. Gilbert, D. Pan, eds. Proc. SPIE,Bellingham: Ocean Remote Sensing and Imaging II.2003,5155:12-21.
    [70] G. P. Kokhanenko, M. M. Krekova, I. E. Penner, and V. S. Shamanaev. Influenceof the air-water interface on hydrosol lidar operation. Applied Optics,2005,44(17):3510-3519.
    [71] L. S. Dolin and V. A. Savelyev. Determining the parameters of a backscatteredsignal of pulsed radiation in a turbid medium with a narrow directed laser beam. Izv.Akad. Nauk SSSR Fiz. Atmos. Okeana,1971,7(5):505-511.
    [72] W. Wei, X. H. Zhang, J. H. Rao, and W. B. Wang. Time domain dispersion ofunderwater optical wireless communication. Chinese Optics Letters,2011,9(3):101-104.
    [73] E. A. McLean, H. R. Burris, and M. P. Strand. Short-pulse range-gated opticalimaging in turbid water. Applied Optics,1995,34(21):4343-4351.
    [74] Y. I. Kopilevich, V. I. Feygels, and A. Surkov. Mathematical modeling of inputsignals for oceanographic lidar systems. In: R. J. Frouin, G. D. Gilbert, D. Pan, eds.Proc. SPIE, San Diego: Ocean Remote Sensing and Imaging II.2003,5155:30-39.
    [75] M. Bristow, D. Nielsen, D. Bundy, and R. Furtek. Use of water Raman emissionto correct airborne laser fluorosensor data for effects of water optical attenuation.Applied Optics.1981,20(17):2889-2906.
    [76] A. V. Malinka and E. P. Zege. Retrieving seawater-backscattering profiles fromcoupling Raman and elastic lidar data. Applied Optics.2004,43(19):3925-3930.
    [77] J. H. Churnside, V. V. Tatarskii, and J. J. Wilson. Oceanographic Lidar Attenua-tion Coefficients and Signal Fluctuations Measured from a Ship in the SouthernCalifornia Bight. Applied Optics,1998,37(15):3105-3112.
    [78] A. I. Stepanov, S. N. Karpov, V. A. Kondrashov, S. I. Sachava, M. S. Samartsev,L. A. Spivak, V. A. Tershukov, S. A. Rogov, and S. A. Mal’kov. Shipborne lidar forhydrological research. J. Opt. Technol.2008,75(1):101–106.
    [79]熊辉丰.激光雷达.北京:宇航出版社,1994.119-127.
    [80]萧泽新.工程光学设计.北京:电子工业出版社,2008.55-59.
    [81]李林.现代光学设计方法.北京:北京理工大学出版社,2009.7-32.
    [82] G. P. Kokhanenko, I. E. Penner, and V. S. Shamanaev. Expanding the DynamicRange of a Lidar Receiver by the Method of Dynode-Signal Collection. AppliedOptics,2002,41(24):5073-5077.
    [83] D. M. Winker, W. H. Hunt, and C. A. Hostetler. Status and performance of theCAL-IOP lidar. In: Upendra N. Singh, eds. Proc. SPIE, Maspalomas: Laser RadarTechniques for Atmospheric Sensing.2004,5575:1-8.
    [84] T. Venema. Compression for Clinicians, New York, Printed in Singular,1998.
    [85]何廷尧.小型Mie散射激光雷达的研制及其应用.[硕士论文].西安:西安理工大学,2009.
    [86]王士敏,郑凡其,王健. AD606对数放大器的研究与应用.电测与仪表,2001,38(427):45-47.
    [87] B. Liu, E. Azimi, and M. E. Brezinski. True logarithmic amplification offrequency clock in SS-OCT for calibration. Biomedical Optics Express.2011,2(6):1769-1777.
    [88] G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev. Lidar and insitu Measurements of the Optical Parameters of Water Surface Layers in Lake Baikal.Atmospheric and Oceanic Optics,2011,24(5):478–486.
    [89] A. G. Luchinin and L. S. Dolin. Effect of Sea Waves on the Limiting Resolutionof Aircraft Oceanographic Lidars. Izvestiya, Atmospheric and Oceanic Physics,2008,44(5):660–669.
    [90] G. P. Kokhanenko, M. M. Krekova, I. E. Penner, V. S. Shamanaev, G. Ludbrook,and A. Scott. Effect of wind-driven waves on the retrieved extinction index of seawater in laser sensing with different field-of-view angles. In: G. Matvienko and V.Lukin, eds. Proc. SPIE, Tomsk: Atmospheric Ocean Optics,1999,3983:356-363.
    [91] F. E. Hoge. Beam attenuation coefficient retrieval by inversion of airbornelidar-induced chromophoric dissolved organic matter fluorescence. I. Theory.Applied Optics,2006,45(10):2344-2351.
    [92] J. H. Victoria and C. Z. Richard. Estimates of primary production by remotesensing in the Arctic Ocean: Assessment of accuracy with passive and active sensors.Deep Sea Research Part I: Oceanographic Research Papers.2010,57(10):1243–1254.
    [93] R. Reuter, R. Willkomm, G. Krause, and K. Ohm. Development of a shipboardlidar: Technical layout and first results, European Association of Remote SensingLaboraories. EARSeL eProceedings. Advances in Remote Sensing,1995,3(3):15-25.
    [94] S. L. Hemmingsen and L. B. McGown. Phase-resolved fluorescence spectraland lifetime characterization of commercial humic substances. Appl. Spectrosc.1997,51(7):921-929.
    [95] F. E. Hoge, P. E. Lyon, C. W. Wright, R.N. Swift, and J. K. Yungel. Chlorophyllbiomass in the global ocean: airborne lidar retrieval using fluorescence of bothchlorophyll and chromophic dissolved organic matter. Applied Optics.2005,44(14):2857-2862.
    [96] F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel. Airborne Laser-In-duced Oceanic Chlorophyll Fluorescence: Solar-Induced Quenching Corrections byuse of Concurrent Downwelling Irradiance Measurements. Applied Optics,1998,37(15):3222-3226.
    [97]魏志强.机载海洋激光荧光雷达测量海表层叶绿素浓度的实验和算法研究:[硕士论文].青岛:中国海洋大学,2004.
    [98] V. V. Fadeev, A. A. Demidov, and A. M. Checkalyuk. Laser Remote Sensing ofSea-Water Plankton. ACRS, Oceanography.1991.
    [99] D. Diebel-Langohr, T. Hengstermann, and R. Reuter. Water Depth ResolvedDetermination of Hydrographic Parameters from Airborne Lidar Measurements. In:Marine Interfaces Ecohydrodynamics, Elsevier Oceanography Series,1986,42:591–602.
    [100] S. Patsayeva, V. Yuzhakov, V. Varlamov, R. Barbini, and R. Fantoni. LaserSpectroscopy of Mineral Oils on The Water Surface. EARSeL eProceedings.Dresden/FRG.2000:106-114.
    [101] E. Hegazi, A. Hamdan, and J. Mastromarino. Remote Fingerprinting of CrudeOil Using Time-Resolved Fluorescence Spectra. The Arabian Journal for Scienceand Engineering.2005,30(1):4-12.
    [102] P. A. Pantoja, J. Lopez-Gejo, G. A. C. Le Roux, F. H. Quina, and C. A. O.Nascimento. Prediction of Crude Oil Properties and Chemical Composition byMeans of Steady-State and Time-Resolved Fluorescence. Energy Fuels.2011,25:3598–3604.
    [103] A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise. Characterization ofcrude oils using fluorescence lifetime data. Spectrochimica Acta Part A,2002,58(5):1025–1037.
    [104]齐敏珺.海面溢油机载多通道激光雷达系统软件开发研究:[硕士论文].青岛:中国海洋大学,2010.
    [105]国家863项目课题“机载多通道激光雷达海面油污染监测技术”(编号2006AA06Z415)技术报告.
    [106]王春艳.浓度参量荧光光谱油种鉴别技术研究:[博士论文].青岛:中国海洋大学,2010.
    [107] V. V. Fadeev, S. A. Dolenko, T. A. Dolenko, Y. V. Uvenkov, E. M. Filippova,and V. V. Chubarov. Laser diagnostics of complicated organic compounds andcomplexes by saturation fluorimetry. Quantum Electronics.1997,27(6):556-559.
    [108] W. Demtroder. Laser Spectroscopy Basic Concepts and Instrumentation. NewYork: Springer-Verlag Berlin Heidelberg,2003.441-445.
    [109] I. V. Boychuk, T. A. Dolenko, A. R. Sabirov, V. V. Fadeev, and E. M. Filippova.Study of the uniqueness and stability of the solutions of inverse problem insaturation fluorimetry. Quantum Electronics.2000,30(7):611-616.
    [110] S. Patsayeva, R. Barbini, F. Colao, R. Fantoni, A. Palucci, and R.Reuter. Laserinduced saturation of DOM fluorescence in natural water. EARSeL eProceedings,Tallinn.1997,52:33–44.
    [111] J. R. Lakowicz. Principles of Fluorescence Spectroscopy. New York, Printed inSpringer,2006.129-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700