用户名: 密码: 验证码:
三江源地区秋季多层层状云系微物理特性和催化响应的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受冷锋天气系统影响产生的多层层状云系,是三江源地区秋季的主要降水云系,也是人工增雨的主要作业对象。本文利用第一次三江源地区飞机观测试验期间的机载粒子测量系统(Particle Measuring Systems,简称PMS)资料,通过垂直微物理结构特征、各高度层云粒子相态的综合判定和粒子谱分布的分析,系统研究了该地区秋季一次多层层状云系的微物理特性,探讨了云粒子增长机制;通过飞机播撒AgI焰剂水平输送的分析,在确定作业前后有效对比区间的基础上,分析作业前后液态云粒子及冰晶浓度变化、云粒子谱的演变和过冷水含量比率的变化,研究了层积云催化的微物理响应,为该地区人工增雨定量化科学指标的判定和效果检验提供了微物理依据。主要结论如下:
     (1)秋季多层层状云系(Cs-As-Sc)的垂直结构和微物理特征:云系在发展阶段分为4层,云层之间均有干层存在。其中,Cs和上层As为冰云,下层As和Sc为冰水共存的过冷混合态云,过冷水含量较丰富。云系中,云粒子浓度和过冷水含量在下层As底部最大;粒径D>50μm云粒子的浓度平均值由最顶层的Cs向下依次递减,直径平均值依次递增;云粒子尺寸及谱宽在最底层的Sc中最大。与中国北方其它地区类似云层的比较结果表明,As和Sc的云粒子浓度均偏大,As的液态含水量计算值LWCFSSP偏高,Sc云粒子谱宽偏宽,具有较为明显的地区特征。混合态云中,FSSP(前向散射粒子谱探头)所测的云粒子浓度对数值与直径有着明显的反相关性,高浓度区对应高含水量区。高过冷水区和低过冷水区的云粒子谱分布差异明显,其中Sc高过冷水区存在比较明显的淞附增长现象。
     (2)根据2DC(二维灰度云粒子探头)图像和灰度投影资料判定了混合态云中2DC量程内粒D>50μm云粒子的相态;综合FSSP云粒子瞬时谱、FSSP所测一定尺度云粒子含水量值与King探头过冷水含量实测值的对称相关性,区分了混合态云中FSSP量程内云粒子的相态。结果认为:Sc(下层As及对流泡)中中值直径在3.5~18.5μm (3.5~21.5μm)之间的云粒子基本上为液相,中值直径大于21.5μm(24.5μm)的云粒子基本上为冰相。混合态云中,Sc-下层As云底-对流泡顶,高过冷水区的云滴有效半径随着高度增加而依次增加。高过冷水区的过冷水含量比率在Sc中与过冷水含量存在一定的关联性,而在下层As云底无明显变化,其均值及标准差在Sc中为69.9±19.4%,在下层As云底为89.2±8.1%。
     (3)各高度层粒子谱分布特征分析和云粒子增长机制的探讨。混合态云各高度层FSSP平均粒子谱分布的谱型均为单峰型伽玛分布,混合态云和冰云2DC平均粒子谱基本上为负指数型分布,具有较为明显的地区特性。在冰云和下层As中,冰晶的增长可能仅限于凝华增长和冰晶之间的碰并增长,这种增长机制可能很难产生超过400μm的大冰相粒子。下层As中,冰晶凝华增长所需的水汽不仅来自云内的冰水转化,而且还来自于上升气流输送的外来水汽的补充。较强的上升气流有利于云滴谱宽拓宽、浓度增大。
     (4)催化试验观测发现,锯齿型作业后约2-23min,在其航线下风方36km范围内,FSSP和2DC所测云粒子浓度、直径变化均未超出作业前云区内的自然起伏,但在过冷水含量大于0.01g/m3的高过冷水区,液态云粒子浓度明显减少,FSSP量程内的冰晶粒子浓度明显增加,冰相含水量增大,过冷水含量比率的平均值由作业前的68.3±23.1%减小至34.2±12.4%。在过冷水含量越高的区域,催化效应越明显,而在低过冷水区和仅受原点催化影响的航迹交叉点处均未出现催化响应。
Multi-layer stratiform clouds system generated by cold front weather system is the main precipitation cloud system at Sanjiangyuan National Nature Reserve in autumn and is the job object of artificial rainfall. Making use of data of PMS (Particle Measuring Systems) data observed during the airborne observation experiment over the Sanjiangyuan National Nature Reserve, the structure of microphysical feature in vertical layers, the phase of cloud particles at different heights and the distribution of particle spectrum, the microphysical characteristics of the multi-layer stratiform clouds in autumn are studied. In the meantime,the growth mechanism of cloud particles is discussed. By analyzing the horizontal transport of aircraft sowing the AgI flame agent, microphysical effects are studied, First, the effective area before and after the operation are compared and got the distinguishing of cloud particle's phase state, then the variation of total number concentration of liquid cloud particles and ice crystal,cloud particle spectrum and f1(fraction of liquid water) are analyzed. This results can provide a microphysical theoretical basis for quantitative index of the artificial rainfall and effect of test in this region. The main results are as follows.
     (1) The vertical structure and microphysical characteristics of autumn multi-layer stratiform clouds system (Cs-As-Sc) are analyzed in this paper. The clouds system of development consists of four layers. The Cs(cirrostratus) and the upper-level of As(altostratus) are ice-phase cloud, while the lower level of As and Sc(stratocumulus) are supercooled mixed-phase cloud. The particle concentration and the supercooled water content of the lower level As are the largest in the cloud system. The average particle concentration which the radius larger than50μm is gradually increased from the top of Cs down. The Cs particle size and spectral width of the lowest layers are the largest in the cloud system, which has a clear regional characteristics. Ous results was compared with the observation analysis of other area in northern China. It is found that:the value of LWCFSSP (Liquid Water Content by Forward Scattering Spectrometer Probe)and particle concentration of As and Sc are larger is our observation; besides, the breadth of cloud particle spectrum are wider. The particle concentration which observed by FSSP(Forward Scattering Spectrometer Probe) had remarkable negative correlation with its diameters and the area of high concentration corresponds to high moisture content. The difference between the high and the lower supercooled water in the cloud particles spectrum are distinguished. The high supercooled water area of Sc has an obvious rime growth phenomenon.
     (2) According to the2DC(Two-Dimensional Cloud Probe) image and gray projection data, the phase of particle radius D large than50μm is judged in this paper. In the meantime, based on the correlations about the instantaneous spectrum of FSSP cloud particle, the value of liquid water content calculated from FSSP and the observation of supercooled water content obverted with King detector, the particle phase in the mixed-phase cloud are also judged. The median diameter of cloud particles between3.5~18.5μm (3.5~21.5μm) in the Sc (lower As and convective bubble) is liquid phase while median diameter of cloud particles greater than21.5μm (24.5μm) is ice phase. The droplets effective radius of high supercooled water area increased with the increasing cloud height in the bottom of Sc and As. The supercooled water content mean ratio of the high subcooled water area are related to the supercooled water content in Sc while it is opposited in lower As of cloud.
     (3) The features of particles spectrum at different heights are analyzed and the growth mechanism of cloud particles is discussed. The cloud particle spectrum in the mixed-phase cloud observed by the FSSP and observed by the2DC are respectively in single-peak Γ distribution and in the negative exponential distribution. In ice cloud and lower layer As, the growth of ice crystal may be limited to growth of condensation and coagulation, which make it is difficult to generate ice phase particles larger than400μm. At lower layer As, the vapor needed in condensation is not only from the ice-water transformation occurred in cloud, but also from the updraft which can transport vapor from outside. Strong updraft can be an advantage for broadening cloud particle spectrum and increasing concentration.
     (4) At the leeword of routine in the scope of36km about2-23min later after seeding, the variation of concentration and diameter detected by FSSP&2DC in test region, which is not out of the range of normal floating compared with pre-test. However, in the high supercooled water area(HSWA) where the SLWC(supercooled liquid water content) larger than0.01g/m3, the concentration of cloud particles for liquid phase decrease obviously and the density of ice crystal particles increased. The mean value of f1reduced from68.3±23.1%to34.2±12.4%. The effects of seeding is remarkably in high supercooled water area, but not obviously in low supercooled water area and routine cross points which just influenced by original seeding that effects in comparison.
引文
Bigg E K, Turton E.1986. Delayed effects of cloud seeding with silver iodide[J]. J. Appl. Meteor.,25: 1382-1386.
    Bigg E K, Turton E.1988. Persistent effects of cloud seeding with silver iodide[J].J. Appl. Meteor.,27: 505-514
    Boe B A, Stith J L, Smith PL, et al.1992. The North Dakota thunderstorm project:A cooperative study of High Plains thunderstorms[J]. Bull. Amet. Meteor. Soc.,73(2):145-160.
    Bruintjes R T.1999. A review of cloud seeding experiments to enhance precipitation and some new prospects[J].Bull. Amer. Meteor. Soc.,80:805-820.
    DeMott P J.1995. Quantitafive descriptions of ice formation mechanisms of silver iodide-type aerosols[J].Atmos.Res.38:63-99.
    Deshler T, Reynolds D W.1990.The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone[J]. J. Appl. Meteorol.,29:477-488.
    Deshler T, Reynolds D W, Huggins A W.1990. Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide[J]. J. Appl. Meteor.,29:288-330.
    Farley R D, Nguyen P, Orville H D.1994. Numerical simulation of cloud seeding using a three-dimensional cloud model[J]. J. Wea.Mod.,26:113-124.
    Field P R, Hogan R J, Brown P R A, et al.2004. Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m scale[J]. Q. J. R. Meteorol. Soc.,130:1877-1904.
    Fleishauer R P, Larson V E, Vonder Haar T H.2002. Observed microphysical structure of midlevel,mixed-phase clouds[J]. J. Atmos. Sci.,59:1779-1804.
    Garstang M, Bruintjes R, Serafin R, et al.2005. Weather modification:Finding common ground [J]. Bull. Amer. Meteor. Soc.,86:647-655.
    Herzegh P H, Hobbs P V.1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅱ:Warm-frontal clouds[J]. J. Atmos. Sci.,37:597-611.
    Hobbs P V, Matejka T J, Herzegh P H, et al.1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I:A case study of a cold front[J]. J. Atmos. Sci.,37:568-596.
    Hobbs P V, Radke I R.1975.The nature of winter clouds and precipitation in Cascade Mountains and their modification by artificial seeding. Part Ⅰ:Techniques for the physical evaluation of seeding[J]. J. Appl. Meteor.,14:805-818.
    Huggins A W, Rodi A R.1985. Physical response of convective clouds over the Sierra Nevada to seeding with dry ice[J]. J. Climate Appl. Meteor.24:1082-1098.
    Huggins A W, Sassen K.1990. A high altitude ground-based cloud seeding experiment conducted in southern Utah[J]. J. Wea. Mod.,22:18-29.
    Korolev A V, Isaac G A, Cober S G, et al.2003. Microphysical characterization of mixed-phase clouds[J]. Q. J. R. Meteorol. Soc.,129:39-65.
    Krauss T W, Bruintjes R T, Verlinde J.1987.Microphysical and radar observations of seeded and nonseeded continental cumulus clouds[J]. J. Appl. Meteor.,26(5):585-606
    Lawson R P, Zuidema P.2009.Aircraft Microphysical and Surface-Based Radar Observations of Summertime Arctic Clouds[J]. J. Atmos. Sci.,66:3505-3529.
    McFarquhar G M, Zhang G, Poellot M R, et al.2007. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:1. Observations[J]. J. Geophys. Res., 112:D24201.
    Mielke P W. Brier G. W, Grant L O et al.1981. A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments[J]. J. Appl. Meteor.,20:643-660.
    Orville H D.I996. A review of cloud modeling in weather modification.Bull. Amer. Meteor. Soc., 77:1535-1555.
    Reinking R F, Meitin R J.1989. Recent progress and needs in obtaining physical evidence for weather modification potentials and effects[J]. J. Wea. Mod.,21:85-93.
    Reynolds D W, Dennis A S.1986.A review of the Sierra Cooperative Pilot Project[J]. Bull. Amer. Meteor. Soc.,67:513-523.
    Reynolds D W.1988. A report on winter snowpack-augmentation[J]. Bull. Amer. Meteor. Soc., 69:1291-1300.
    Rosenfeld D, Yu X, Dai J.2005.Satellite-retrieved microstructure of Agl seeding tracks in supercooled layer clouds[J]. J.Appl.Meteor.,44(6):760-767
    Ryan B F, King W D.1997.A critical review of the Aus-tralian experience in cloud seeding[J]. Bull. Amer. Meteor. Soc.,78:239-354.
    Smith P I, Dennis A S, Silverman B A, et al.1984. HIPLEX-1:Experimental design and response variables[J]. J. Appl. Meteor.,23 (4):497-512
    Stewart R E, Marwitz J D.1982. Microphysical effects of seeding wintertime stratiform clouds near the Sierra Nevada mountains[J]. J. Appl. Meteor.,21:874-880
    Stith J L, Detwiler A G, Reinking R F et al.1990. Investigating mixing and the activation of ice in cumuli with gaseous tracer techniques[J]. J. Atmos. Res.,25:195-216.
    Super A B, Boe B A.1988. MicrOphysical effects Of wintertime cloud seeding with silver iodide over the Rocky mountains, Part Ⅲ:Observations over the Grand Mesa, Colorado[J]. J. Appl. Meteor., 27(10):1166-1182.
    Super A B,Heimbach Jr J A.1988. Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky mountains, Part Ⅱ:Observations over the Bridger Range, Montana[J]. J. Appl. Meteor.,27(10):1152-1165
    Super A B.1990. Winter orographic cloud seeding status in the intermountain west[J]. J. Wea. Mod., 22:106-116.
    Vali G, Koenig L R, Yoksas T C.1988. Estimate of precipitation enhancement potential for the Deuro Basin of Spain[J]. J. Appl.Meteor.,27:829-850.
    Yu Xing, Dai Jin, Jiang Weimei, et al.2000. Athree-dimensional model of transport and diffusion of seeding agents within stratus[J]. Advances in AtmosphericSciences,17 (4):617-635.
    Yu Xing, Dai Jin, Rosenfeld Daniel, et al.2005. Comparison of model predicted transport and diffusion of seeding material with NOAA satellite-observed seeding track in supercooled layer clouds[J]. J. Appl. Meteor.,44:749-759.
    YuXing, Dai Jin, Lei Hengchi, et al.2005. Comparison between computer simulation of transport and diffusion of cloud seeding material within stratiform cloud and the NOAA-14 satellite cloud track[J]. Adv. Atmos. Sci.,22(1):133-141.
    陈万奎,严采蘩,吴心遂,等.1992.碘化银消除过冷低云试验结果[J].应用气象学报.3(1):59-66.
    范烨,郭学良,张佃国,等.2010.北京及周边地区2004年8,9月层积云结构及谱分析飞机探测研究[J].大气科学,34(6):1187-1200.
    方春刚,郭学良,王盘兴.2009.碘化银播撒对云和降水影响尺度数值模拟研究[J].大气科学,30(4):561-569.
    郭学良,黄美元,徐华英,等.1999.层状云降水微物理过程的雨滴分档数值模拟[J].大气科学,23(6):745-752.
    郭学良,付丹红,胡朝霞.2013.云降水物理与人工影响天气研究进展(2008-2012年)[J].大气科学,37(2):351-363.
    郭学良主编.2010.大气物理与人工影响天气(上)[M].北京:气象出版社,8-9,274pp.
    洪延超,周非非.2006.层状云系人工增雨潜力评估研究[J].大气科学,30(5):913-926.
    胡朝霞,雷恒池,郭学良,等.2008.降水性层状云系结构和降水过程的观测个例与模拟研究[J].大气科学,31(3):425-439.
    胡光印,董治宝,魏振海,等.2008.江河源区沙漠化研究进展与展望[J].干旱区资源与环境,22(7):41-45.
    胡光印,董治宝,逯军峰,等.2011.黄河源区1975-2005年沙漠化时空演变及其成因分析[J].中国沙漠,31(5):1079-1086.
    胡光印,董治宝,逯军峰,等.2012.长江源区沙漠化及其景观格局变化研究[J].中国沙漠,32(2):314-322.
    胡志晋,秦瑜,王玉彬.1983.层状冷云的数值模拟[J].气象学报,41(2):194-203.
    胡志晋.2001.层状云人工增雨机制、条件和方法的探讨[J].应用气象学报,12(增刊):10-13.
    黄梦宇,赵春生,周广强,等.2005.华北地区层状云微物理特性及气溶胶对云的影响[J].南京气象学院学报,28(3):360-368.
    金德镇,雷恒池,郑娇恒,等.2007.液态C02人工引晶后云微物理和降水变化的观测分析[J].大气科学,31(1):99-108.
    居丽玲,牛生杰,段英,等.2011.石家庄地区一次秋季冷锋云系垂直微物理结构的观测研究[J].高原气象,30(5):1324-1336.
    李大山,章澄昌,许焕斌,等.2002.人工影响天气现状与展望[M].北京:气象出版社,366-390.
    李宏宇,王华,洪延超.2006.锋面云系降水中的增雨潜力数值研究[J].大气科学,30(2):341-350.
    李林,李凤霞,郭安红,等.2006.近43年来”三江源”地区气候变化趋势及其突变研究[J].自然资源学报,21(1):79-85.
    李仑格,德力格尔.2001.高原东部春季降水云层的微物理特征分析[J].高原气象,20(2):191-196.
    李生辰,李栋梁,赵平等.2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报,67(4):591-598.
    李照荣,李荣庆,李宝梓.2003.兰州地区秋季层状云垂直微物理特征分析[J].高原气象,22(6):583-589.
    刘诗军,胡志晋,游来光.2005.碘化银核化过程的数值模拟研究.气象学报[J].63(1):30-40.
    刘卫国,苏正军,王广河,等.2003.新一代机载PMS粒子测量系统及应用[J].应用气象学报,14(增刊):11-18.
    刘晓莉,牛生杰,陈跃.2006.层状云催化后过冷水分布与演变规律的数值模拟[J].大气科学,33(3):621-633.
    刘晓莉,牛生杰.2009.三维对流云中粒子谱演变特征的数值模拟[J].中国科学D辑:地球科学.39(2):245-256.
    齐彦斌,郭学良,金德镇.2007.一次东北冷涡中对流云带的宏微物理结构探测研究[J].大气科学,31(4):621-634.
    牛生杰,马铁汉,管月娥,等.1992.宁夏夏季降水性层状云微结构观测分析[J].高原气象,11(3):241-248.
    侯团结,胡朝霞,雷恒池.2011.吉林一次降水层状云的结构和物理过程研究[J].气象学报,69(3):508-520.
    申亿铭,陈吉航.1988.飞机播撒催化剂扩散问题的数值解法[J].气象学报,44(4):440-446.
    申亿铭.1994.云中催化剂的扩散[M].气象出版社,北京:69-82.
    苏正军,刘卫国,王广河,等.2003.青海一次春季透雨降水过程的云物理结构分析[J].应用气象学报,14(增刊):27-35.
    唐红玉,杨小丹,王希娟,等.2007.三江源地区近50年降水变化分析[J].高原气象,26(1):47-54.
    汪晓滨,毛节泰,郑国光,等.2006.新型AgI末端燃烧器及其在增雨作业中的应用[J].气象科技,34(1):93-96.
    王谦,游来光,胡志晋.1987,新疆乌鲁木齐地区冬季层积云研究一个例的观测结果与分析[J].气象学报,45(1):2-12.
    王扬锋,雷恒池,樊鹏,等.2007.一次延安层状云微物理结构特征及降水机制研究[J].高原气象,26(2):388-395.
    王以琳,雷恒池.2003.冷云飞机人工引晶检验[J].大气科学,27(5):929-938.
    杨建平,丁永建,陈仁升,等.2007.长江黄河源区生态环境脆弱性评价初探[J].中国沙漠,27(6):1012-1017.
    杨洁帆,雷恒池,胡朝霞,等.2010.一次层状云降水过程微物理机制的数值模拟研究[J].大气科学,34(2),275-289.
    杨洁帆,雷恒池.2010.焰剂对层状云催化的数值模拟研究[J].气候与环境研究,15(6):706-717.
    杨文霞,牛生杰,魏俊国,等.2005.河北省层状云降水系统微物理结构的飞机观测研究[J].高原气象,24(1):84-90.
    杨正卿,银燕,刘聪,等.2012.云滴数浓度影响混合型层状云降水的数值模拟[J].大气科学学报,35(3),350-363.
    姚展予.2006.中国气象科学研究院人工影响天气研究进展回顾[J].应用气象学报,17(6):786-795.
    银燕,1996.内蒙古中西部层状云中飞机播撒催化剂扩散过程的数值模拟[J].内蒙古气象,(4):28-32.
    游来光.1994.利用粒子测量系统研究云物理过程和人工增雨条件[G]//游景炎,段英,游来光.云降水物理和人工增雨技术研究.北京:气象出版社,236-249.
    游来光,马培民,胡志晋.2002.北方层状云人工降水试验研究[J].气象科技,30(增刊):19-56.
    余兴,戴进,雷恒池,等.2005.NOAA卫星云图反映播云物理效应[J].科学通报,50(1):77-83.
    余兴,樊鹏,王晓玲,等.1998.层状云中非垂直多条撒播线源催化剂扩散的数值模拟[J].气象学报,56(6):708-723.
    余兴,王晓玲,戴进,等.2002.过冷层状云中飞机播云有效区域的模拟研究[J].气象学报,60(2):205-213.
    余兴,徐小红,戴进.2007.过冷层状云Agl播云效应区的NOAA卫星反演分析与数值模拟[J].自然科学进展,17(2):225-232.
    张佃国,郭学良,付丹红,等.2007.2003年8-9月北京及周边地区云系微物理飞机探测研究[J].大气科学,31(4):596-610.
    张佃国,郭学良,龚佃利,等.2011.山东省1989-2008年23架次飞机云微物理结构观测试验结果[J].气象学报,69(1):195-207.
    张瑜,银燕,石立新,等.2012.2007年秋季河北地区云微物理结构的飞机探测分析[J].高原气象,31(2):530-537.
    赵仕雄,陈文辉,杭洪宗.2002.青海东北部春季系统性降水高层云系微物理结构分析[J].高原气象,21(3):281-287
    赵仕雄,德力格尔,涂多彬.2003.黄河上游降水云层对流特性及降水微结构机制研究[J].高原气象,22(4):385-392.
    赵震,雷恒池.2008.西北地区一次层状云降水云物理结构和云微物理过程的数值模拟研究[J].大气科学,32(2):323-334.
    Baumgardner D, Korolev A.1997. Airspeed corrections for optical array probe sample volumes[J]. J. Atmos. Oceanic Technol.,14:1224-1229.
    Brown P R A, Francis P N.1995. Improved measurements of ice water content in cirrus using a total-water probe[J]. J. Atmos. Oceanic Technol.,12:410-414.
    Cober S G, George A I, Korolev A V, et al.2001. Assessing cloud-phase conditions[J]. J. Appl. Meteor.,40:1967-1983.
    Coelho A A, Brenguier J L, Perrin T.2005. Droplet spectra measurements with the FSSP-100. Part II: Coincidence effects[J]. J. Atmos. Oceanic Technol.,22:1756-1761.
    Feind R E, Detwiler A G, Smith P L.2000. Cloud liquid water measurements on the armored T-29: Intercomparison between Johnson-Williams cloud water meter and CSIRO (King) liquid water probe[J]. J. Atmos. Oceanic Technol.,17:1630-1638
    Field P R, Wood R, Brown P R A, et al.2003. Ice particle inter-arrival times measured with a fast FSSP[J], J. Atmos. Oceanic Technol.,20:249-261.
    Gardiner B A, Hallett J.1985. Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles[J], J. Atmos. Oceanic Technol.,2:171-180.
    Heymsfield A J, Lewis S, Bansemer A, et al.2002. A general approach for deriving the properties of cirrus and stratiform ice cloud properties[J].J. Atmos. Sci.,59:3-29.
    Isaac G A.1991. Microphysical characteristics of Canadian Atlantic storms[J]. Atmos. Res., 26:339-360.
    King W D, Dye J E, Baumgardner D, et al.1985. Icing wind tunnel tests on the CSIRO liquid water probe[J]. J. Atmos. Oceanic Technol.,2:340-352.
    Korolev A V, Strapp J W, Isaac G A.1998. Evaluation of the accuracy of PMS optical array probes[J]. J. Atmos. Oceanic Technol.,15:708-720.
    Martin G M, Johnson D W, Spice A.1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds[J]. J. Atmos. Sci.,51:1823-1842.
    McFarquhar G M, Cober S G.2004. Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths:Impacts on radiative transfer[J]. J. Clim.,17:3799-3813.
    McFarquhar G M, Heymsfield A J.1996. Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment (CEPEX) [J]. J. Atmos. Sci.,53:2401-2423.
    McFarquhar G M, Heymsfield A J.1998. The definition and significance of an effective radius for ice clouds [J].J. Atmos. Sci.,55:2039-2052.
    McFarquhar G M, Zhang G, Poellot M R, et al.2007. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:1. Observations[J]. J. Geophys. Res., 112:D24201.
    Miles N L, Verlinde J, Clothiaux E E.2000.Cloud droplet size distributions in low-level stratiform Clouds[J]. J. Atmos. Sci.,57:295-311.
    Mitchell D L.1996. Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities[J]. J. Atmos. Sci.,53:1710-1723.
    Strapp J W, Albers F, Reuter A, et al.2001. Laboratory measurements of the response of a PMS OAP-2DC[J]. J. Atmos. Oceanic Technol.,18:1150-1170.
    Strapp J W, Oldenburg J, Ide R, et al.2003. Wind tunnel measurements of t he response of hot-wire liquid water content instruments to large droplets[J]. J. Atmos. Oceanic Technol.,20:791-806.
    樊曙先.2000.层状云微物理结构演变特征的个例研究[J].宁夏大学学报(自然科学版),21(2):179-182.
    黄梦宇,赵春生,周广强,等.2005.华北地区层状云微物理特性及气溶胶对云的影响[J].南京气象学院学报,28(3):360-368.
    李照荣,李荣庆,李宝梓.2003.兰州地区秋季层状云垂直微物理特征分析[J].高原气象,22(6):583-589.
    刘卫国,苏正军,王广河,等.2003.新一代机载PMS粒子测量系统及应用[J].应用气象学报,14(增刊):11-18.
    王柏忠,刘卫国,王广河,等.2004.KLWC-5含水量仪原理及在人工增雨中的应用[J].气象科技,32(4):294-296.
    游来光,王守荣,王鼎丰,等.1989.新疆冬季降雪微结构及其增长过程的初步研究[J].气象学报,47(1)73-81.
    游来光.1994.利用粒子测量系统研究云物理过程和人工增雨条件[G]//游景炎,段英,游来光.云降水物理和人工增雨技术研究.北京:气象出版社,236-249.
    赵增亮,毛节泰,魏强,等.2010.西北地区春季云系的垂直结构特征飞机观测统计分析[J].气象,36(5):72-77.
    樊曙先.2000.层状云微物理结构演变特征的个例研究[J].宁夏大学学报(自然科学版),21(2):179-182.
    范烨,郭学良,张佃国,等.2010.北京及周边地区2004年8,9月层积云结构及谱分析飞机探测研究[J].大气科学,34(6):1187-1200.
    居丽玲,牛生杰,段英,等.2011.石家庄地区一次秋季冷锋云系垂直微物理结构的观测研究[J].高原气象,30(5):1324-1336.
    李仑格,德力格尔.2001.高原东部春季降水云层的微物理特征分析[J].高原气象,20(2):191-196.
    李照荣,李荣庆,李宝梓.2003.兰州地区秋季层状云垂直微物理特征分析[J].高原气象,22(6):583-589.
    王扬锋,雷恒池,樊鹏,等.2007.一次延安层状云微物理结构特征及降水机制研究[J].高原气象,26(2):388-395.
    杨文霞,牛生杰,魏俊国,等.2005.河北省层状云降水系统微物理结构的飞机观测研究[J].高原气象,24(1):84-90.
    游来光.1994.利用粒子测量系统研究云物理过程和人工增雨条件[G]//游景炎,段英,游来光.云降水物理和人工增雨技术研究.北京:气象出版社,236-249.
    张佃国,郭学良,付丹红,等.2007.2003年8-9月北京及周边地区云系微物理飞机探测研究[J].大气科学,31(4):596-610.
    张佃国,郭学良,龚佃利,等.2011.山东省1989-2008年23架次飞机云微物理结构观测试验结果[J].气象学报,69(1):195-207.
    章新平,姚檀栋.1995.影响青藏高原的天气系统与降水中氧同位素的关系[J].冰川冻土,17(2):125-131.
    赵仕雄,德力格尔,涂多彬.2003.黄河上游降水云层对流特性及降水微结构机制研究[J].高原气象,22(4):385-392.
    Boudala F S, Isaac G A, Cober S G, et al.2004. Liquid fraction in stratiform mixed-phase clouds from in situ observations [J]. Q. J. R. Meteorol. Soc.,130:2919-2931.
    Bower K N, Moss S J, Johnson D W, et al.1996. A parameterization of the ice water content observed in frontal and convective clouds[J]. Q. J. R._Meteorol. Soc.,122:1815-1844.
    Cober S G, George A I, Korolev A V, et al.2001. Assessing cloud-phase conditions[J].J. Appl. Meteor.,40:1967-1983.
    Field P R, Hogan R J, Brown P R A, et al.2004.Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m scale[J]. Q. J. R. Meteorol. Soc.,130:1877-1904.
    Korolev A, Sussman B.2000. A technique for habit classification of cloud particles[J]. J. Atmos. Oceanic Technol.17:1048-1057.
    Korolev A V, Isaac G A, Cober S G, et al.2003. Microphysical characterization of mixed-phase clouds[J]. Q. J. R. Meteorol. Soc.,129:39-65.
    Lawson R P,Zuidema P.2009.Aircraft Microphysical and Surface-Based Radar Observations of Summertime Arctic Clouds[J]. J. Atmos. Sci.,66:3505-3529.
    McFarquhar G M, Cober S G.2004. Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths:Impacts on radiative transfer[J]. J. Clim.,17:3799-3813.
    McFarquhar G M, Heymsfield A J.1996. Microphysical characteristics of three cirrus anvils sampled
    McFarquhar G M, Zhang G, Poellot M R, et al.2007. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:1. Observations[J]. J. Geophys. Res., 112:D24201.
    Moss S J, Johnson D W.1994. Aircraft measurements to validate and improve numerical model parameterizations of ice to water ratios in clouds [J]. Atmos. Res.,34:1-25.
    Smith R N B.1990. A scheme for predicting layer clouds and their water content in a general circulation model[J]. Q. J. R. Meteorol. Soc.,116:435-460.
    Twohy C H, Strapp J W, Wendisch M.2003. Performance of a counterflow virtual impactor in the NASA icing research tunnel [J]. J. Atmos. Oceanic Technol.,20:781-790.
    范烨,郭学良,张佃国,等.2010.北京及周边地区2004年8,9月层积云结构及谱分析飞机探测研究[J].大气科学,34(6):1187-1200.
    胡朝霞,雷恒池,郭学良,等.2007.降水性层状云系结构和降水过程的观测个例与模拟研究[J].大气科学,31(3):425-439.
    黄梦宇,赵春生,周广强,等.2005.华北地区层状云微物理特性及气溶胶对云的影响[J].南京气象学院学报,28(3):360-368.
    雷恒池,洪延超,赵震,等.2008.近年来云降水物理和人工影响天气研究进展[J].大气科学,32(4):967-974.
    刘晓莉,牛生杰.2009.三维对流云中粒子谱演变特征的数值模拟[J].中国科学D辑:地球科学.39(2):245-256.
    齐彦斌,郭学良,金德镇.2007.一次东北冷涡中对流云带的宏微物理结构探测研究[J].大气科学,31(4):621-634.
    王扬锋,雷恒池,樊鹏,等.2007.一次延安层状云微物理结构特征及降水机制研究[J].高原气象,26(2):388-395.
    杨洁帆,雷恒池,胡朝霞,等.2010.一次层状云降水过程微物理机制的数值模拟研究[J].大气科学,34(2),275-289.
    游来光,王守荣,王鼎丰,等.1989.新疆冬季降雪微结构及其增长过程的初步研究[J].气象学报,47(1)73-81.
    游来光.1994.利用粒子测量系统研究云物理过程和人工增雨条件[G]//游景炎,段英,游来光.云降水物理和人工增雨技术研究.北京:气象出版社,236-249.
    张佃国,郭学良,付丹红,等.2007.2003年8-9月北京及周边地区云系微物理飞机探测研究[J].大气科学,31(4):596-610.
    张佃国,郭学良,龚佃利,等.2011.山东省1989-2008年23架次飞机云微物理结构观测试验结果[J].气象学报,69(1):195-207.
    赵震,雷恒池.2008.西北地区一次层状云降水云物理结构和云微物理过程的数值模拟研究[J].大气科学,32(2):323-334.
    DeMott P J.1995. Quantitafive descriptions of ice formation mechanisms of silver iodide-type aerosols[J].Atmos.Res.38:63-99.
    McFarquhar G M, Zhang G, Poellot M R, et al.2007. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:1. Observations[J]. J. Geophys. Res., 112:D24201.
    Rosenfeld D, Yu X, Dai J.2005.Satellite-retrieved microstructure of Agl seeding tracks in supercooled layer clouds[J]. J.Appl.Meteor.,44(6):760-767.
    Ryan B F, King W D.1997.A critical review of the Aus-tralian experience in cloud seeding[J]. Bull. Amer. Meteor. Soc.,78:239-354.
    Tessendorf S A, Bruintjes R T,Weeks C, et al.2012. The Queensland cloud seeding research program[J]. Bull. Amer. Meteor. Soc.,93(1):75-90.
    陈万奎,严采蘩,吴心遂,等.1992.碘化银消除过冷低云试验结果[J].应用气象学报.3(1):59-66.
    戴进,余兴,Rosenfeld D,等.2006.一次过冷层状云催化云迹微物理特征的卫星遥感分析[J].气象学报,64(5):622-630.
    胡志晋,秦瑜,王玉彬.1983.层状冷云的数值模拟[J].气象学报,41(2):194-203.
    胡志晋.层状云人工增雨机制,条件和方法的探讨[J].应用气象学报,2001,12(增刊):10-13.
    黄美元,沈志来,洪延超.2003.半个世纪的云雾、降水和人工影响天气研究进展[J].大气科学,27(4):536-551.
    金德镇,雷恒池,郑娇恒,等.2007.液态C02人工引晶后云微物理和降水变化的观测分析[J].大气科学,31(1):99-108.
    刘诗军,胡志晋,游来光.2005.碘化银核化过程的数值模拟研究.气象学报[J].63(1):30-40.
    王谦,游来光,胡志晋.1987,新疆乌鲁木齐地区冬季层积云研究一个例的观测结果与分析[J].气象学报,45(1):2-12.
    王以琳,雷恒池.2003.冷云飞机人工引晶检验[J].大气科学,27(5):929-938.
    游来光,王守荣,王鼎丰,等.1989.新疆冬季降雪微结构及其增长过程的初步研究[J].气象学报,47(1)73-81.
    游来光.1994.利用粒子测量系统研究云物理过程和人工增雨条件[G]//游景炎,段英,游来光.云降水物理和人工增雨技术研究.北京:气象出版社,236-249.
    余兴,王晓玲,戴进,等.2002.过冷层状云中飞机播云有效区域的模拟研究[J].气象学报,60(2):205-213.
    余兴,徐小红,戴进.2007.过冷层状云Agl播云效应区的NOAA卫星反演分析与数值模拟[J].自然科学进展,17(2):225-232.
    张瑜,银燕,石立新,等.2012.2007年秋季河北地区云微物理结构的飞机探测分析[J].高原气象,31(2):530-537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700