用户名: 密码: 验证码:
碱胁迫下水稻氮代谢调节机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤碱化问题日益突出,然而时至今日,土壤碱胁迫这一严重环境问题却往往被忽视,甚至与盐胁迫混淆。目前关于植物抗碱机制所知甚少。前期工作已经明了碱胁迫强烈的干扰植物对氮的吸收和利用,进而影响植物的整个代谢过程,氮代谢调控在植物抗碱过程中可能起关键作用。本研究中,我们选用重要的粮食作物水稻作为实验材料。为了深入具体地研究碱胁迫下水稻氮代谢调控机制,我们分别设计了三个实验:第一,选用水稻模式品种“日本晴”作为实验材料,比较盐、碱两种胁迫对水稻氮代谢的影响;第二,选择抗碱水稻品种“长白九”和不抗碱水稻品种“吉粳88”作为实验材料,比较二者应对碱胁迫的氮代谢变化,找到二者抗碱性差异产生的生理及分子原因;第三,为了进一步证实碱胁迫下水稻氮代谢调节机制,我们比较了碱胁迫下不同发育程度的光合器官(老叶和新叶)的氮代谢差异。其主要结果和结论如下:
     1.碱胁迫对水稻氮代谢作用机制主要包括以下两个方面:
     ①在根中,碱胁迫降低根中N03-含量进而导致两个严重的后果:一,硝酸还原酶基因(.OsNRl)表达大幅下调进而造成由硝酸还原酶还原得到的NH4+-含量下降;二,在碱胁迫下环境pH高达9.11,几乎所有的NH4+-都转化为NH3,导致根际NH4+-严重缺乏。水稻通过提高根中两个N03-转运体基因WsNRT1;2和OsNRT2;1)的表达来提高N03-吸收进而弥补N03-不足。根中NH4+转运体基因家族WsAMT)中几个成员在碱胁迫下表达上调可能是对根中NH4+-含量降低或者是对根际环境中NH4+-缺乏的一种响应,同样根中NADH-谷氨酸合酶(OsNADH-GOGAT)和谷氨酰胺合酶1;2(OsGS1;2)基因表达下调也可能是对NH4+-含量下降的适应性响应。
     ②在地上部分,碱胁迫导致水稻茎叶过度积累Na+并达到毒害水平,直接破坏叶绿体和膜系统,影响植物体自身的光呼吸,导致NH4+-含量持续降低,进一步抑制叶绿体中OsFd-GOGAT和OsGS2基因表达。这些结果表明,碱胁迫强烈地影响氮代谢,植物响应碱胁迫的氮代谢调节机制极其复杂,值得深入研究。
     2.碱胁迫严重干扰碱敏感水稻品种氮代谢过程,抗碱水稻品种能够维持正常的氮代谢过程。
     碱胁迫对抗碱水稻“长白九”地上部分OsFd-GOGAT和OsGS2基因表达影响不大,却明显降低它们在敏感水稻吉粳-88中的表达;同时,碱胁迫强烈刺激谷氨酸脱氢酶1基因(OsGDHl)、OsGDH2和OsGDH3在吉粳-88茎叶中的表达,但这三个基因在抗碱品种中保持不变。这表明,碱胁迫可能已经改变了敏感水稻品种茎叶NH4+-同化途径,削弱GS2/GOGAT氨同化途径而增强GDH途径。碱胁迫可能破坏敏感水稻品种光合系统,碱胁迫导致吉粳-88茎叶过度积累Na+到毒害水平,直接破坏叶绿体并影响光合作用及光呼吸,进而导致地上部分中OsGS2和OsFd-GOGAT基因表达下调。总之,碱敏感水稻品种地上部分Na+-积累到毒害水平而改变氨同化途径,而抗碱水稻仍能维持正常的氮代谢过程,保证地上部分相对高的OsGS2和OsFd-GOGAT表达水平,进而维持正常的生长、发育和代谢。
     3.碱胁迫对老叶氮代谢的影响不大,但严重干扰幼嫩叶片的氮代谢过程。
     碱胁迫明显抑制水稻老叶生长,却轻微影响新叶生长,这可能是植物应对胁迫的一种适应性策略,水稻通过牺牲老叶来保护幼嫩器官。水稻主要将大量有毒离子区隔至老叶中以保护新叶和整个绿色部分免受离子毒害。碱胁迫对水稻老叶离子平衡的影响大于对新叶的影响,但对新叶氮代谢影响比老叶更明显。碱胁迫基本没有影响老叶OsFd-GOGAT和OsGS2的表达,却明显降低它们在新叶中的表达。碱胁迫后新叶中OsFd-GOGAT和OsGS2表达下调可能是对新叶中NO3-含量降低的一种适应性响应,新叶中N03-缺乏可能导致OsNRl表达下调进而导致游离NH4+-的缺乏,这可能是碱胁迫后新叶中OsFd-GOGAT和OsGS2下调的主要原因。
Soil alkalization frequently causes severe problems in some areas. Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism specifically root physiology. However, relatively little attention has been given to this problem, and the insight into mechanisms of alkali tolerance was lacking. Alkali stress may strongly affect assimilation and/or uptake of nitrate. Interference between alkali stress and nitrogen nutrition is a very complex network affecting almost all processes in plant metabolism and development. Thus, nitrogen metabolism regulation may be important in alkali-tolerance as in salt-tolerance. In present study, we chosen rice (Oryza sativa) as the test organism to test the role of nitrogen metabolism regulation in alkali tolerance of rice plants. This article included three experiments:1. a japonica rice variety 'Nipponbare' was chosen as test organism, and compared effects of salt and alkali stresses on nitrogen metabolism of rice plants;2. using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of nitrogen metabolism to alkali stress;3. the aim of this study was to investigate whether the alkali stress has different effects on nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. Major conclusions were as follows:
     1. Effects of alkali stress on the nitrogen metabolism of ricemainly comprised two mechanisms:
     ①Root. AS caused the reduction of NO3-content in roots, and which caused two baneful consequence, the large downregulation of OsNR1and the subsequent reduction of NH4+production in roots. On the other hand, under AS (pH,9.11), almost all NH4+were changed to NH3, which caused the severe deficiency of NH4+surrounding the roots. Both events caused the severe deficiency of NH4+in roots. Rice variety 'Nipponbare' might enhance the expression of OsNRT1;2and OsNRT2;1in roots to increase the frequency of NO3-uptake and to compensate the less of NO3-uptake chemical energy (transmembrane proton gradient). Under AS, the increased expression of several OsAMT family members in roots might be an adaptative response to the reduction of NH4+in roots or the NH4+deficiency in rhizosphere. Also, the downregulated expression of OsNADH-GOGAT and OsGSl;2in roots might be due to NH4+deficiency in roots.
     ②Shoot. AS caused the large acuumulatiuon of Na+in shoots to toxic level, which possibly affected photorespiration and led a continuous decrease of NH4+production, and inhibited the expression of OsFd-GOGAT and OsGS2in chloroplast.
     2. Under alkali stress, alkali-tolerant rice was able to maintain normal nitrogen metabolism processes, which might be important for resisting alkali stress.Alkali stress had only small effects on the expression of OsGS2and OsFd-GOGAT in theshoots of the tolerant cultivar, but had clearly reduced expression in the shoots of the sensitivecultivar. Concurrently, alkali stress strongly stimulated the expression of OsGDH1, OsGDH2and OsGDH3in shoots of the sensitive cultivar, but did not affect their expression in shootsof the tolerant cultivar. The above data showed that alkali stress may have changed the NH_4~+assimilation pathway in shoots of the sensitive cultivar, weakened the frequency of NH_4~+assimilation by the GS2/GOGAT pathway, and elevated the frequency of NH+4assimilation bythe GDH pathway. Under alkali stress, the down-regulation of OsGS2and OsFd-GOGAT inshoots of the sensitive cultivar might be due to the destruction of the photosynthetic system.Under alkali stress, in shoots, alkali-sensitive rice might accumulate Na+to toxic levels,possibly harming chloroplasts and disturbing relevant metabolism, and immediately reducingPN. The Na+excess in shoots also might influence photorespiration of the sensitive cultivar,and reduce NH+4production from photorespiration, which might immediately down-regulateOsGS2and OsFd-GOGAT in its shoots. Therefore, we propose that down-regulation ofOsGS2and OsFd-GOGAT might be a harmful response of the sensitive cultivar to Na+excessin shoots caused by alkali stress. Na+excess in shoots might even change the pathway ofNH+4assimilation in the sensitive cultivar, weaken the GOGAT/GS pathway and elevate theGDH pathway in roots and shoots. Under alkali stress, alkali-tolerant rice was able tomaintain normal N metabolism processes and relatively high expression levels of OsGS2andOsFd-GOGAT in the shoots, which might be important for synthesis of the N-containingcompounds involved in alkali tolerance.3. Effect of alkali stress on nitrogen metabolism of young leaves was stronger than thatof old leaves.The results showed that alkali stress only produced a small effect on the growth of youngleaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm viathe large accumulation of Na+and Cl-in old leaves. Compared both tissues, we found that theeffect of alkali stress on nitrogen metabolism of young leaves was stronger than that of oldleaves. Alkali stress did not influence the expression of OsFd-GOGAT and OsGS2in oldleaves, and mightily reduced their expression in young leaves. The decreased expression ofOsFd-GOGAT and OsGS2in young leaves might be a response to NO-3deficiency. The NO-3deficiency in young leaves might cause the large reduction in OsNR1expression and thesubsequent lacking of free NH+4, which might be main reason why alkali stress sharplydownregulated the expression of OsFd-GOGAT and OsGS2in young leaves.
引文
[1]. Covelo F, Rodrguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population[J]. Plant and Soil311:109-119.
    [2]Guo R, Li X, Christie P, Chen Q, Jiang R, et al.(2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems[J]. Plant and Soil313:55-70.
    [3]许振柱,周广胜(2004)植物氮代谢及其环境调节研究进展[J].应用生态学报15:511-516.
    [4]Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase:functional properties and regulation[J]. Annual Review of Plant Biology41:225-253.
    [5]Cramer M, Gao Z, Lips S (1999) The influence of dissolved inorganic carbon in the rhizosphere on carbon and nitrogen metabolism in salinity treated tomato plants[J]. New Phytologist142:441-450.
    [6]StittM (1999) Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology2:178-186.
    [7]瞿礼嘉,顾红雅,白书农,赵进东(2004)植物生物化学与分子生物学[M].北京:科学出版社.
    [8]Kusano M, Tabuchi M, Fukushima A, Funayama K, Diaz C, et al.(2011) Metabolomics data reveal a crucial role of cytosolic glutamine synthetase1;1in coordinating metabolic balance in rice[J]. Plant Journal66:456-466.
    [9]Kirk G. Kronzucker H (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants:a modelling study[J]. Annals of Botany96:639-646.
    [10]闫德智.,王德建.,林静慧(2005)太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报42:440-446.
    [11]Yoshida S, Forno DA, Cock J (1976) Laboratory manual for physiological studies of rice[M]:Int. Rice Res. Inst.
    [12]练兴明(2005)水稻氮胁迫基因表达谱研究及耐低氮特性数量性状分析[C].博士学位论文.
    [13]印莉萍,黄勤妮,吴平editors (2006)植物营养分子生物学及信号转导[M].北京:科学出版社.
    [14]Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.)[J]. Journal of Experimental Botany58:2319-2327.
    [15]Miflin BJ, Lea PJ (1976) The pathway of nitrogen assimilation in plants[J]. Phytochemistry15:873-885.
    [16]Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Journal of Experimental Botany53:979-987.
    [17]Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture [J]. Science279:407-409.
    [18] Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants[J]. Trendsin Plant Science3:389-395.
    [19] Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling[J]. Journal ofExperimental Botany58:2297-2306.
    [20] Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters[J]. FEBSletters581:2290-2300.
    [21] Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, et al.(2007) Dissection of the AtNRT2.1: AtNRT2.2inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology143:425-433.
    [22] Kant S, Bi YM, Weretilnyk E, Barak S, Rothstein SJ (2008) The Arabidopsis halophytic relative Thellungiellahalophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation[J].Plant Physiology147:1168-1180.
    [23] Lin CM, Koh S, Stacey G, Yu SM, Lin TY, et al.(2000) Cloning and functional characterization of aconstitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiology122:379-388.
    [24] Araki R, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitratetransport during the period of nitrate induction[J]. Breeding Science56:295-302.
    [25] Cai C, Wang JY, Zhu YG, Shen QR, Li B, et al.(2008) Gene structure and expression of the high-affnitynitrate transport system in rice roots[J]. Journal of Integrative Plant Biology50:443-451.
    [26] D'Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, et al.(2004) Characterization of threefunctional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation andspatial expression[J]. Plant Physiology134:1763-1774.
    [27] Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, et al.(1999) Three functional transporters forconstitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. PlantCell11:937-947.
    [28] von Wiren N, Gazzarrini S, Gojont A, Frommer WB (2000) The molecular physiology of ammonium uptakeand retrieval[J]. Current Opinion in Plant Biology3:254-261.
    [29] Yuan L, Graff L, Loqu¨|D, Kojima S, Tsuchiya YN, et al.(2009) AtAMT1;4, a pollen-specific high-affinityammonium transporter of the plasma membrane in Arabidopsis[J]. Plant and Cell Physiology50:13-25.
    [30] Sohlenkamp C, Shelden M, Howitt S, Udvardi M (2000) Characterization of Arabidopsis AtAMT2, a novelammonium transporter in plants[J]. FEBS letters467:273-278.
    [31] Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, et al.(1999) Three functional transporters forconstitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. PlantCell11:937-947.
    [32] Yuan L, Loque D, Ye F, Frommer WB, von Wiren N (2007) Nitrogen-dependent posttranscriptional regulationof the ammonium transporter AtAMT1;1[J]. Plant Physiology143:732-744.
    [33] Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, ahigh-affinity ammonium transporter of the plasma membrane[J]. Plant Physiology130:1788-1796.
    [34] Ludewig U, von Wiren N, Frommer WB (2002) Uniport of NH+4by the root hair plasma membraneammonium transporter LeAMT1;1[J]. Journal of Biological Chemistry277:13548-13555.
    [35] Suenaga A, Moriya K, Sonoda Y, Ikeda A, Von Wiren N, et al.(2003) Constitutive expression of a novel-typeammonium transporter OsAMT2in rice plants[J]. Plant and Cell Physiology44:206-211.
    [36] Li BZ, Merrick M, Li SM, Li HY, Zhu SW, et al.(2009) Molecular basis and regulation of ammoniumtransporter in rice[J]. Rice Science16:314-322.
    [37] Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap betweenbiochemistry and physiology[J]. Annual Review of Plant Biology50:277-303.
    [38] Hoff T, Stummann BM, Henningsen KW (1992) Structure, function and regulation of nitrate reductase inhigher plants[J]. Physiologia Plantarum84:616-624.
    [39] Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiologicalrelevance and environmental triggers[J]. Journal of Experimental Botany52:1981-1989.
    [40] Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvementof crop nitrogen use efficiency.[J] Journal of Experimental Botany62:1499-1509.
    [41] Choi HK, Kleinhofs A, An G (1989) Nucleotide sequence of rice nitrate reductase genes[J]. Plant MolecularBiology13:731-733.
    [42] Terada Y, Aoki H, Tanaka T, Morikawa H, Ida S (1995) Cloning and nucleotide sequence of a leafferredoxin-nitrite reductase cDNA of rice[J]. Bioscience, Biotechnology, and Biochemistry59:2183-2185.
    [43] Becker TW, Carrayol E, Hirel B (2000) Glutamine synthetase and glutamate dehydrogenase isoforms in maizeleaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport[J]. Planta211:800-806.
    [44] Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenasecontribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed todifferent salinity[J]. Journal of Plant Physiology164:695-701.
    [45] Lam HM, Coschigano K, Oliveira I, Melo-Oliveira R, Coruzzi G (1996) The molecular-genetics of nitrogenassimilation into amino acids in higher plants[J]. Annual Review of Plant Biology47:569-593.
    [46]Temple SJ, Vance CP, Stephen Gantt J (1998) Glutamate synthase and nitrogen assimilation[J]. Trends in PlantScience3:51-56.
    [47] McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR (1983) Glutamine synthetases of higher plants: evidencefor a specific isoform content related to their possible physiological role and their compartmentation within theleaf[J]. Plant Physiology72:22.
    [48] Fei H, Chaillou S, Hirel B, Mahon JD, Vessey KJ (2003) Overexpression of a soybean cytosolic glutaminesynthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate[J].Planta216:467-474.
    [49] Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutaminesynthetase. Relation to nitrogen, light, and photorespiration[J]. Plant Physiology129:1170-1180.
    [50] Ortega JL, Temple SJ, Sengupta-Gopalan C (2001) Constitutive overexpression of cytosolic glutaminesynthetase (GS1) gene in transgenic alfalfa demonstrates that GS1may be regulated at the level of RNA stabilityand protein turnover[J]. Plant Physiology126:109-121.
    [51] Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetaseincreases photosynthesis and growth at low nitrogen concentrations[J]. Journal of Experimental Botany52:1071-1081.
    [52] Habash D, Massiah A, Rong H, Wallsgrove R, Leigh RA (2006) The role of cytosolic glutamine synthetase inwheat[J]. Annals of Applied Biology138:83-89.
    [53] Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, et al.(2005) Severe reduction in growth rate and grainfilling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1[J]. Plant Journal42:641-651.
    [54] Kusano M, Tabuchi M, Fukushima A, Funayama K, Diaz C, et al.(2011) Metabolomics data reveal a crucialrole of cytosolic glutamine synthetase1;1in coordinating metabolic balance in rice[J]. Plant Journal66:456-466.
    [55] Cai H, Zhou Y, Xiao J, Li X, Zhang Q, et al.(2009) Overexpressed glutamine synthetase gene modifiesnitrogen metabolism and abiotic stress responses in rice[J]. Plant Cell Reports28:527-537.
    [56] Veeranagamallaiah G, Chandraobulreddy P, Jyothsnakumari G, Sudhakar C (2007) Glutamine synthetaseexpression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars offoxtail millet (Setaria italica L.) with differential salt sensitivity[J]. Environmental and Experimental Botany60:239-244.
    [57] Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinctFd-GOGAT genes: implications for photorespiration and primar y nitrogen assimilation[J]. Plant Cell10:741-752.
    [58] Botella JR, Verbelen JP, Valpuesta V (1988) Immunocytolocalization of ferredoxin-GOGAT in the cells ofgreen leaves and cotyledons of Lycopersicon esculentum[J]. Plant Physiology87:255.
    [59] Somerville CR, Ogren WL (1980) Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamatesynthase activity[J]. Nature286:257-259.
    [60] Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinctFd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation[J]. Plant Cell10:741-752.
    [61] Ferrario-M¨|ry S, Suzuki A, Kunz C, Valadier M, Roux Y, et al.(2000) Modulation of amino acid metabolismin transformed tobacco plants deficient in Fd-GOGAT[J]. Plant and Soil221:67-79.
    [62] Cordoba E, Shishkova S, Vance CP, Hernandez G (2003) Antisense inhibition of NADH glutamate synthaseimpairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.)[J]. Plant Journal33:1037-1049.
    [63]Lancien M, Martin M, Hsieh MH, Leustek T, Goodman H, et al.(2002) Arabidopsis gltl-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway[J]. Plant Journal29:347-358.
    [64]Yamaya T, Oaks A, Matsumoto H (1984) Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots[J]. Plant Physiology76:1009.
    [65]黄国存,田波(2001)高等植物中的谷氨酸脱氢酶及其生理作用[J].植物学通报18:396-401.
    [66]Ferrario-Mery S, Hodges M, Hirel B, Foyer CH (2002) Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-a-ketoglutarate aminotransferase[J]. Planta214:877-886.
    [67].杨春武(2010).虎尾草和水稻抗碱机制研究[C].博士毕业论文.
    [68]李彬,王志春,孙志高(2005)中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):152-158.干旱地区农业研究23:152-158.
    [69]林栖凤(2004)耐盐植物研究[M].北京:科学出版社.
    [70]Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes:multiple origins of salt tolerance in land plants[J]. Functional Plant Biology37:604-612.
    [71]Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, et al.(2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance [J]. Trends in Plant Science11:372.
    [72]Nakamura T, Ishitani M, Harinasut P, Nomura M, Takabe T (1996) Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants[J]. Plant and Cell Physiology37:873-877.
    [73]Akram MS, Ali Q, Athar HUR, Bhatti AS (2006) Ion uptake and distribution in Panicum antidotale Retz. under salt stress[J]. Pakistan Journal of Botany38:1661-1669.
    [74]Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+transport mechanisms required for salinity tolerance[J]. Plant Physiology139:1507-1517.
    [75]Cuartero J, Fernandez-Munoz R (1998) Tomato and salinity[J]. Scientia Horticulturae78:83-125.
    [76]Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress[J]. Plant Cell14: S165-S183.
    [77]Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. Plant Journal12:1067-1078.
    [78]Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, et al.(2000) The Arabidopsis HKT1gene homolog mediates inward Na+currents in Xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae[J]. Plant Physiology122:1249-1260.
    [79]Yang C, Chong J, Li C, Kim C, Shi D, et al.(2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions [J]. Plant and Soil294:263-276.
    [80] Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root[J]. Current Opinion in PlantBiology14:296-302.
    [81]. Vera-Estrella R, Barkla BJ, Garc¨aa-Ram¨arez L, Pantoja O (2005) Salt stress in Thellungiella halophilaactivates Na+transport mechanisms required for salinity tolerance[J]. Plant Physiology139:1507-1517.
    [82] Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes[J]. New Phytologist179:945-963.
    [83] Mansour M (2000) Nitrogen containing compounds and adaptation of plants to salinity stress[J]. BiologiaPlantarum43:491-500.
    [84] Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and axerophyte in saline conditions[J]. New Phytologist171:357-366.
    [85] Igarashi Y, Yoshiba*Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, et al.(1997) Characterization of the genefor1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerancein Oryza sativa L[J]. Plant Molecular Biology33:857-865.
    [86] Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of
    [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenicplants[J]. Plant Physiology108:1387-1394.
    [87] Chen W, Cui P, Sun H, Guo W, Yang C, et al.(2009) Comparative effects of salt and alkali stresses on organicacid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.)[J]. Industrial Crops andProducts30:351-358.
    [88] Yang C, Guo W, Shi D (2010) Physiological roles of organic acids in alkali-tolerance of the alkali-toleranthalophyte Chloris virgata[J]. Agronomy Journal102:1081-1089.
    [89] Wang H, Wu Z, Chen Y, Yang C, Shi D (2011) Effects of salt and alkali stresses on growth and ion balance inrice (Oryza sativa L.)[J]. Plant Soil Environ57:286-294.
    [90] Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+antiporter SOS1controls long-distance Na+transport in plants[J]. Plant Cell14:465-477.
    [91] Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membraneNa+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3[J]. Proceedings of the National Academy ofSciences99:8436.
    [92] Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOSsignaling pathway for Na+homeostasis[J]. Proceedings of the National Academy of Sciences99:9061-9066.
    [93] Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type specifc calcium responses todrought, NaCl, and cold in Arabidopsis root: a role for endodermis and pericycle in stress signal transduction[J].Plant Journal23:267-278.
    [94] Zhu JK (2003) Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology6:441-445.
    [95] Botella MA, Martínezb V, Nieves M, Cerdáa A (1997) Effect of salinity on the growth and nitrogen uptake bywheat seedlings[J]. Journal of Plant Nutrition20:793-804.
    [96] L uchli A, Lüttge U (2002) Salinity: Environment-plants-molecules[M]. Boston: Boston Kluwer AcademicPublishers.229-248p.
    [97] Abdelgadir E, Oka M, Fujiyama H (2005) Characteristics of nitrate uptake by plants under salinity[J]. Journalof Plant Nutrition28:33-46.
    [98]. Rubinigg M, Posthumus F, Elzenga J, Stulen I (2005) Effect of NaCl salinity on nitrate uptake in Plantagomaritima L[J]. Phyton45:295-302.
    [99] Baki G, Siefritz F, Man HM, Weiner H, Kaldenhoff R, et al.(2000) Nitrate reductase in Zea mays L. undersalinity.[J] Plant, Cell&Environment23:515-521.
    [100] Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation inchick-pea (Cicer arietinum L.)[J]. Journal of Experimental Botany49:1329-1337.
    [101] Soussi M, Lluch C, Ocana A, Norero A (1999) Comparative study of nitrogen fixation and carbonmetabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress[J]. Journal of Experimental Botany50:1701-1708.
    [102] Aydi S, Sassi S, Debouba M, Hessini K, Larrainzar E, et al.(2010) Resistance of Medicago truncatula to saltstress is related to glutamine synthetase activity and sodium sequestration[J]. Journal of Plant Nutrition and SoilScience173892-899.
    [103] Yang C, Xu H, Wang L, Liu J, Shi D, et al.(2009) Comparative effects of salt-stress and alkali-stress on thegrowth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica47:79-86.
    [104] Yang C, Wang P, Li C, Shi D, Wang D (2008) Comparison of effects of salt and alkali stresses on the growthand photosynthesis of wheat[J]. Photosynthetica46:107-114.
    [105] Provart N.J, P. M (2004) Systems approaches to understanding cell signaling and gene regulation[J]. CurrOpin Plant Biol7:605-609.
    [106] Grennan AK (2006) Abiotic stress in rice. An “Omic” Approach[J]. Plant Physiology140:1139-1141.
    [107] Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, et al.(2003) Monitoring expression profiles ofrice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarrayand RNA gel-blot analyses[J]. Plant Physiology133:1755-1767.
    [108] Mizoi J, Yamaguchi-Shinozaki K (2013) Molecular approaches to improve rice abiotic stress tolerance[J].Methods in Molecular Miology (Clifton, NJ)956:269.
    [109] Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, et al.(2012) Rice phytochrome-interactingfactor-like protein OsPIL1functions as a key regulator of internode elongation and induces a morphologicalresponse to drought stress[J]. Proceedings of the National Academy of Sciences109:15947-15952.
    [110] Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response[J]. PhysiologiaPlantarum132:199-208.
    [111] Shi WM, Xu WF, Li SM, Zhao XQ, Dong GQ (2010) Responses of two rice cultivars differing inseedling-stage nitrogen use efficiency to growth under low-nitrogen conditions[J]. Plant and Soil326:291-302.
    [112] Zhang Z (2004) Laboratory Manual of Plant Physiology. Beijing: Higher education press.2p.
    [113] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCRand the2(-Delta Delta C(T)) Method[J]. Methods25:402-408.
    [114] Munns R, Tester M (2008) Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol59:651-681.
    [115] Yang C, Jianaer A, Li C, Shi D, Wang D (2008) Comparison of the effects of salt-stress and alkali-stress onphotosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica46:273-278.
    [116] Yang C, Shi D, Wang D (2008) Comparative effects of salt and alkali stresses on growth, osmotic adjustmentand ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regulation56:179-190.
    [117] Lutts S, Majerus V, Kinet JM (2002) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings[J].Physiologia Plantarum105:450-458.
    [118] Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plantdevelopment[J]. Amino Acids39:949-962.
    [119] Shi W, Xu W, Li S, Zhao X, Dong G (2010) Responses of two rice cultivars differing in seedling-stagenitrogen use efficiency to growth under low-nitrogen conditions[J]. Plant and Soil326:291-302.
    [120] Ludewig U, von Wir¨|n N, Frommer WB (2002) Uniport of NH by the root hair plasma membraneammonium transporter LeAMT1;1[J]. Journal of Biological Chemistry277:13548-13555.
    [121] Surabhi GK, Reddy AM, Kumari GJ, Sudhakar C (2008) Modulations in key enzymes of nitrogenmetabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity to saltstress[J]. Environmental and Experimental Botany64171-179.
    [122] Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affectedby nitrate nutrition and salinity[J]. Functional Plant Biology32:209-219.
    [123] Nathawat N, Kuhad M, Goswami C, Patel A, Kumar R (2005) Nitrogen-metabolizing enzymes: effect ofnitrogen sources and saline irrigation[J]. Journal of Plant Nutrition28:1089-1101.
    [124] Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogenassimilation pathway in tomato “Lycopersicon esculentum”seedlings[J]. Journal of Plant Physiology163:1247-1258.
    [125] Ramanjulu S, Veeranjaneyulu K, Sudhakar C (1994) Short-term shifts in nitrogen metabolism in mulberry(Morus alba L.) under salt shock[J]. Phytochemistry37:991-995.
    [126] Silveira JAG, Vi¨|gas RA, Rocha IMA, Moreira ACOM, Moreira RA, et al.(2003) Proline accumulation andglutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves[J]. Journal of PlantPhysiology160:115-123.
    [127] Veeranagamallaiah G, Chandraobulreddy P, Jyothsnakumari G, Sudhakar C (2007) Glutamine synthetaseexpression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars offoxtail millet (Setaria italica L.) with differential salt sensitivity[J]. Environmental and Experimental Botany60:239-244.
    [128] Berteli F, Corrales E, Guerrero C, Ariza MJ, Pliego F, et al.(2008) Salt stress increases ferrodoxin-dependenglutamate synthase activity and protein level in the leaves of tomato[J]. Physiologia Plantarum93:259-264.
    [129] Richharia A, Shah K, Dubey R (1997) Nitrate reductase from rice seedlings: Partial purification,characterization and the effects of in situ and in vitro NaCl salinity[J]. Journal of Plant Physiology151:316-322.
    [130] Liu J, Shi DC (2010) Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulationsof sunflower in responses to salt and salt-alkaline mixed stress[J]. Photosynthetica48:127-134.
    [131] Yang F, Liang Z, Wang Z (2010) Effect of soda saline-sodic stress on the panicle traits and yield componentsof rice variety changbai9[J]. North China Agron J25:59-61.
    [132] Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivarsdiffering in salinity resistance[J]. Ann Bot78:389-398.
    [133] Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study ofgrape canopy pruning[J]. New Phytol147:171-178.
    [134] Munns R, Tester M (2008) Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol59:651-681.
    [135] Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, et al.(2007) Conservation of the saltoverly sensitive pathway in rice[J]. Plant Physiology143:1001-1012.
    [136] Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms inArabidopsis and monocot crop plants[J]. Trends Plant Sci14:660-668.
    [137] Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+antiporter SOS1controls long-distance Na+transport in plants[J]. Plant Cell14:465-477.
    [138] Ren Z, Gao J, Li L, Cai X, Huang W, et al.(2005) A rice quantitative trait locus for salt tolerance encodes asodium transporter[J]. Nat Genetics37:1141-1146.
    [139] Touraine B, Grignon N, Grignon C (1988) Charge balance in NO-3-Fed Soybean:Estimation of K+andcarboxylate recirculation[J]. Plant Physiology88:605-612.
    [140] Wang H, Wu Z, Chen Y, Yang C, Shi D (2011) Effects of salt and alkali stresses on growth and ion balance inrice (Oryza sativa L.)[J]. Plant Soil Environ57:286-294.
    [141] Zhu JK (2003) Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Bio6:441-445.
    [142] Zhu GL (1993) Laboratory Manual of Plant Physiology; Zhu GL, editor. Beijing: Beijing University Press.
    [143] Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, et al.(2004) Function, intracellular localization andthe importance in salt tolerance of a vacuolar Na+/H+antiporter from rice[J]. Plant and Cell Physiology45:146-159.
    [144] Negr o S, Courtois B, Ahmadi N, Abreu I, Saibo N, et al.(2011) Recent updates on salinity stress in rice:from physiological to molecular responses[J]. Critical Reviews in Plant Sciences30:329-377.
    [145]. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, et al.(2007) Conservation of the saltoverly sensitive pathway in rice[J]. Plant Physiology143:1001-1012.
    [146] Fuchs I, St lzle S, Ivashikina N, Hedrich R (2005) Rice K+uptake channel OsAKT1is sensitive to saltstress[J]. Planta221:212-221.
    [147] Ba uelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functionalcharacterization of the HAK potassium transporters of rice[J]. Plant Physiology130:784-795.
    [148] Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F, et al.(1994) Toward cataloguing all rice genes: large-scalesequencing of randomly chosen rice cDNAs from a callus cDNA library[J]. Plant Journal6:615-624.
    [149] Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, et al.(2008) The rice annotation projectdatabase (RAP-DB):2008update[J]. Nucleic Acids Research36: D1028.
    [150] Li BZ, Merrick M, Li SM, Li HY, Zhu SW, et al.(2009) Molecular basis and regulation of ammoniumtransporter in rice[J]. Rice Science16:314-322.
    [151] Yang C, Shi D, Wang D (2008) Comparative effects of salt and alkali stresses on growth, osmotic adjustmentand ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regul56:179-190.
    [152] Yang C, Chong J, Li C, Kim C, Shi D, et al.(2007) Osmotic adjustment and ion balance traits of an alkaliresistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant and Soil294:263-276.
    [153] L uchli A, Lüttge U (2002) Salinity: Environment-plants-molecules. Boston: Boston Kluwer AcademicPublishers.229-248p.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700