用户名: 密码: 验证码:
摩擦连接的结构非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的紧固式机械连接形式,摩擦连接大量存在于各类飞行器结构以及其它工业产品中。实际上这类连接并不完全紧固,在振动环境下,连接结合面上常常存在着滑移运动,这会对连接子结构间的载荷传递和整体结构的动力学特性产生重要影响。本文所关注的正是在摩擦连接处滑移运动影响下结构的非线性振动问题,主要研究了包含描述摩擦连接的Iwan模型的一系列振动系统,包括振子系统、连续梁以及一类高维自激振动系统的非线性振动问题的求解方法。本论文主要包括以下几方面的内容:
     当连接模型用离散Iwan模型描述时,相应的振动系统存在分段线性迟滞特点。针对此类非线性系统,提出了系统振动响应的解析求解方法。该方法是在获得线性阶段内运动解析式的基础上,根据位移和速度的连续性条件,依次将振动过程中所历经的线性阶段的参数代入解析式从而获得系统在整个时域上的解。对于含离散Iwan模型的振子系统,通过变量代换,便可将任意线性阶段的运动方程转化为可解析求解的形式。对于含离散Iwan模型描述的迟滞边界的连续梁系统,通过位移变换,便将该分段线性迟滞边界转化为可解析求解的线性边界问题。算例计算结果表明,随着激励量级的增大,在摩擦面滑移影响下,幅频响应表现出共振峰左漂的和阻尼强化等非线性特征,并对悬臂梁模型实施了振动台正弦扫频试验,验证了模型描述以及计算结果的合理性。
     含无穷数量Jenkins单元的连续Iwan模型,更适合于描述结构摩擦连接面处的微滑移运动。在推导出模型非线性恢复力计算式的基础上,求解了含连续Iwan模型的干摩擦振子系统的非线性振动问题。针对振幅衰减的自由振动,提出了对加/卸载各自对应的半个谐波运动过程进行独立求解的分析方法,并基于谐波平衡法获得了系统响应的解析解;对于系统微滑移下的受迫振动,通过谐波平衡方程求得了系统稳态运动的幅频关系式以及系统阻尼与振幅的非线性关系。对算例的计算结果表明,解析解所得结果与数值解吻合较好,从而验证了方法的有效性。
     研究了一端存在微滑移的固支梁系统在基础简谐激励下的非线性振动问题。当滑移较小时,将边界处迟滞约束力写成含有小参数的形式。考虑到由Iwan模型描述的迟滞边界条件中显含位移幅值项,将位移项连同其幅值一并展开成小参数的幂级数形式,通过多尺度法,获得了系统主共振下二阶近似解及幅频关系,并基于Lyapunov线性化稳定性理论得到了系统响应的稳定边界。仿真结果显示,当激励幅值、粘性阻尼和约束刚度等参数取值在一定范围内,幅频曲线均会出现不稳定的多值区域。当滑移较大时,对系统方程和边界条件进行了重构,通过一阶谐波解获得了系统的幅频关系,仿真结果表明,由于摩擦阻尼显著影响,幅频曲线中并未出现不稳定域。
     最后,将Iwan模型引入到一类高维自激振动系统的迟滞非线性环节的描述中。在采用高阶谐波平衡法进行求解系统极限环振荡问题时,针对谐波项数增加而使得谐波平衡方程组的规模成倍扩充从而造成求解困难的问题,提出了在数值求解高阶谐波平衡方程组时,以一阶谐波解所得结果作为对应项初值,高阶谐波项系数初值赋零的初值选取策略。该策略在对微滑移下带外挂的二元机翼系统的极限环振荡问题的求解中得到了验证。
As an important form of mechanical joints for fastening, frictional joints arewidely used in the structures of vehicles and other industrial products. In fact, thistype of connections are not fully tightened, for slipping often take place on thecontact interface during vibration of the structure, which may have an importantimpact on loads transfer between substructures as well as the mechanicalcharacteristics of the composed whole structures. In this thesis, the nonlinearvibration of the structures under the influence of the slipping on the interface offrictional joints is concerned. The solution methods for nonlinear vibration of aseries of vibration systems, including oscillators, beams and a high-dimensionalself-excited vibration system with Iwan model, which can be used for friction jointsmodeling, will be deeply studied in this thesis. The main contents of the thesis are asfollows:
     When the joint is modeled by a discrete Iwan model, the correspondingvibration systems shows piecewise linear hysteresis nonlinear characteristics. Forsuch nonlinear systems, we proposed an analytical method to calculate the vibrationresponse of the system. In the method, when the general analytical expression of thesolution for each linear phase is obtained, by the continuity of displacement and ve-locity, substituting the parameters of each linear phase into the analytical expressionsequentially during the vibration process, then the solution of entire time domain isconstituted. For an oscillator with a discrete Iwan model, by variable substitution,the equation of motion for arbitrary linear phase can be transformed into the formwhich can be solved analytically. For an continuious beam with an piecewise linearhysteresis boundary modeled by a discrete Iwan model, by displacement conversion,the piecewise linear hysteresis boundary problem is then converted into linearboundary problem which can be solved by linear vibration theory. The results ofnumerical examples show that, as the excitation magnitude increases, slipping onthe friction surface would take place, which makes the peaks of ampli-tude-frequency curves left drifted as well as damping enhancement. Finally, The ra-tionality of frictional joint modeling and the calculation results is verified by a sinesweep vibration test of the beam model in a vibration shaker.
     The continuous Iwan model, which contains infinite number of Jenkinselements, is more appropriate to depict the microslip on the frictional interfaces ofstructures. Based on the expressions of restoring force of the continous Iwan model,we solved the nonlinear vibration problems of a dry friction oscillator with continuous Iwan model. For the free vibration problem, the half-harmonic motioncorresponding to each monotone loading/unloading movement independently isanalyzed, then based on the harmonic balance method, the analytical solution of thesystem response is obtained. For the forced vibration of the oscillator undermicrosilp, on the basis of the harmonic balance, the amplitude-frequency relation-ship as well as the nonlinear relationship of damping and the vibration amplitude areboth obtained. Simulation results show that the numerical results agree well withthose of analytical solutions, which verified the validity of the both methods.
     The nonlinear vibration of a clamped-clamped beam with microslip at one endunder harmonic base excitation is also studied. When the slip is small, the hysteresisforce at the nonlinear boundary can be rewritten in a form containing a smallparameter. Taking into account that hysteresis boundary condition which describedIwan model containing displacement amplitude items, we expand both thedisplacement and its amplitude into a power series of the small parameter. Then, bythe method of multiple scales, the second-order approximate solution and theamplitude-frequency relationship of system's primary resonance are obtaind. Andbased on Lyapunov linearity stability theory, the stability boundary of the responseof the system is derived. Simulation results show that an unstable multi-valuedregion would arise in the frequency response curve when the excitation amplitude,viscous damping and joint stiffness are in a specific range. When the slip is large,the governing equation and the nonliear boundary condition are reconstructed, thenamplitude-frequency relationship can be obtained by the first harmonic balancemethod. The simulation results show that there are no unstable region in theamplitude-frequency for the significant influence of the friction damping.
     In the final chapter of the thesis, the Iwan model is introduced for modeling thehysteresis nonlinearity in a class of high-dimensional self-excited system. Whensolving the high-dimensional nonlinear differential equations by the higher orderharmonic balance method, as the number harmonic terms increases, the dimensionsof the harmonic balance equations wound increase manyfold, which makes it toughto solve the equtions directly. For this problem, an strategy for init valuesdetermination is proposed. In the strategy, the results of the first order harmonicsolution are considered as the initial values of the corresponding coefficients of thehigh order harmonic solutions, and the initial value of the higher order harmonicscoefficients are assigned to zero. This strategy is verified by seccessfully solving ofthe limit cycle oscillations of an airfoil with an external store under microslip.
引文
[1]尉飞,郑钢铁.具有非线性连接的航天器非线性振动分析[J].振动工程学报,2009,22(4):329-334.
    [2] Smith K, Peng C. Modal Test of the Cassini Spacecraft[C].15th InternationalModal Analysis Conference (IMAC), Orlando,1997:804-810.
    [3] Carney K, Yunis Y, Smith K, et al. Nonlinear Dynamic Behavior in the CassiniSpacecraft Modal Survey[C].15th International Modal AnalysisConference(IMAC), Orlando,1997:811-817.
    [4]卫洪涛,孔宪仁,王本利,等.非线性连接结构对一个典型卫星频率漂移的影响[J].航天器环境工程,2012,29(3):297-302.
    [5]卫洪涛,孔宪仁,王本利,等.套筒连接结构非线性对梁频漂的影响[J].振动工程学报,2012,25(4):373-379.
    [6]王巍,于登云,马兴瑞.航天器铰接结构非线性动力学特性研究进展[J].力学进展,2006,36(2):233-238.
    [7]曹登庆,初世明,李郑发,等.空间可展机构非光滑力学模型和动力学研究[J].力学学报,2013,45(1):3-15.
    [8]卫洪涛,孔宪仁.一个带间隙连接结构对梁基频漂移影响研究.航天器环境工程,2010,27(6):742-746.
    [9] Groper M. Microslip and macroslip in bolted joints[J]. ExperimentalMechanics,1985,25(2):171-174.
    [10] Ibrahim R, Pettit C. Uncertainties and dynamic problems of bolted joints andother fasteners[J]. Journal of Sound and Vibration,2005,279(3-5):857-936.
    [11] Eriten M, Lee C H, Polycarpou A A. Measurements of tangential stiffness anddamping of mechanical joints: Direct versus indirect contact resonancemethods[J]. Tribology international,2012,50:35-44.
    [12] Segalman D, Paez T, Smallwood D, et al. Status and integrated road-map forjoints modeling research[R]. Albuquerque: Sandia National Laboratories,2003:13.
    [13] Weber E M, Bibel G D. Flange Bolt-up Simulation Using3-D Finite ElementModeling[J]. ASME Pressure Vessels and Piping,1994,274:63-82.
    [14] Zadoks R I, Kokatam D P R. Investigation of the Axial Stiffness of a BoltUsing a Three-dimensional Finite Element Model[J]. Journal of Sound andVibration,2001,246(2):349-373.
    [15] Chen W H, Lee S S, Yeh J T. Three-dimensional Contact Stress Analysis of aComposite Laminate with Bolted Joint[J]. Composite Structures,1995,30(3):287-297.
    [16] Song Y, Hartwigsen C J, McFarland D M, et al. Simulation of dynamics ofbeam structures with bolted joints using adjusted Iwan beam elements[J].Journal of Sound and Vibration,2004,273(1-2):249-276.
    [17] Ahmadian H, Jalali H, Pourahmadian F. Nonlinear model identification of africtional contact support[J]. Mechanical Systems and Signal Processing,2010,24(8):2844-2854.
    [18] Jalali H, Ahmadian H, Pourahmadian F. Identification of micro-vibro-impactsat boundary condition of a nonlinear beam[J]. Mechanical Systems and SignalProcessing,2011,25(3):1073-1085.
    [19] Ibrahim, R. and C. Pettit. Uncertainties and dynamic problems of bolted jointsand other fasteners[J]. Journal of Sound and Vibration,2005,279(3-5):857-936.
    [20] Groper M, Hemmye J. Partial slip damping in high strength friction gripbolted joints[C]//Proceedings of the Fourth International Conference ofMathematical Modeling. New York: Pergamon Press,1983.
    [21] Gaul L, Lenz J. Nonlinear dynamics of structures assembled by bolted joints[J].Acta Mechanica,1997,125(1-4):169-181.
    [22] Ungar E E. Energy dissipation at structural joints: mechanisms and magnitudes[R]. Ohio: Air Force Flight Dynamics Lab,1964:1-172.
    [23] Goodman L E. Contributions of continuum mechanics to the analysis of thesliding of unlubricated solids[J]. AMD Symposium Series on ASME AppliedMechanical Division,1980,39:1-12.
    [24] Smallwood D O, Gregory D L, Coleman R G. Damping Investigations of aSimplified Frictional Shear Joint[C]//71st Shock and Vibration Symposium.Columbia,2000:1-10.
    [25] Song Y X, McFarland D M, Bergman L A, et al. Effect of pressure distributionon energy dissipation in a mechanical lap joint[J]. AIAA Journal,2005,43(2):420-425.
    [26] Unger E E. The status of engineering knowledge concerning the damping ofbuilt-up structures[J]. Journal of Sound and Vibration,1973,26:141-154.
    [27] Beards C F, The damping of structural vibration by controlled interface slip injoints[J]. American Society of Mechanical Engineers, Journal of Vibration,Acoustics, Stress analysis, Reliability, and Design,1983,105:369-373.
    [28] Beards C F, Woodwat. The control of frame vibration by friction damping injoints [J]. Journal of Vibration Acoustics Stress and Reliability in Design,1985,107:26.
    [29] Esteban J, Rogers C A. Energy dissipation through joints: theory andexperiments [J]. Computers and Structures,2000,75:347-359.
    [30]李以农,郑玲,闻邦椿.螺栓接头非线性模型及其波能耗散[J].振动工程学报,2003,16(2):137-142.
    [31]傅俊庆,荣见华,张玉萍.螺栓连接接口轴向振动能量耗散特性研究[J].振动、测试与诊断,2005,25(3):205-209.
    [32]肖会芳.界面接触非线性振动机理与能量耗散研究[D].重庆:重庆大学博士学位论文,2012:17-114.
    [33] Iwan W D. The dynamic response of bilinear hysteretic systems[D].California: PHD thesis of California Institute of Technology,1961:4-15.
    [34] Iwan W D. A distributed-element model for hysteresis and its steady-statedynamic response[J]. Journal of Applied Mechanics-Transactions of the ASME,1966,33(4):893-900.
    [35] Iwan W D. On a class of models for the yielding behavior of continuous andcomposite systems[J]. Journal of Applied Mechanics-Transactions of theASME,1967,34(3):612-617.
    [36] Valanis K C. Fundamental consequences of a new intrinsic time measurePlasticity as a limit of the endochronic theory[J]. Archive of Mechanics,1980,32:171-191.
    [37] Bouc R. Forced vibration of mechanical systems withhysteresis[C]//Preceedings of the4th International Conference on NonlinearOscillations, Prague, Czechoslovakia.1967.
    [38] Wen Y K. Equivalent linearization for hysteretic systems under randomexcitation[J]. Journal of applied mechanics-Transactions of the ASME,1980,47:150-154.
    [39] Menq C H, Griffn J H. A Comparison of Transient and Steady State FiniteElement Analyses of the Forced Response of a Frictionally Damped Beam[J].Journal of Vibration and Acoustics-Transactions of the Asme,1985,107:19-25.
    [40] Menq C H, Bielak J, Griffn J H. The Infuence of Microslip on VibratoryResponse, Part I: A New Microslip Model[J]. Journal of Sound and Vibration,1986,107(2):279-293.
    [41] Menq C H, Bielak J, Griffn J H. The Infuence of Microslip on VibratoryResponse, Part II: A Comparison With Experimental Results[J]. Journal ofSound and Vibration,1986,107(2):295-307.
    [42]蔡袁强,柳伟,徐长节,等.基于修正Iwan模型的软黏土动应力–应变关系研究[J].岩土工程学报,2007,29(9):1314-1319.
    [43] Quinn D D, Segalman D J. Using series-series Iwan-type models forunderstanding joint dynamics[J]. Journal of Applied Mechanics-Transactionsof the ASME,2005,72(5):666-673.
    [44] Quinn D D. Modal analysis of jointed structures[J]. Journal of Sound andVibration,2012,331(1):81-93.
    [45] Miller J D, Quinn D D. A Two-sided Interface Model for Dissipation inStructural Systems with Frictional Joints[J]. Journal of Sound and Vibration.2009,321(1):201-219.
    [46] Argatov I I, Butcher E A. On the Iwan models for lap-type bolted joints[J].International Journal of Non-Linear Mechanics,2011,46(2):347-356.
    [47] Song Y, Hartwigsen C J, McFarland D M, et.al. Simulation of dynamics ofbeam structures with bolted joints using adjusted Iwan beam elements[J].Journal of Sound and Vibration,2004,273(1-2):249-276.
    [48] Song Y, Hartwigsen C J, Bergman L A, et al. A three-dimensional nonlinearreduced-order predictive joint model[J]. Earthquake Engineering andEngineering Vibration,2003,2(1):59-73.
    [49] Shiryayev O V, Page S M, Pettit C L, et al. Parameter Estimation andInvestigation of a Bolted Joint Model[J]. Journal of Sound and Vibration,2007,307:680-697.
    [50] Segalman D J. An Initial Overview of Iwan Modeling for MechanicalJoints[R]. New Mexico, USA: Sandia National Laboratories,2001:1-32.
    [51] Levine M B, White C. Microdynamic Analyses for Establishing NanometricStability Requirements of Jointed Precision Space Structures[C]//Proceedingsof the2001International Modal Analysis Conference. Florida:,2001:325.
    [52] Ouyang H, Oldfield M J, Mottershead J E. Experimental and theoreticalstudies of a bolted joint excited by a torsional dynamic load[J]. InternationalJournal of Mechanical Sciences,2006,48(12):1447-1455.
    [53]严天宏,王建宇,段登平,等.不同材料连接铰摩擦接触面的滞迟特性[J].上海交通大学学报,2000,34(8):1031-1035.
    [54] Segalman D J. A four-parameter Iwan model for lap-type joints[J]. Journal ofApplied Mechanics-Transactions of the ASME,2005,72(5):752-760.
    [55] Lenz J, Gaul L. The influence of microslip on the dynamic behaviour of boltedjoints[C]//Proceedings of the13th International Modal Analysis Conference.Nashville,1995:248-254.
    [56] Ahmadian H, Jalali H, Pourahmadian F. Nonlinear model identification of africtional contact support[J]. Mechanical Systems and Signal Processing,2010,24(8):2844-2854.
    [57] Wen Y K. Equivalent linearization for hysteretic systems under randomexcitation[J]. Journal of Applied Mechanics,1980,47:150.
    [58] Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey[J].Archives of Computational Methods in Engineering,2009,16(2):161-188.
    [59] Oldfield M, Ouyang H, Mottershead J E. Simplified Models of Bolted JointsUnder Harmonic Loading[J]. Computers and Structures,2005,84:25-33
    [60] Xue Y. Developments of Joint Elements and Solution Algorithms for DynamicAnalysis of Jointed Structures[D]. Colorado: PHD thesis of University ofColorado,2002:10-35.
    [61] Cigeroglu E, Lu W M, Menq C H. One-dimensional dynamic microslipfriction model[J]. Journal of Sound and Vibration,2006,292(3-5):881-898.
    [62] Cigeroglu E N, An N, Menq C H. A microslip friction model with normal loadvariation induced by normal motion[J]. Nonlinear Dynamics,2007,50(3):609-626.
    [63] Ahmadian H, Mottershead J E, James S. Modelling and updating of largesurface-to-surface joints in the AWE-MACE structure[J]. Mechanical Systemsand Signal Processing,2006,20(4):868-880.
    [64] Mayer M, Gaul L. Segment-to-segment contact elements for modelling jointinterfaces in finite element analysis[J]. Mechanical Systems and SignalProcessing,2007,21(2):724-734.
    [65] Canudas de Wit C, Olsson H, Astrom K J, et al. A new model for control ofsystems with friction[J]. Automatic Control, IEEE Transactions on,1995,40(3):419-425.
    [66] Berger E J. Friction modeling for dynamic system simulation[J]. AppliedMechanics Reviews,2002,55(6):535-577.
    [67]丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,43(1):112-131.
    [68] Wentzel H. Modelling of frictional joints in dynamically loaded structures: areview[R]. Stockholm: Royal Institute of technology,2006:1-25.
    [69]徐超,周帮友,刘信恩,等.机械螺栓连接状态监测和辨识方法研究进展[J].强度与环境,2009,36(2):28-36.
    [70] Ma X, Bergman L, Vakakis A. Identification of bolted joints through laservibrometry[J]. Journal of Sound and Vibration,2001,246(3):441-460.
    [71] Hartwigsen C J, Song Y, McFarland D M, et al. Experimental study ofnon-linear effects in a typical shear lap joint configuration[J]. Journal ofSound and Vibration,2004,277(1-2):327-351.
    [72] Heller L, Foltete E, Piranda J. Experimental identification of nonlineardynamic properties of built-up structures[J]. Journal of Sound and Vibration,2009,327(1-2):183-196.
    [73]白绍竣,尉飞,郑钢铁.包带连接建模与非线性动力学特性分析[J].振动与冲击,2010,29(5):6-10.
    [74]陈学前,杜强,冯加权.螺栓连接非线性振动特性研究[J].振动与冲击,2009,28(7):196-198.
    [75] Guran A, Pfeiffer F, Popp K. Dynamics with friction: modeling, analysis andexperiment[M]. Singapore: World Scientific,2001:125-153.
    [76] Moon F C. Li G X. Experimental study of chaotic vibration in a pin-jointedspace truss structure[J]. AIAA Journal,1990,28(5):915-921.
    [77] Coudeyras N, Sinou J J, Nacivet S. A new treatment for predicting theself-excited vibrations of nonlinear systems with frictional interfaces: TheConstrained Harmonic Balance Method, with application to disc brakesqueal[J]. Journal of Sound and Vibration,2009,319(3-5):1175-1199.
    [78] Vakakis A F, Ewins D J. Effects of weak non-linearities on modal analysis[J].Mechanical Systems and Signal Processing,1994,8(2):175-198.
    [79] Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonicbalance method to cubic non-linearity systems[J]. Journal of Sound andVibration,1990,140(2):273-286.
    [80]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007:171.
    [81] Pierre C, Ferri A A, Dowell E H. Multi-harmonic analysis of dry frictiondamped systems using an incremental harmonic-balance method[J]. Journal ofApplied Mechanics-Transactions of the ASME,1985,52(4):958-964.
    [82] Ferri A A, Dowell E H. Frequency-domain solutions to multi-degree-of-freedom dry friction damped systems[J]. Journal of Sound and Vibration,1988,124(2)207-224.
    [83] Cameron T M, Griffn J H. An alternating frequency/time domain method forcalculating the steady-state response of nonlinear dynamic systems[J]. Journalof Applied Mechanics,1989,56(1)149-154.
    [84] Coudeyras N, Sinou J J, Nacivet S. A new treatment for predicting theself-excited vibrations of nonlinear systems with frictional interfaces: theconstrained harmonic balance method, with application to disc brake squeal[J].Journal of Sound and Vibration.2009,319(3-5):1175-1199.
    [85] Gaul L, Nitsche R. The role of friction in mechanical joints[J]. AppliedMechanics Reviews,2001,52(2):93-106.
    [86] Ren Y, Lim T M, Lim M K. Identifcation of properties of nonlinear jointsusing dynamic test data[J]. Journal of Vibration and Acoustics,1998,120(2):324-330.
    [87] Ahmadian H, Jalali H. Generic element formulation for modelling bolted lapjoints[J]. Mechanical Systems and Signal Processing,2007,21(5):2318-2334.
    [88] Jaumouille V, Sinou J J, Petitjean B. An adaptive harmonic balance methodfor predicting the nonlinear dynamic responses of mechanicalsystems-Application to bolted structures[J]. Journal of Sound and Vibration,2010,329(19):4048-4067.
    [89]赵永辉.气动弹性力学与控制[M].北京:科学出版社,2007:109-130.
    [90]姚一龙.飞机气动弹性力学及载荷导论[M].上海:上海交通大学出版社,2010:159-191.
    [91] Lee B H K, Price S J, Wong Y S. Non-linear aeroelastic analysis of airfoils:birurcation and chaos[J]. Progress in Aerospace Sciences,1999,35(3):205-334.
    [92]赵德敏.非线性颤振系统的分岔与混沌[D].天津:天津大学博士学位论文,2010:6.
    [93] Coller B D, Chamara P A. Structural non-linearities and the nature of theclassic flutter instability[J]. Journal of sound and vibration,2004,277(4):711-739.
    [94] Dowell E H, Tang D. Nonlinear aeroelasticity and unsteady aerodynamics[J].AIAA journal,2002,40(9):1697-1707.
    [95] Thomas J P, Dowell E H, Hall K C. Modeling viscous transonic limit cycleoscillation behavior using a harmonic balance approach[J]. Journal of Aircraft,2004,41(6):1266-1274.
    [96]安效民,徐敏,陈士橹.多场耦合求解非线性气动弹性的研究综述[J].力学进展,2009,39(3):284-298.
    [97]陈衍茂,刘济科,孟光.二元机翼非线性颤振系统的若干分析方法[J].振动与冲击,2011,30(3):129-134.
    [98] Lee B H K, Jiang L Y, Wong Y S. Flutter of an airfoil with a cubic restoringforce[J]. Journal of fluids and structures,1999,13(1):75-101.
    [99] Lee B H K, Gong L, Wong Y S. Analysis and computation of nonlineardynamic response of a two-degree-of-freedom system and its application inaeroelasticity[J]. Journal of Fluids and Structures,1997,11(3):225-246.
    [100]Shahrzad P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteadyflows[J]. Journal of sound and vibration,2002,256(2):213-225.
    [101]Liu L, Dowell E H. The secondary bifurcation of an aeroelastic airfoil motion:effect of high harmonics[J]. Nonlinear Dynamics,2004,37(1):31-49.
    [102]Liu L, Dowell E H, Thomas J P. A high dimensional harmonic balanceapproach for an aeroelastic airfoil with cubic restoring forces[J]. Journal ofFluids and Structures,2007,23(3):351-363.
    [103]Lee B H K, Liu L, Chung K W. Airfoil motion in subsonic flow with strongcubic nonlinear restoring forces[J]. Journal of Sound and Vibration,2005,281(3):699-717.
    [104]Raghothama A, Narayanan S. Non-linear dynamics of a two-dimensionalairfoil by incremental harmonic balance method[J]. Journal of Sound andVibration,1999,226(3):493-517.
    [105]Cai M, Liu J, Li J. Incremental harmonic balance method for airfoil flutterwith multiple strong nonlinearities[J]. Applied Mathematics and Mechanics,2006,27(7):953-958.
    [106]Liao S J. An analytic approximate approach for free oscillations of self-excitedsystems[J]. International Journal of Non-Linear Mechanics,2004,39(2):271-280.
    [107]Liu L, Wong Y S, Lee B H K. Non-linear aeroelastic analysis using the pointtransformation method, Part1: freeplay model[J]. Journal of Sound andVibration,2002,253(2):447-469.
    [108]Liu L, Wong Y S, Lee B H K. Non-linear aeroelastic analysis using the pointtransformation method, Part2: hysteresis model[J]. Journal of sound andvibration,2002,253(2):471-483.
    [109]Chung K W, Chan C L, Lee B H K. Bifurcation analysis of atwo-degree-of-freedom aeroelastic system with freeplay structural nonlinearityby a perturbation-incremental method[J]. Journal of sound and vibration,2007,299(3):520-539.
    [110]Chung K W, He Y B, Lee B H K. Bifurcation analysis of a two-degree-of-freedom aeroelastic system with hysteresis structural nonlinearity by aperturbation-incremental method[J]. Journal of Sound and Vibration,2009,320(1):163-183.
    [111]Yang Y R, Zhao L C. Subharmonic bifurcation analysis of wing with storeflutter[J]. Journal of sound and vibration,1992,157(3):477-484.
    [112]Yang Y R. KBM method of analyzing limit cycle flutter of a wing with anexternal store and comparison with a wind-tunnel test[J]. Journal of Sound andVibration,1995,187(2):271-280.
    [113]Denegri C M. Limit cycle oscillation flight test results of a fighter withexternal stores[J]. Journal of Aircraft,2000,37(5):761-769.
    [114]Beran P S, Strganac T W, Kim K, et al. Studies of store-induced Limit-CycleOscillations using a model with full system nonlinearities[J]. NonlinearDynamics,2004,37(4):323-339.
    [115]Chen Y M, Liu J K, Meng G. An incremental method for limit cycleoscillations of an airfoil with an external store[J]. International Journal of NonLinear Mechanics,2012,47:75-83.
    [116]杨翊仁,刘菲.结构非线性二元翼外挂系统气弹复杂反应[J].西南交通大学学报,2006,41(1):7-10.
    [117]郑国勇,杨翊仁.不可压缩流中机翼外挂系统的分叉分析[J].科学技术与工程,2006,6(8):1018-1021.
    [118]周秋萍,邱志平.机翼带外挂系统极限环颤振的区间分析[J].航空学报,2010,31(3):514-518.
    [119]Wang Y. An analytical solution for periodic response of elastic-frictiondamped system. Journal of Sound and Vibration189(3),1996:299-313.
    [120]DING Q, CHEN Y. Analyzing resonant response of a system with dry frictiondamper using an analytical method[J]. Journal of Vibration and Control,2008,14(8):1111-1123.
    [121]Chapra S C.工程与科学数值方法的MATLAB实现[M].唐玲艳,田尊华,译.北京:清华大学出版社,2009:129.
    [122]吴勃英.数值分析原理[M].北京:科学出版社,2003:183-193.
    [123]Jalali H, Ahmadian H. Identification of micro-vibro-impacts at boundarycondition of a nonlinear beam[J]. Mechanical Systems and Signal Processing,2011,25:1073-1085.
    [124]Tsai H C, Wu M K. Method of Compute Dynamic Respose of a Cantileverwith a Stop to Limit Motion[J]. Computers&Structures,1996,58(3):359-367.
    [125]卫洪涛,孔宪仁,王本利,等.一种分段线性边界条件连续体振动响应求解方法[J].航空学报,2011,32(12):2236-2243.
    [126]孔宪仁,卫洪涛,王本利,等.相对振型转换法求解具有多点限制连续体振动响应[J].振动与冲击,2013,32(3):12-17.
    [127]Wiedemann S M. Natural frequencies and mode shapes of arbitrary beamstructures with arbitrary boundary conditions[J]. Journal of Sound andVibration,2007,300(1-2):280-291.
    [128]Guthrie M A, Kammer D C. A General Reduced Representation ofOne-Dimensional Frictional Interfaces[J]. Journal of Applied Mechanics-Transactions of the ASME,2008,75(1):011019.
    [129]Segalman D J. Modelling joint friction in structural dynamics[J]. StructuralControl&Health Monitoring,2006,13(1):430-453.
    [130]Ferri A A, Bindemann A C. Damping and Vibration of Beams With VariousTypes of Frictional Support Conditions[J]. Journal of Vibration and Acoustics,1992,114:289.
    [131]Turner J A. Non-linear vibrations of a beam with cantilever-Hertzian contactboundary conditions[J]. Journal of Sound and Vibration,2004,275(1-2):177-191.
    [132]Hu Q Q, Lim C W, Chen L Q. Nonlinear vibration of a cantilever with aDerjaguin-Müller-Toprov contact end[J]. International Journal of StructuralStability and Dynamics,2008,8(1):25-40.
    [133]Chen L Q, Lim C W, Hu Q Q, et al. Asymptotic analysis of a vibratingcantilever with a nonlinear boundary[J]. Science in China Series G: Physics,Mechanics and Astronomy,2009,52(9):1414-1422.
    [134]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000:57-60.
    [135]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998:162-193.
    [136]李道春,向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报,2007,28(3):600-604.
    [137]方明霞.具有迟滞非线性的高超声速机翼颤振分析[J].力学季刊,2009,30(4):625-631.
    [138]Liu L, Thomas J P, Dowell E H, et al. A comparison of classical and highdimensional harmonic balance approaches for a Duffing oscillator[J]. Journalof Computational Physics,2006,215(1):298-320.
    [139]何青,王丽芬. Maple教程[M].北京:科学出版社,2006:88-106.
    [140]胡志勇.大型外挂对机翼颤振特性的影响研究[C]//第十一届全国空气弹性学术交流会会议论文集.北京,2009:484-488.
    [141]任三元,杨荣.大展弦比多外挂机翼颤振分析[C]//中国航空学会2007年学术年会论文集.深圳,2007:1-7.
    [142]孙晓红,唐长红,谭申刚.翼下重型外挂的几点思考[J].振动工程学报,2008,21:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700