用户名: 密码: 验证码:
固体氧化物燃料电池电解质在力—电化学耦合场下断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前能源短缺的形势下,固体氧化物燃料电池以其高能量转化率及低污染等独特优势成为科研人员关注和研究的热点,作为其核心组件的电解质更是研究的重点。氧空位的存在是电解质能够传导氧离子的原因,而对处于复杂耦合场中的电解质而言,大量氧空位的存在必然对力学性能造成影响。特别地,当电解质中存在裂纹时,氧空位的浓度分布将发生改变,进而影响到电解质的断裂韧度,进一步导致电解质构件中的裂纹开裂和失效。要在材料的制备和使用中防止此类现象的发生,必须深入了解电解质在耦合场中的断裂特性。因此,本文利用分子动力学和多尺度的模拟方法,系统地分析了力—电化学耦合场作用下电解质GDC(氧化钆掺杂的氧化铈)的性能表征。论文主要包含了以下几个部分:
     首先,简要介绍了分子动力学的相关算法,提出了电解质GDC的新势函数及对应的势参数。利用分子动力学方法系统研究了温度、掺杂浓度、外部载荷及晶界等因素对GDC中氧离子扩散行为的影响,发现工作过程中这些因素对氧离子的扩散能力有较为明显的影响。同时,结合模拟结果从微观角度解释了这些影响出现的原因。
     其次,利用分子动力学对电解质GDC的单轴拉伸进行了系统的模拟。通过研究拉伸过程中晶体构型的变化,发现在拉伸载荷下GDC出现了相变行为;在此基础上深入研究了温度和掺杂浓度对GDC的相变行为、杨氏模量及断裂强度的影响,得到的模拟结果与实验现象的变化趋势大体相似,并从微观尺度深入解释了相关现象。
     利用分子动力学方法,研究了含裂纹GDC的裂纹扩展行为。对比模拟结果和宏观断裂现象,发现两者在GDC的断裂模式及裂纹尖端应力场的分布上有较大相似性;当裂纹模型取不同晶向时,拉伸初期裂尖出现了局部的塑性变形或位错发射,但最终的破坏模式仍为典型的脆性断裂。在此基础上,研究了室温范围内,掺杂浓度的增加对GDC开裂模式及临界开裂应力的影响。
     最后,利用多尺度方法模拟了非化学计量GDC在力—电化学耦合场下的裂纹扩展行为并计算了对应的断裂韧度,建立了GDC在多场耦合下的断裂模型。通过系统的模拟研究了电解质膜体两侧氧分压及外电势对氧空位浓度分布的影响;同时探讨了裂纹尖端应力场和氧空位浓度分布的耦合作用对GDC断裂韧度的影响,发现耦合作用下,氧空位会随着外部载荷的增加在裂尖处发生聚集并明显降低材料的断裂韧度。
With the increasingly severe environmental pollution and energy shortage, SolidOxide Fuel Cells (SOFCs) have attracted extensive attention for their high powerefficiency and low pollution. As the key component, electrolyte is especially thefocus of research. The conductivity of the electrolyte is due to the presence of theoxygen vacancies in the material. In the complicated coupled-fields, the mechanicalproperties of the electrolyte are inevitably affected by oxygen vacancies. Especiallyfor the electrolyte with crack, the distribution of oxygen vacancies would be affected,and then the fracture toughness of the material. In the thesis, molecular dynamics(MD) simulation and multi-scale method are introduced to study the mechanicalproperties of GDC (gadolinia-doped ceria) systematically, and the main contents areincluded as follows:
     First, the basic theory and algorithms of molecular dynamics are described, andthe potentials of GDC are presented. The diffusion behaviors of oxygen ions in theelectrolyte are studied by using md simulations. According to the simulated resluts,the diffusivity of oxygen ions is influenced obviously by temperature, dopingconcentration, external load and grain boundary, meanwhile, these specialphenomenons are explained from micromorphology.
     Secondly, the deformation behaviors of GDC under uniaxial tensile loading aresimulated by means of md method. The phase transformations of GDC are observedduring the tension process by analyzing the crystal configurations. On this basis, theeffects of temperature and doping concentration on Young’s modulus and the fracturestrength of GDC are investigated, the simulated and experimental results agree well.
     Then, the GDC model with crack is studied by md simulation. Based on thesimulated results, the fracture mode and distribution of stress field are similar to themacroscopic fracture. During the whole process, localized plastic deformation anddislocation emission can be observed at the early stage, but the failure modes ofdifferent models are all brittle fracture. Besides, the effect of doping concentration onthe fracture behavior is studied.
     Finally, the mechanical-electrochemical coupled field is introduced. The crackpropagation behavior of non-stoichiometry GDC is studied by multi-scale method.The concentration of oxygen vacancies caused by non-stoichiometry effect increaseswith the gradient of oxygen partial pressure increases. Moreover, the coupling effectbetween the stress field near crack tip and concentration of oxygen vacancies isanalysed, and the fracture toughness of GDC is calculated with the coupling effect.
引文
[1] Mangalaraja R V, Chandrasekhar B K, Manohar P. Effect of ceria on thephysical, mechanical and thermal properties of yttria stabilized zirconiatoughened alumina[J]. Materials Science and Engineering A:-StructuralMaterials Properties Microstructure and Processing,2003,343(1-2):71-75.
    [2] Yamamura Y, Kawasaki S, Sakai H. Molecular dynamics analysis of ionicconduction mechanism in yttria-stabilized zirconia[J]. Solid State Ionics,1999,126(1-2):181-189.
    [3] Gennard S, Cora F, Catlow C R A. Comparison of the bulk and surfaceproperties of ceria and zirconia by ab initio investigations[J]. Journal ofPhysical Chemistry B,1999,103(46):10158-10170.
    [4] Dwivedi A, Cormack a N. A computer simulation study of the defect structureof calcia-stabilized zirconia[J]. Philosophical Magazine A,1990,61(1):1-22.
    [5] Zacate M O, Minervini L, Bradfield D J, et al. Defect cluster formation inM2O3-doped cubic ZrO2[J]. Solid State Ionics,2000,128(1-4):243-254.
    [6] Yeh T H, Chou C C. Doping effect and vacancy formation on ionicconductivity of zirconia ceramics[J]. Journal of Physics and Chemistry ofSolids,2008,69(2-3):386-392.
    [7] Arima T, Yamasaki S, Yamahira K, et al. Evaluation of thermal conductivityof zirconia-based inert matrix fuel by molecular dynamics simulation[J].Journal of Nuclear Materials,2006,352(1-3):309-317.
    [8] Arima T, Fukuyo K, Idemitsu K, et al. Molecular dynamics simulation ofyttria-stabilized zirconia between300and2000K[J]. Journal of MolecularLiquids,2004,113:67-73.
    [9] Arima T, Yamasaki S, Torikai S, et al. Molecular dynamics simulation ofzirconia-based inert matrix fuel[J]. Journal of Alloys and Compounds,2005,398(1-2):296-303.
    [10] Brinkman H W, Briels W J, Verweij H. Molecular dynamics simulations ofyttria-stabilized zirconia[J]. Chemical Physics Letters,1995,247(4-6):386-390.
    [11] Tojo T, Kawaji H, Atake T. Molecular dynamics study on lattice vibration andheat capacity of yttria-stabilized zirconia[J]. Solid State Ionics,1999,118(3-4):349-353.
    [12] Kilo M, Argirusis C, Borchardt G, et al. Oxygen diffusion in yttria stabilisedzirconia-experimental results and molecular dynamics calculations[J].Physical Chemistry Chemical Physics,2003,5(11):2219-2224.
    [13] Sawaguchi N, Ogawa H. Simulated diffusion of oxide ions in YO1.5-ZrO2athigh temperature[J]. Solid State Ionics,2000,128(1-4):183-189.
    [14]衣宝廉.燃料电池:原理.技术.应用[M].北京:化学工业出版社,2003.
    [15]韩敏芳.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004.
    [16] Atkinson A. Chemically-induced stresses in gadolinium-doped ceria solidoxide fuel cell electrolytes[J]. Solid State Ionics,1997,95(3-4):249-258.
    [17] Atkinson A, Selcuk A. Mechanical behaviour of ceramic oxygenion-conducting membranes[J]. Solid State Ionics,2000,134(1-2):59-66.
    [18] Atkinson A, Ramos T M G M. Chemically-induced stresses in ceramicoxygen ion-conducting membranes[J]. Solid State Ionics,2000,129(1-4):259-269.
    [19] Adler S B. Chemical expansivity of electrochemical ceramics[J]. Journal ofthe American Ceramic Society,2001,84(9):2117-2119.
    [20] Balducci G, Islam M S, Kaspar J. Bulk reduction and oxygen migration in theceria-based oxides[J]. Chemistry of Materials,2000,12(3):677-681.
    [21] Balducci G, Islam M S, Kaspar J. Reduction process in CeO2-MO andCeO2-M2O3mixed oxides: A computer simulation study[J]. Chemistry ofMaterials,2003,15(20):3781-3785.
    [22] Mogensen M, Sammes N M, Tompsett G A. Physical, chemical andelectrochemical properties of pure and doped ceria[J]. Solid State Ionics,2000,129(1-4):63-94.
    [23] Coll D P, Lopez D M, Ruiz M J C, et al. Reducibility of Ce1-xGdxO2-xinprospective working conditions[J]. Journal of Power Sources,2007,173(1):291-297.
    [24] Bishop S R, Duncan K L, Wachsman E D. Defect equilibria and chemicalexpansion in non-stoichiometric undoped and gadolinium-doped ceriumoxide[J]. Electrochimica Acta,2009,54(5):1436-1443.
    [25] Bishop S R, Duncan K L, Wachsman E D. Surface and bulk oxygennon-stoichiometry and bulk chemical expansion in gadolinium-doped ceriumoxide[J]. Acta Materialia,2009,57(12):3596-3605.
    [26] Kleinlogel C, Gauckler L J. Sintering and properties of nanosized ceria solidsolutions[J]. Solid State Ionics,2000,135(1-4):567-573.
    [27] Zhen Y D, Toka I Y, Jiang S P, et al. Fabrication and performance ofgadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells[J].Journal of Power Sources,2008,178(1):69-74.
    [28] Roa J J, Gilioli E, Bissoli F, et al. Study of the mechanical properties of CeO2layers with the nanoindentation technique[J]. Thin Solid Films,2009,518:227-232.
    [29] Singh K, Acharya S A, Bhoga S S. Nanosized ceria-based ceramics: acomparative study[J]. Ionics,2006,12(4-5):295-301.
    [30] Sato K, Yugami H, Hashida T. Effect of rare-earth oxides on fractureproperties of ceria ceramics[J]. Journal of Materials Science,2004,39(18):5765-5770.
    [31] Morales M, Roa J J, Capdevila X G, et al. Mechanical properties at thenanometer scale of GDC and YSZ used as electrolytes for solid oxide fuelcells[J]. Acta Materialia,2010,58(7):2504-2509.
    [32] Fuentes R O, Baker R T. Synthesis and properties of Gadolinium-doped ceriasolid solutions for IT-SOFC electrolytes[J]. International Journal of HydrogenEnergy,2008,33(13):3480-3484.
    [33] Fu Y P, Hu S H, Liu B L. Structure characterization and mechanical propertiesof CeO2-ZrO2solid solution system[J]. Ceramics International,2009,35(8):3005-3011.
    [34]毛宗强.燃料电池[M].北京:科学出版社,2005.
    [35]石井弘毅.图说燃料电池原理与应用[M].北京:科学出版社,2003.
    [36] Casanova A. Aconsortiumapproach to commercializedWestinghousesolidoxide fuel cell technology[J]. Journal of Power Sources,1999,71(1-2):65-70.
    [37] Wang S Z, Jiang Y, Li W Z, et al. Electrochemicalperformance ofmixedionic–electronicconducting oxides as anodes for solid oxide fuel cell[J].Solid State Ionics,1999,120(1-4):75-84.
    [38] Wang S Z, Jiang Y, Zhang Y H, et al. Promotingeffect of YSZ on theelectrochemical performance of YSZ+LSM composite electrodes[J]. SolidState Ionics,2000,25(113-115):291-303.
    [39] Liu J, Liu W, Lu Z, et al. Study on the properties of YSZ electrolyte made byplaster casting method and the applications in solid oxide fuel cells[J]. SolidState Ionics,1999,118(1-2):67-72.
    [40] Zhu B, Meng G Y, Mellander B E. Non-conventionalfuelcellsystems: newconcepts and development[J]. Journal of Power Sources,1999,79(1):30-36.
    [41]韩敏芳,焦成冉,熊洁.添加LiO2对YSZ电解质性能影响[J].硅酸盐学报,2012,40(10):1507-1514.
    [42]韩敏芳,杜俊平,于立安.氧化锆复合Bi2O3-BaO-SiO2-RxOy玻璃封接材料性能研究[J].无机材料学报,2010,25(10):1058-1064.
    [43]雷泽,朱庆山,韩敏芳. Cu-CeO2基阳极直接甲烷SOFC的制备及其性能[J].物理化学学报,2010,26(3):583-588.
    [44]韩敏芳,杨志宾,刘泽, et al.亚微米晶粒氧化钇稳定氧化锆电解质的稳定性[J].硅酸盐学报,2010,38(1):1-6.
    [45] Faber J, Geoffroy C, Roux A, et al. A Systematic Investigation of the dcElectrical Conductivity of Rare-Earth Doped Ceria[J]. Applied Physics A,1989,49:225-232.
    [46] Hong S J, Virkar a V. Lattice-Parameters and Densities of Rare-Earth-OxideDoped Ceria Electrolytes[J]. Journal of the American Ceramic Society,1995,78(2):433-439.
    [47] Lowrie F L, Rawlings R D. Room and high temperature failure mechanismsin solid oxide fuel cell electrolytes[J]. Journal of the European CeramicSociety,2000,20(6):751-760.
    [48] Kumar V P, Reddy Y S, Kistaiah P, et al. Thermal and electrical properties ofrare-earth co-doped ceria ceramics[J]. Materials Chemistry and Physics,2008,112(2):711-718.
    [49] Ou D R, Mori T, Ye F, et al. Comparison between Y-doped ceria andHo-doped ceria: Electrical conduction and microstructures[J]. RenewableEnergy,2008,33(2):197-200.
    [50] Xia C R, Liu M L. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95fabricated by dry pressing[J]. Solid State Ionics,2001,144(3-4):249-255.
    [51] Kuharuangrong S. Ionic conductivity of Sm, Gd, Dy and Er-doped ceria[J].Journal of Power Sources,2007,171(2):506-510.
    [52] Zha S W, Xia C R, Meng G Y. Effect of Gd (Sm) doping on properties of ceriaelectrolyte for solid oxide fuel cells[J]. Journal of Power Sources,2003,115:44-48.
    [53] Butler V, Catlow C R A, Fender B E F. The defect structure of anion deficientZrO2[J]. Solid State Ionics,1981,5:539-542.
    [54] Dae-Joon Kim. Lattice Parameters, Ionic Conductivities, and Solubility limitsin Fluorite-Structure MO2Oxide [M=Hf4+,Zr4+, Ce4+, Th4+, U4+) SolidSolutions[J]. J. Am. Ceram. Soc,1989,72(8):1415-1421.
    [55] Maschio S, Sbaizero O, Meriani S. Mechanical properties in theceria-zirconia system[J]. Journal of the European Ceramic Society,1992,9(2):127-132.
    [56] Gibson I R, Dransfield G P, Irvine J T S. Influence of yttria concentrationupon electrical properties and susceptibility to ageing of yttria-stabilisedzirconias[J]. Journal of the European Ceramic Society,1998,18(6):661-667.
    [57] Ishihara T, Matsuda H, Takita Y. Doped Lagao3Perovskite-Type Oxide as aNew Oxide Ionic Conductor[J]. Journal of the American Chemical Society,1994,116(9):3801-3803.
    [58] Li Y L, Chen N F, Zhou J P, et al. Effect of the oxygen concentration on theproperties of Gd2O3thin films[J]. Journal of Crystal Growth,2004,265(3-4):548-552.
    [59] Zhang T S, Ma J, Chan S H, et al. Intermediate-temperature ionicconductivity of ceria-based solid solutions as a function of gadolinia andsilica contents[J]. Solid State Sciences,2004,6(6):565-572.
    [60] Reddy K R, Karan K. Sinterability, mechanical, microstructural, and electricalproperties of gadolinium-doped ceria electrolyte for low-temperature solid[J].Journal of Electroceramics,2005,15:45-56.
    [61] Pearce M C, Thangadurai V. Electrical transport properties of aliovalentcation-doped CeO2[J]. Chemical Engineering Journal,2008,4:33-34.
    [62] Ye F, Mori T, Ou R D, et al. Dopant type dependency of domain developmentin rare-earth-doped ceria: An explanation by computer simulation of defectclusters[J]. Solid State Ionics,2009,180(20-22):1127-1132.
    [63] Schelling P K, Phillpot S R, Wolf D. Mechanism of the cubic-to-tetragonalphase transition in zirconia and yttria-stabilized zirconia bymolecular-dynamics simulation[J]. Journal of the American Ceramic Society,2001,84(7):1609-1619.
    [64] Mamontov E, Egami T, Brezny R, et al. Lattice defects and oxygen storagecapacity of nanocrystalline ceria and ceria-zirconia[J]. Journal of PhysicalChemistry B,2000,104(47):11110-11116.
    [65] Wachsman E D. Effect of oxygen sublattice order on conductivity in highlydefective fluorite oxides[J]. Journal of the European Ceramic Society,2004,24(6):1281-1285.
    [66] Maekawa H, Kawata K, Xiong Y P, et al. Quantification of local oxygendefects around Yttrium ions for yttria-doped ceria-zirconia ternary system[J].Solid State Ionics,2009,180(5):314-319.
    [67] Andersson D A, Simak S I, Skorodumova N V, et al. Theoretical study ofCeO2doped with tetravalent ions[J]. Physical Review B,2007,76(17):174119_1-10.
    [68] Mangalaraja R V, Ananthakumar S, Uma K, et al. Microhardness and fracturetoughness of Ce0.9Gd0.1O1.95for manufacturing solid oxide electrolytes[J].Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing,2009,517(1-2):91-96.
    [69] Grover V, Tyagi a K. Phase relations, lattice thermal expansion inCeO2-Gd2O3system, and stabilization of cubic gadolinia[J]. MaterialsResearch Bulletin,2004,39(6):859-866.
    [70] Wang S R, Kobayashi T, Dokiya M, et al. Electrical and ionic conductivity ofGd-doped ceria[J]. Journal of the Electrochemical Society,2000,147(10):3606-3609.
    [71] Ma J, Zhang T S, Kong L B, et al. Ce0.8Gd0.2O2-xceramics derived fromcommercial submicron-sized CeO2and Gd2O3powders for use aselectrolytes in solid oxide fuel cells[J]. Journal of Power Sources,2004,132(2):71-76.
    [72] Zhang T S, Ma J, Kong L B, et al. Preparation and mechanical properties ofdense Ce0.8Gd0.2O2ceramics[J]. Journal of the European Ceramic Society,2008,28(5):965-971.
    [73] Chourashiya M G, Patil J Y, Pawar S H, et al. Studies on structural,morphological and electrical properties of Ce1-xGdxO2-(x/2)[J]. MaterialsChemistry and Physics,2008,109(1):39-44.
    [74] Xiao W S, Tan D Y, Li Y C, et al. The effects of high temperature on thehigh-pressure behavior of CeO2[J]. Journal of Physics-Condensed Matter,2007,19(42):425213_1-9.
    [75] Ye F, Mori T, Ou R D, et al. Compositional and structural characteristics ofnano-sized domains in gadolinium-doped ceria[J]. Solid State Ionics,2008,179(25):827-831.
    [76] Dudek M, Bogusz W, Zych L, et al. Electrical and mechanical properties ofCeO2-based electrolytes in the CeO2-Sm2O3-M2O3(M=La,Y) system[J].Solid State Ionics,2008,179(1-6):164-167.
    [77] Liu Y. Dielectric and electrical properties of gadolinia doped ceria[J]. Journalof Alloys and Compounds,2009,479(2):769-771.
    [78] Zajac W, Molenda J. Electrical conductivity of doubly doped ceria[J]. SolidState Ionics,2008,179(1-6):154-158.
    [79] Laukaitis G, Dudonis J. Microstructure of gadolinium doped ceria oxide thinfilms formed by electron beam deposition[J]. Journal of Alloys andCompounds,2008,459(1-2):320-327.
    [80] Sebastian M, Maria G, Piotr J. Conductivity improvement of Ce0.8Gd0.2O1.9solid electrolyte[J]. Journal of Rare Earths,2009,27(4):655-660.
    [81] Datta P, Majewski P, Aldinger F. Study of gadolinia-doped ceria solidelectrolyte surface by XPS[J]. Materials Characterization,2009,60(2):138-143.
    [82] Ye F, Mori T, Ou D R, et al. A structure model of nano-sized domain inGd-doped ceria[J]. Solid State Ionics,2009,180(27):1414-1420.
    [83] Gotte A, Spangberg D, Hermansson K, et al. Molecular dynamics study ofoxygen self-diffusion in reduced CeO2[J]. Solid State Ionics,2007,178(25-26):1421-1427.
    [84] Gotte A, Hermansson K, Baudin M. Molecular dynamics simulations ofreduced CeO2: bulk and surfaces[J]. Surface Science,2004,552(1-3):273-280.
    [85] Karthikeyan A, Ramanathan S. Oxygen surface exchange studies in thin filmGd-doped ceria[J]. Applied Physics Letters,2008,92(24):243109_1-3.
    [86] Kossoy A, Feldman Y, Korobko R, et al. Influence of Point-Defect ReactionKinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9[J]. Advanced FunctionalMaterials,2009,19(4):634-641.
    [87] Kilner J A. Fast oxygen transport in acceptor doped oxides[J]. Solid StateIonics,2000,129(1-4):13-23.
    [88] Ye F, Mori T, Ou D R, et al. Simulation of ordering in large defect clusters ingadolinium-doped ceria[J]. Solid State Ionics,2008,179(35-36):1962-1967.
    [89] Aurore G, Alain C, Laurent V B, et al. Atomistic simulation of point defectsbehavior in ceria[J]. Nuclear Instruments and Methods in Physics ResearchSection B,2008,266(24):5120-5125.
    [90] Skorodumova N V, Baudin M, Hermansson K. Surface properties of CeO2from first principles[J]. Physical Review B,2004,69(7):075401_1-8.
    [91] Wei X, Pan W, Cheng L F, et al. Atomistic calculation of association energy indoped ceria[J]. Solid State Ionics,2009,180(1):13-17.
    [92] Yoshida H, Deguchi H, Miura K, et al. Investigation of the relationshipbetween the ionic conductivity and the local structures of singly and doublydoped ceria compounds using EXAFS measurement[J]. Solid State Ionics,2001,140(3-4):191-199.
    [93] Kilo M, Taylor M A, Argirusis C, et al. Modeling of cation diffusion inoxygen ion conductors using molecular dynamics[J]. Solid State Ionics,2004,175(1-4):823-827.
    [94] Araki W, Imai Y, Adachi T. Mechanical stress effect on oxygen ion mobilityin8mol%yttria-stabilized zirconia electrolyte[J]. Journal of the EuropeanCeramic Society,2009,29(11):2275-2279.
    [95] Hull S, Norberg S T, Ahmed I, et al. Oxygen vacancy ordering withinanion-deficient Ceria[J]. Journal of Solid State Chemistry,2009,182(10):2815-2821.
    [96] Swaminathan N, Qu J. Evaluation of thermomechanical properties ofnon-stoichiometric gadolinium doped ceria using atomistic simulations[J].Modelling and Simulation in Materials Science and Engineering,2009,17(4):1-16.
    [97] Sato K, Suzuki K, Yashiro K, et al. Effect of Y2O3addition on theconductivity and elastic modulus of (CeO2)1-x(YO1.5)x[J]. Solid State Ionics,2009,180(20-22):1220-1225.
    [98]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
    [99] Catlow C R A, Mackrodt W C. Recent developments in simulation studies ofionic materials[J]. Solid State Ionics,1983,8(3):175-177.
    [100] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [101] D.Frenkel, B.Smit. Understanding Molecular Simulation: From Alogrithms toApplications[M]. San Diego: Academic press,1996.
    [102]范镜泓.材料的变形与破坏的多尺度分析[M].北京:科学出版社,2008.
    [103] Thomas B D. Modification of the Born—Mayer Potential Function as Appliedto the Crystalline Alkali Halides[J]. Journal of Chemical Physics,1963,38(10):2461-2470.
    [104] Catlow C R A. Point defect and electronic properties of uranium dioxide[J].Proceedings of the Royal Society of London Series A,1976,353:533-561.
    [105] Butler V, Catlow C R A, Fender B E F, et al. Dopant ion radius and ionicconductivity in cerium dioxide[J]. Solid State Ionics,1983,8(2):109-113.
    [106] Lewis G V, Catlow C R A. Potential models for ionic oxides[J]. Journal ofPhysics C: Solid State Physics,1985,18:1149-1161.
    [107] Vyas S, Grimes R W, Gay D H, et al. Structure, stability and morphology ofstoichiometric ceria crystallites[J]. Journal of the Chemical Society-FaradayTransactions,1998,94(3):427-434.
    [108] Minervini L, Zacate M O, Grimes R W. Defect cluster formation inM2O3-doped CeO2[J]. Solid State Ionics,1999,116(3-4):339-349.
    [109] Inaba H, Sagawa R, Hayashi H, et al. Molecular dynamics simulation ofgadolinia-doped ceria[J]. Solid State Ionics,1999,122(1-4):95-103.
    [110] Xu H X, Behera R K, Wang Y L, et al. A critical assessment of interatomicpotentials for ceria with application to its elastic properties[J]. Solid StateIonics,2010,181(11-12):551-556.
    [111] Swope W C, Andersen H C, Berens P H, et al. A computer simulation methodfor the calculation of equilibrium constants for the formation of physicalclusters of molecules: Application to small water clusters[J]. Journal ofChemical Physics,1982,76(1):637-649.
    [112] Gunsteren V W F, Berendsen H J C. Algorithms for macromoleculardynamics and constraint dynamics and constraint dynamics[J]. MolecularPhysics,1977,34:1311-1327.
    [113] Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated bythe Stormer-Verlet method[J]. Acta Numerica,2003,12:399-450.
    [114] Verlet L. Computer "Experiments" on Classical Fluids. I. ThermodynamicalProperties of Lennard-Jones Molecules[J]. Physical Review,1967,159(1):98-103.
    [115] Skeel R D. Variable step size destabilizes the St rmer/leapfrog/verletmethod[J]. Bit Numerical Mathematics,1993,33(1):172-175.
    [116] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford:Oxford University Press,1989.
    [117] Frenkel D, Smit B. Understanding Molecular Simulation[M]. San Diego:Academic Press,1996.
    [118]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    [119] Rapaport D C. The Art of Molecular Dynamics Simulation[M]. New York:Cambridge University Press,1995.
    [120] Hoffmann K H, Schreiber M. Computational Physics[M]. Heidelberg:Springer-Verlag,1986.
    [121] Nose S. A unified formulation of the constant temperature moleculardynamics methods[J]. Journal of Chemical Physics,1984,81(1):511-519.
    [122] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions[J].Physical Review A,1985,31(3):1695-1697.
    [123] Parrinello M, Rahman A. Crystal Structure and Pair Potentials: AMolecular-Dynamics Study[J]. Physical Review Letters,1980,45(14):1196-1199.
    [124] Nose S, Michael L K. Structural Transformations in Solid Nitrogen at HighPressure[J]. Physical Review Letters,1983,50(16):1207-1210.
    [125] Anthony J C L, William G H. Plastic flow in close-packed crystals vianonequilibrium molecular dynamics[J]. Physical Review B,1983,28(4):1756-1762.
    [126]陈敏伯.计算化学—从理论化学到分子模拟[M].北京:科学出版社,2009.
    [127] Andersen H C. Molecular dynamics simulations at constant pressure and/ortemperature[J]. Journal of Chemical Physics,1980,72(4):2384-2393.
    [128] Parrinello M, Rahman A. Polymorphic transitions in single crystals: A newmolecular dynamics method [J]. Journal of Applied Physics,1981,52(12):7182-7190.
    [129] Parrinello M, Rahman A. A strain fluctuations and elastic constants[J]. Jounalof Chemical Physics,1982,76:2662-2670.
    [130] Martonak R, Laio A, Parrinello M. Predicting Crystal Structures: TheParrinello-Rahman Method Revisited[J]. Physical Review Letters,2003,90(7):075503_1-4.
    [131] Paolo P G. On (Andersen-)Parrinello-Rahman Molecular Dynamics, theRelated Metadynamics, and the Use of the Cauchy-Born Rule[J]. Journal ofElasticity,2010,100(1-2):145-153.
    [132] Cheatham T E Iii, Miller J L, Fox T, et al. Molecular Dynamics Simulationson Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leadsto Stable Trajectories of DNA, RNA, and Proteins[J]. Journal of the AmericanChemical Society,1995,117(14):4193-4194.
    [133] Shirts R B, Burt S R, Johnson a M. Periodic boundary condition inducedbreakdown of the equipartition principle and other kinetic effects of finitesample size in classical hard-sphere molecular dynamics simulation[J].Journal of Chemical Physics,2006,125(16):164102_1-9.
    [134] Randall B S, Michael R S. Deviations from the Boltzmann distribution insmall microcanonical quantum systems: Two approximate one-particle energydistributions [J]. Journal of Chemical Physics,2002,117(12):5564-5575.
    [135] Lebowitz J L, Percus J K. Thermodynamic Properties of Small Systems[J].Physical Review,1961,124(6):1673-1681.
    [136] Nakajima A, Yoshihara A, Ishigame M. Defect-induced Raman spectra indoped CeO2[J]. Physical Review B,1994,50(18):13297-13307.
    [137]崔志伟.离子间相互作用势的研究及其在固体电解质GDC中的应用[D].哈尔滨:哈尔滨工业大学,2010:56-70.
    [138] Widom. Statistical Mechanics: A Concise Introduction for Chemists[M].London: Cambridge University Press,2002.
    [139] Gao C, Kulkarni S D, Morris J F, et al. Direct investigation of anisotropicsuspension structure in pressure-driven flow[J]. Physical Review E,2010,81(4):041403_1-4.
    [140] Cipelletti L, Manley S, Ball R C, et al. Universal Aging Features in theRestructuring of Fractal Colloidal Gels[J]. Physical Review Letters,2000,84(10):2275-2278.
    [141] Li X Y, Hafskjold B. Molecular-Dynamics Simulations of Yttrium-StabilizedZirconia[J]. Journal of Physics-Condensed Matter,1995,7(7):1255-1271.
    [142] Fattebert J L, Richards D F. Dynamic load balancing algorithm for moleculardynamics based on Voronoi cells domain decompositions[J]. ComputerPhysics Communications,2012,183(12):2608-2615.
    [143] Sayle T X T, Sayle D C. Elastic Deformation in Ceria Nanorods via aFluorite-to-Rutile Phase Transition[J]. ACS Nano,2010,4(2):879-886.
    [144]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [145] Ishida T, Iguchi F, Sato K, et al. Fracture properties of (CeO2)(1-x)(RO1.5)(x)(R=Y, Gd, and Sm; x=0.02-0.20) ceramics[J]. Solid State Ionics,2005,176(31-34):2417-2421.
    [146] Wang Y L, Duncan K, Wachsman E D, et al. The effect of oxygen vacancyconcentration on the elastic modulus of fluorite-structured oxides[J]. SolidState Ionics,2007,178(1-2):53-58.
    [147] Tasker P W. The stability of ionic crystal surfaces[J]. Journal of Physics C:Solid State Physics,1979,12(22):4977-4984.
    [148] Nolan M, Grigoleit S, Sayle D C, et al. Density functional theory studies ofthe structure and electronic structure of pure and defective low index surfacesof ceria[J]. Surface Science,2005,576(1-3):217-229.
    [149] Stanek C R, Tan a H H, Owens S L, et al. Atomistic simulation of CeO2surface hydroxylation: implications for glass polishing[J]. Journal ofMaterials Science,2008,43(12):4157-4162.
    [150] Song D P, Liang Y C, Chen M J, et al. Molecular dynamics study on surfacestructure and surface energy of rutile TiO2(110)[J]. Applied Surface Science,2009,255(11):5702-5708.
    [151] Baudin M, Wojcik M, Hermansson K. Dynamics, structure and energetics ofthe (111),(011) and (001) surfaces of ceria[J]. Surface Science,2000,468(1-3):51-61.
    [152] Conesa J C. Computer modeling of surfaces and defects on cerium dioxide[J].Surface Science,1995,339(3):337-352.
    [153] Ting T C T. Anisotropic Elasticity: Theory and Applications[M]. New York:Oxford University Press,1996.
    [154] Liebowitz H. Fracture: An Advanced Treatise[M]. New York and London:ACADEMIC PRESS,1968.
    [155] Zhang T S, Ma J, Kong L B, et al. Preparation and mechanical properties ofdense Ce0.8Gd0.2O2ceramics[J]. Journal of the European Ceramic Society,2004,28(5):965-971.
    [156] Munoz A, Dominguez R A, Castaing J. Slip Systems and plastic anisotropy inCaF2[J]. Journal of Materials Science,1994,29(23):6207-6211.
    [157]朱滨.弹性力学[M].北京:中国科学技术大学出版社,2008.
    [158] Larchte F C, Cahn J L. The effect of self-stress on diffusion in solids[J]. ActaMetallurgica,1982,30(10):1835-1845.
    [159]巴德a J,福克纳L R.电化学方法原理和方法[M].北京:化学工业出版社,2003.
    [160] Sato K, Yashiro K, Kawada T, et al. Fracture process of nonstoichiometricoxide based solid oxide fuel cell under oxidizing/reducing gradientconditions[J]. Journal of Power Sources,2010,195(17):5481-5486.
    [161] Duncan K L, Wang Y L, Bishop S R, et al. The role of point defects in thephysical properties of nonstoichiometric ceria[J]. Journal of Applied Physics,2007,101(4):9061-9066.
    [162] Duncan K L, Wang Y L, Bishop S R, et al. Role of point defects in thephysical properties of fluorite oxides[J]. Journal of the American CeramicSociety,2006,89(10):3162-3166.
    [163] Krishnamurthy R, Sheldon B W. Stresses due to oxygen potential gradients innon-stoichiometric oxides[J]. Acta Materialia,2004,52(7):1807-1822.
    [164] Wu C H. The role of Eshelby stress in composition-generated andstress-assisted diffusion[J]. Journal of the Mechanics and Physics of Solids,2001,49(8):1771-1794.
    [165] Badwal S P S, Ciacchi F T, Drennan J. Investigation of the stability ofceria-gadolinia electrolytes in solid oxide fuel cell environments[J]. SolidState Ionics,1999,121(1-4):253-262.
    [166] Tadmor E B, Phillips R, Ortiz M. Mixed atomistic and continuum models ofdeformation in solids[J]. Langmuir,1996,12(19):4529-4534.
    [167] Noguchi H, Furuya Y. A method of seamlessly combining a crack tipmolecular dynamics enclave with a linear elastic outer domain in simulatingelasticplastic crack advance[J]. International Journal of Fracture,1997,87(309-329.
    [168] Huang Y, Liu B, Jiang H, et al. The atomic-scale finite element method[J].Computer Methods in Applied Mechanics and Engineering,2004,193(17-20):1849-1864.
    [169] Chen Y, Lee J. Atomistic formulation of a multiscale field theory fornano/micro solids[J]. Philosophical Magazine,2005,85:4095-4126.
    [170] Benito C, Argon a S, Sidney Y. Molecular dynamics simulation of crack tipprocesses in alpha—iron and copper[J]. Journal of Applied Physics,1983,54(9):4864-4878.
    [171] Kohlhoff S, Gumbsch P, Fischmeister H F. Crack propagation in b.c.c.crystals studied with a combined finite-element and atomistic model[J].Philosophical Magazine A,1991,64(4):851-878.
    [172] Zhou S J, Beazley D M, Lomdahl P S, et al. Large-Scale Molecular DynamicsSimulations of Three-Dimensional Ductile Failure[J]. Physical ReviewLetters,1997,78(3):479-482.
    [173] Kare Hellan. Introduction to Fracture Mechanics[M]. New York&Hamburg:Mcgraw-Hill,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700