用户名: 密码: 验证码:
虚拟网构建及资源管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络虚拟化是解决目前互联网僵化问题的关键技术,其核心思想是通过对物理网络资源的抽象、封装与隔离,将网络服务提供与基础设施提供两大功能相分离,并根据用户业务需求,以构建运营虚拟网的方式为其提供适配的网络服务。因此,虚拟网的构建与运营是实现网络虚拟化的重要过程,其本质是网络资源的分配与管理问题,也即如何高效地利用物理网络资源以使得尽可能多的不同用户的虚拟网可以共存,是目前网络领域的热点研究问题。
     虚拟网的资源分配与管理可从两个层面着手:一是在物理网络中分配资源以构建虚拟网,且虚拟网可根据业务流量自适应进行带宽资源调整与优化。二是通过虚拟网带宽资源管理对进入虚拟网的用户业务流进行接入控制。近年来,无论是虚拟网构建算法、自适应带宽优化还是资源管理技术都有了长足的发展,但仍存在:面向跨域虚拟网和组播虚拟网的构建、大时间尺度下虚拟网动态带宽优化以及影响接纳公平性的带宽分配等问题。本文将针对上述问题展开研究,主要工作如下:
     (1)针对跨域虚拟网构建问题,本文借鉴BGP路径矢量路由的思想,将物理网络抽象为两层视图,以最小构建代价为目标,提出了一个分层线性规划模型,并设计了一个虚拟网分层构建算法。仿真实验表示,跨域虚拟网分层构建算法可以快速收敛到近似最优解,提高了运行效率和虚拟网构建成功率;
     (2)研究了具有时延和时延抖动约束的组播虚拟网构建问题,提出一种基于可行路径集的组播虚拟网构建建模方法,并采用滑动窗口技术提出了一种满足时延和时延抖动约束的组播虚拟网构建算法,通过仿真实验验证了算法的有效性;
     (3)针对虚拟网动态带宽优化问题,本文采用鲁棒优化理论研究了大时间尺度下虚拟网动态带宽提供的数学建模方法,并运用原始分解技术提出了一个分布式虚拟网带宽提供算法。仿真结果表明,该算法提高了虚拟网接受率;
     (4)给出了一个分布式的带宽资源管理方案以对进入虚拟网的用户业务流进行接入控制。通过引入多路径下的最大最小公平资源分配策略,提出了一种基于请求拒绝概率最大最小公平的带宽预分配算法。仿真实验表明采用该算法使边界带宽代理接纳业务请求具有更好的公平性。
     本文的研究依托国家863重大项目“新一代高可信网络”课题“可重构路由器构件组研制”以及“可重构柔性试验网组网设备工程化实施”,研究成果可为可重构路由器大规模实用化组网试验提供技术支撑。本文也为虚拟网构建、动态资源优化和资源管理技术提供了一些新的方法和思路,对进一步研究虚拟网的资源分配与管理问题以优化网络资源利用率带来一定的参考价值和借鉴作用。
Network virtualization has been considered as a key technique to overcome the current ossification of the Internet, which is able to divide the role of the traditional ISPs into infrastructure providers and service providers through the abstraction, encapsulation and isolation of physical resources, and create multiple virtual networks to efficiently offer appropriate end-to-end network services in accordance to the users requirements. Therefore, the creation and optimal operation of virtual networks become one of the key challenges to realize the network virtual ization, which needs to address the issues of network resource allocation and management, i.e. how to efficiently map maximal number of virtual networks into the physical network resources with globally optimal network resource utilization efficiency.
     Resource allocation and management of the virtual networks can be divided into two levels:(1) allocating the physical network resources to multiple virtual networks and to optimize the network bandwidth resources based on the traffic demand in an adaptive manner;(2) controlling the flow requests through virtual network bandwidth resource management. In recent years, the virtual network mapping algorithm, the adaptive bandwidth optimization and bandwidth broker-based resource management techniques have been proposed and improved, but some issues are still outstanding and need to be addressed:the mapping problems of virtual network cross multiple domains and virtual multicast network, dynamic bandwidth optimization for virtual network on the large time scale, and bandwidth allocation for the fairness of flow acceptance of bandwidth broker. To address issues mentioned above, the main technical contributions of this thesis are summarized as follows:
     (1) For the problem of virtual network mapping across multiple domains, motivated by the mechanism of path-vector protocol (e.g. BGP), we can obtain two hierarchical views of the substrate network. Based on this hierarchical structure of the substrate network, we proposed a hierarchical linear program model for the VN mapping problem, and designed a hierarchical mapping algorithmic solution. The performance assessments demonstrated that nearly optimal performance can be obtained with improved VN mapping request acceptance ratio and revenue.
     (2) The virtual multicast network mapping problem with delay and delay variation constraints were exploited. The optimal mapping problem is formulated as an integer programming based on the collection of feasible paths, and a virtual multicast network mapping algorithm based on the sliding window was proposed, where the window technique can ensue all possible combinations of paths in a window satisfy the imposed delay variation constraints. The numerical simulation results confirmed the effectiveness of the suggested algorithm.
     (3) For the problem of dynamic bandwidth optimization of virtual networks, based on the robust optimization theory, a robust dynamic bandwidth provisioning model on large time scale was presented. Through the use of primal decomposition technique, a distributed algorithm was proposed. The numerical results obtained from simulation experiments demonstrated the strength and the effectiveness of the proposed algorithm in terms of convergence and acceptance ratio.
     (4) A distributed bandwidth resource management for the admission control of virtual network is proposed. Based on max-min fairness allocation under multi-path, a reject probability model based max-min bandwidth pre-allocation algorithm was proposed. The numerical result of experiments demonstrated that the algorithm used in the distributed bandwidth broker can improve the fairness of the border bandwidth broker to accept flow requests.
     The research work carried out in this thesis is funded by two work packages,"Research of Reconfigurable Component Router" and "Engineering Implementation of Networking Equipment for Reconfigurable Flexible Test-bed", of the863project of "New Generation of Trustworthy Network". The research outcome obtained from this study has laid the foundation for the implementation of the large-scale network test-bed of the project. This thesis also presented a set of novel mechanisms for the techniques of virtual network mapping, dynamic resource optimization and resource management, and has some reference value and benefit for the research on resource allocation and management to promote the efficiency of the network resource performance assessments demonstrated that nearly optimal performance can be obtained with improved VN mapping request acceptance ratio and revenue.
     (2) The virtual multicast network mapping problem with delay and delay variation constraints were exploited. The optimal mapping problem is formulated as an integer programming based on the collection of feasible paths, and a virtual multicast network mapping algorithm based on the sliding window was proposed, where the window technique can ensue all possible combinations of paths in a window satisfy the imposed delay variation constraints. The numerical simulation results confirmed the effectiveness of the suggested algorithm.
     (3) For the problem of dynamic bandwidth optimization of virtual networks, based on the robust optimization theory, a robust dynamic bandwidth provisioning model on large time scale was presented. Through the use of primal decomposition technique, a distributed algorithm was proposed. The numerical results obtained from simulation experiments demonstrated the strength and the effectiveness of the proposed algorithm in terms of convergence and acceptance ratio.
     (4) A distributed bandwidth resource management for the admission control of virtual network is proposed. Based on max-min fairness allocation under multi-path, a reject probability model based max-min bandwidth pre-allocation algorithm was proposed. The numerical result of experiments demonstrated that the algorithm used in the distributed bandwidth broker can improve the fairness of the border bandwidth broker to accept flow requests.
     The research work carried out in this thesis is funded by two work packages,"Research of Reconfigurable Component Router" and "'Engineering Implementation of Networking Equipment for Reconfigurable Flexible Test-bed"", of the863project of ''New Generation of Trustworthy Network". The research outcome obtained from this study has laid the foundation for the implementation of the large-scale network test-bed of the project. This thesis also presented a set of novel mechanisms for the techniques of virtual network mapping, dynamic resource optimization and resource management, and has some reference value and benefit for the research on resource allocation and management to promote the efficiency of the network resource
引文
[1]R.Braden, D. Clark, and S.Shenker. Integrated Services in the Internet Architecture: an Overview.1994, RFC 1633.
    [2]S.Blake et al. An architecture for Differentiated Service. Dec,1998, RFC 2475.
    [3]G.Huston. More ROAP:Routing and Addressing[J]. IETF Journal, 2007,3(1):15-20.
    [4]S.Kent. R.Atkinson. Security Architecture for the Internet Protocol.1998, RFC 2401.
    [5]D. Meyer, L. Zhang, and K. Fall (Ed.), Report from the IAB Workshop on Routing and Addressing,2007.RFC 4984.
    [6]T. Narten.Routing and Addressing Problem Statement, http://tools.ietf.org/html/draft-narten-radir-problem-statement-05,2010.
    [7]A.Thomas. P.Larry, etc. Overcoming the Internet Impasse through Virtualization[J]. IEEE Computer Magazine,2005,38(4):34-41.
    [8]F.Nick, G.Lixin, R.Jennifer. How to Lease the Internet in Your Spare Time[J]. ACM SIGCOMM Computer Communications Review,2007,37(1):61-64.
    [9]T.David. T.Jonathan. Towards a Diversified Internet. www.arl.wustl.edu/netv/contrib/diversifiedInternet.pdf, November 2004.
    [10]J.Chandrashekar, Zhi-Li Zhang, etc. Service Oriented Internet[C]. Proc. of First International Conference on Service Oriented Computing (ICSOC2003),December 2003.
    [11]http://www.geni.net/
    [12]http://www.nets-fia.net/
    [13]http://cordis.europa.eu/fp7/ict/fire/home_en.html
    [14]http://www.4ward-project.eu/
    [15]http://akari-project.nict.go.jp/
    [16]兰巨龙,邬江兴等.国家973项目申请书“可重构信息通信基础网络体系研究”,2011.
    [17]汪斌强,邬江兴.下一代互联网的发展趋势及相应对策分析[J].信息工程大学学报,2009,10(1):1-10.
    [18]J. Touch and S. Hotz. The X-Bone[C]. Proceedings of the Third Global Internet Mini-Conference at GLOBECOM'98,1998,44-52.
    [19]C. Perkins. IP encapsulation within IP. RFC 2003, October 1996.
    [20]J. E. van der Merwe, S. Rooney, I. Leslie, and S. Crosby. The Tempest:A practical framework for network programmability[J]. IEEE Network Magazine,1998,12(3): 20-28.
    [21]J. E. van der Merwe and I. M. Leslie. Switchlets and dynamic virtual ATM networks[C]. Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management (IM'97),1997,355-368.
    [22]L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive technology into the Internet[J]. SIGCOMM Computer Communication Review,2003,33(1):59-64.
    [23]G.P. Group. GENI design principles[J]. Computer,2006.39(9):102-105.
    [24]Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford.Virtual routers on the move:Live router migration as a network-management primitive[C]. Proceedings of the ACM SIGCOMM'08,2008,231-242.
    [25]Y. Zhu, J. Rexford, A. Bavier, and N. Feamster.UFO:A resilient layered routing architecture.Princeton University[R], Tech. Rep. TR-780-07,2007.
    [26]N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A Survey of Network Virtualization[R]. Technical Report:CS-2008-25, University of Waterloo,2008.
    [27]A. Jun and A. Leon-Garcia. A virtual network approach to network resources management[C]. Proceedings of the Canadian Conference on Broadband Research (CCBR'98).1998,1065-1070.
    [28]A. Jun and A. Leon-Garcia. Virtual network resources management:A divide-and-conquer approach for the control of future networks[C]. Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'98),1998,1065-1070.
    [29]W. Ng, R. Boutaba, and A. Leon-Garcia. Provision and customization of ATM virtual networks for supporting IP services[C]. Proceedings of the IEEE ATM Workshop'1999,1999,205-210.
    [30]M. Kounavis, A. Campbell, S. Chou. F. Modoux, J. Vicente, and H. Zhuang. The Genesis Kernel:A programming system for spawning network architectures[J]. IEEE Journal on Selected Areas in Communications,2001,19(3):511-526.
    [31]A. T. Campbell, M. E. Kounavis, etc. Spawning networks[J]. IEEE Network Magazine,1999,13(4):16-30.
    [32]X. Jiang and D. Xu. VIOLIN:Virtual internetworking on overlay infrastructure[R]. Purdue University, Tech. Rep. TR-03-027,2003.
    [33]P. Ruth. X. Jiang, D. Xu. and S. Goasguen. Virtual distributed environments in a shared infrastructure[J]. Computer,2005,38(5):63-69.
    [34]J. D. Touch. Y.-S. Wang. L. Eggert, and G.Finn. A virtual internet architecture[R]. USC/Information Sciences Institute. Tech. Rep. TR-570,2003.
    [35]M. Boucadair. B. Decraene. etc.. Parallel Internets framework. AGAVE Deliverable (Id:AGAVE/WP1/FTRD/D1.1/public),2006.
    [36]M. Boucadair, P. Levis. D. Gri_n, etc.. A framework for end-to-end service di_erentiation:Network planes and parallel Internets[J]. IEEE Communications,2007, 45(9):134-143.
    [37]N. Wang, D. Gri_n, J. Spencer, etc.. A framework for lightweight QoS provisioning:Network planes and parallel Internet[C]. Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Management (IM'07), 2007,797-800.
    [38]VINI:A virtual network infrastructure, http://www.vini-veritas.net/.
    [39]A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI veritas: Realistic and controlled network experimentation[C]. Proceedings of SIGCOMM'06. New York, NY. USA.2006.3-14.
    [40]Hung Tuan Tran. Thomas Ziegler. A design framework towards the profitable operation of service overlay networks[J]. IEEE/ACM Computer Networks.2007,51(1): 94-113.
    [41]Ling Zhou, Arunabha Sen. Topology Design of Service Overlay Network with a Generalized Cost Model[C]. IEEE GLOBECOM,2007,75-80.
    [42]Antonio Capone, Jocelyne Elias, Fabio Martignon. Routing and resource optimization in service overlay networks[J]. IEEE/ACM Computer Networks,2009, 53(2):180-190.
    [43]Jing Lu, Jonathan Turner. Poster:Constraint-driven Virtual Network Design on a Shared Substrate[C]. IEEE ICNP,2006,13-14.
    [44]Lu Jing, Turner Jonathan. Efficient Mapping of Virtual Networks onto a Shared Substrate[R]. Technical Report WUCSE-2006-35, Washington University,2006.
    [45]N. M. Mosharaf, Kabir Chowdhury, etc. Virtual Network Embedding with Coordinated Node and Link Mapping[C]. IEEE INFOCOM,2009,783-791.
    [46]A. Kershenbaum, P. Kermani, and G. Grover. MENTOR:An Algorithm for Mesh Network Topological Optimization and Routing[J]. IEEE Transactions on Communications,1991.39(2):503-513.
    [47]Jinliang Fan, Mostafa H. Ammar. Dynamic Topology Configuration in Service Overlay Networks:A Study of Reconfiguration Policies. IEEE INFOCOM2006.1-12.
    [48]Minlan Yu, Yung Yi, Jennifer Rexford, etc. Rethinking Virtual Network Embedding:Substrate Support for Path Splitting and Migration[J]. ACM SIGCOMM Computer Communication Review,2008,38(2):17-29.
    [49]王浩学,汪斌强,于婧,姜明.一体化承载网络体系架构研究[J].计算机学报,2009,32(3):371-376.
    [50]Yong Zhu, Mostafa Ammar. Algorithms for Assigning Substrate Network Resources to Virtual Network Components[C]. IEEE INFOCOM,2006.1-12.
    [51]W. Szeto. Y. Iraqi and R. Boutaba. A Multi-Commodity Flow Based Approach to Virtual Network Resource Allocation[C]. IEEE GLOBECOM,2003,3004-3008.
    [52]Robert Ricci. Chris Alfeld, Jay Lepreau. A Solver for the Network Testbed Mapping Problem[J]. ACM SIGCOMM Computer Communication Review,2003, 33(2):65-81.
    [53]姜明,闵啸,吴春明,王浩学.逻辑承载网构建中的若干数学问题[J].信息工程大学学报,2009,10(1):50-53.
    [54]姜明,熊伟,吴春明,王浩学.逻辑承载网构建效果评价方法研究[J].信息工程大学学报,2009,,10(2):289-294.
    [55]Zhang Min, Wu Chunming, Jiang Ming, Yang Qiang. Mapping Multicast Service-Oriented Virtual Networks with Delay and Delay Variation Constraints[C]. IEEE GLOBECOM,2010,1-5.
    [56]张怡,孙志刚.面向可信网络研究的虚拟化技术[J].计算机学报,2009,32(3):417-423.
    [57]齐宁,汪斌强,郭佳.逻辑承载网构建方法的研究[J].计算机学报,2010,33(9):1533-1540.
    [58]李文,吴春明,陈健,平玲娣.物理节点可重复映射的虚拟网映射算法[J].电子与信息学报,2011,33(4):908-914.
    [59]CHENG X.. SU S., ZHANG Z., et al.Virtual Network Embedding Through Topology-Aware Node Ranking[J].ACM SIGCOMM Computer Communication Review,2011,41(2):39-47.
    [60]Jens Lischka, Holger Karl. A Virtual Network Mapping Algorithm based on Subgraph Isomorphism Detection[C]. ACM SIGCOMM.2009,81-88.
    [61]Ines Houidi, Wajdi Louati, etc. A Distributed Virtual Network Mapping Algorithm[C]. IEEE ICC.2008,5634-5640.
    [62]Jawwad Shamsi, Monica Brockmeyer. QoSMap:QoS aware Mapping of Virtual Networks for Resiliency and Efficiency[C]. IEEE GLOBECOM,2007,1-6.
    [63]Mosharaf Chowdhury, Fady Samuel, Raouf Boutaba. PolyViNE:Policy-based Virtual Network Embedding Across Multiple Domains[C]. Proceedings of the second ACM SIGCOMM workshop on VISA,2010.49-56.
    [64]Bo Lv. Zhenkai Wang.etc. Virtual Resource Organization and Virtual Network Embedding Across Multiple Domains[C]. IEEE MIENS.2010.725-728.
    [65]张顺利,邱雪松.潘亚莲.孟洛明.网络虚拟化环境下基于预测的资源重配置算法[J].通信学报.2011,32(7):57-63.
    [66]罗娟,徐岳阳,李仁发.网络虚拟化中动态资源分配算法研究[J].通信学报.2011.32(7):64-70.
    [67]Reichmeyer F, Ong L, Terzis A, Zhang Lixia. A two-tier resource management model for differentiated services networks. INTERNET-DRAFT, November 1998.
    [68]Nichols K, Jacobson V, Zhang L. A two-bit differentiated services architecture for the Internet. RFC 2638, July 1999.
    [69]Giordano S, Salsano S, Van den Berghe S, et al.. Advanced QoS provisioning in IP networks:The European premium IP projects[J]. IEEE Communications Magazine, 2003,41(1):30-36.
    [70]S.Bakiras.Victor O.K. Li, Efficient resource management for end-to-end QoS guarantees in DiffServ networks. Proc. of IEEE ICC,2002,1220-1224.
    [71]Zhang Zhi-Li, Duan Zhen-hai, Hou Y T. On scalable design of bandwidth brokers[J]. IEICE Transactions on Communications,2001, E84-B(8):2011-2025.
    [72]Zhou L. and Sen A. Topology design of service overlay network with a generalized cost model[C]. Proc. IEEE GLOBECOM.2007,75-80.
    [73]Lv B., Wang Z.. Huang T., Chen J. and Liu Y.A Hierarchical Management Architecture for Virtual Network Mapping[C].Proc. of Internet Technology and Applications,2010,1-4.
    [74]Chiang M., Low S., Calderbank A., and Doyle J.Layering as optimization decomposition:A mathematical theory of network architectures[J]. Proceedings of the IEEE,2007,95(1):255-312.
    [75]He J., Shen R., Li Y, Lee C, Rexford J. and Chiang M.DaVinci:dynamically adaptive virtual networks for a customized internet [C]. Proc. of the 2008 ACM CoNEXT Conference.2008,1-12.
    [76]BARAHONA F., ANBIL R., The volume algorithm:Producing primal solutions with a subgradient method[J], Math. Program.,2000.87(1):385-399.
    [77]ALLALOUF M,. SHAVITT Y. Centralized and distributed algorithms for routing and weighted max-min fair bandwidth allocation[J]. Networking, IEEE/ACM Transactions on.2008.16.(5):1015-1024.
    [78]FREUND R.. Subgradient optimization, generalized, programming, and nonconvex duality[R]. MIT. Tech. Rep..2004.
    [79]MEDINA A., LAKHINA A., MATTA I.. BRITE:An approach to universal topology generation[C]. Proc. of Ninth International Symposium on Modeling, Analysis and Simulaion of Computer and Telecommunication Systems.2001, 346-353.
    [80]Dario Pompili, Luca Lopez, Caterina Scoglio. Multicast Algorithms in Service Overlay Networks[J]. Computer Communications,2008.31(1):489-505.
    [81]L. Lao, J.-H. Cui, and M. Gerla. Multicast service overlay design[C]. Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS'05).2005,1-8.
    [82]Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees[J]. Acta Informatica 1981,15(1):141-145.
    [83]Takahashi H, Matsuyama A. An approximate solution for the Steiner problem in graphs[J]. Mathematica Japonica,1980.24(6):573-577.
    [84]Kompella VP, Pasquale JC, Polyzos GC. Multicast routing for multimedia communication[J]. IEEE/ACM Transactionson Networking.1993.1(3):286-292.
    [85]Mehrdad Parsa, Qing Zhu. and J. J. Garcia-Luna-Aceves. An Iterative Algorithm for Delay-ConstrainedMinimum-Cost Multicasting[J]. IEEE/ACM TRANSACTIONS ON NETWORKING,1998,6(4):461-474
    [86]Hong S, Lee H, Park BH. An efficient multicast routing algorithm for delay-sensitive applications with dynamic membership[C]. Proceedings of IEEE INFOCOM:98.1998,1433-1440.
    [87]Ciro A. Noronha Jr. Fouad A Tobagi. Optimum routing of multicast Streams[C], Proceedings of IEEE INFOCOM',1994,865-873.
    [88]G.N. Rouskas and I. Baldine.Multicast Routing with End-to-End Delay and Delay Variations Constraints[J]. IEEE J. Selected Areas in Comm.,1997,15(3):346-356.
    [89]S. Kapoor and S. Raghavan.lmproved Multicast Routing with Delay and Delay Variation Constraint[C].Proc. Global Telecomm. Conf. (GLOBECOM '00),2000, 476-480.
    [90]Shankar M. Banik. Sridhar Radhakrishnan, and Chandra N. Sekharan. Multicast Routing with Delay and DelayVariation Constraints for Collaborative Applications on Overlay Networks[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2007,18(3):421-431.
    [91]Z.Duan, Z.L. Zhang, and Y.T. Hou. Serivce Overlay Networks:SLAs, Qos, and bandwidth provisioning[J]. IEEE/ACM Transaction on Networking,2003, 11(6):870-883.
    [92]Eppstein D. Finding the k shortest paths[C]. Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science.1994,154-165.
    [93]Ahuja R., Magnanti T., Orlin J.. Network Flows:Theory, Algorithms, and Applications[M]. New Jersey:Prentice Hall,1993.
    [94]N.G.Duffield, et al..A flexible model for resource management in virtual private networks[J]. ACM SIGCOMM Computer Communication Review,1999,29(4): 95-108.
    [95]W.Ben-Ameur, H.Kerivin.Routing of uncertain traffic demands[J].Optimization and Engineering.2005.6(3):283-313.
    [96]A.Altin, et al..OSPF routing with optimal oblivious performance ratio under polyhedral demand uncertainty [J]. Optim. Engrg.,2010,11(2):395-422.
    [97]G.Prasanna, et al..Traffic constraints instead of traffic matrices:Capabilities of a new approach to traffic characterization[C]. Proceedings of the 18th International Teletraffic Congress,2003,1-5.
    [98]T.Erlebach, M. Ruegg. Optimal Bandwidth Reservation in Hose-Model VPNs with Multip-Path Routing[C]. Proceedings of IEEE INFOCOM,2004,2275-2282.
    [99]V.Tabatabaee, et al.. Robust routing with unknown traffic matrices[C]. Proceedings of IEEE INFOCOM,2007,2436-2440.
    [100]G. Box, G. Jenkins, G. Reinsel, Time Series Analysis, Forecasting and Control[M], Prentice-Hall,1994.
    [101]H.Heffes, D.M.Lucantoni, A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Satistical Multiplexer Performance[J]. IEEE.Select. Areas Commun,1986,SAC-4(1):856-868.
    [102]邹柏贤.刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002.39(12):12
    [103]Mikhail Dashevskiy and Zhiyuan Luo. Guaranteed Network Traffic Demand Prediction Using FARIMA Models. Intelligent Data Engineering and Automated Learning [J], Lecture Notes in Computer Science,2008,5326(1):274-281.
    [104]Leland, W E, et al. On the Self-Similar Nature of Ethernet Traffic[C]. ACM SIGCOMM.1993,183-193.
    [105]Leland, W E, Taqqu, M S and Willinger, W. On the Self-Similar Nature of Ethernet Traffic [J]. IEEE/ACM Transactions on Networking.1994,2(1):1-15.
    [106]Grovella, M and Bestavros, A. Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes[J]. IEEE/ACM Transactions on Networking,1997,6(5): 160-169.
    [107]Willinger W, Taqqu M S, Sherman R. Self-Similarity through High-Variablility: Statistical Analysis of Ethernet LAN Traffic at the Source Level[J]. IEEE/ACM Transactions on Networking,1997.1(5):71-86.
    [108]Clegg, Richard G. A Practical Guide to Measuring the Hurst Parameter[J]. International Journal of Simulation:Systems. Science & Technology.2006,2(7):3-14.
    [109]Mandelbrot, Benoit B and Taqqu. Robust R/S Analysis of Long-run Serial Correlation[C], Proceedings of the 42nd Session of the International Statistic Institute. 1979,1-8.
    [110]郝清民.R/S系列分析的非线性估计及应用[J].系统工程理论与实践,2005,26(3):80-85.
    [111]Abry, P and Veitch, D. Wavelet Analysis of Long Range Dependent Traffic[J]. IEEE Trans, on Information Theory,1998,44(1):2-15.
    [112]Chen. Huimin. Cai, Hong and Li. Yanda. Self-Similar Traffic:Hurst Parameter Estimation Based on Multiresolution Sampling and Wavelet Analysis[J]. Acta Electronica Sinica,1998,26(7):88-93.
    [113]R. Hettich. K.O. Kortanek. Semi-Infinite Programming:Theory. Methods, and Applications[J]SIAM Review.1993.35(3):380-429. [114] N. Spring. R. Mahajan. D. Wetherall. T. Anderson.Measuring ISP Topologies with Rocketfuel[J]. IEEE/ACM Transcation on Networking,2004,12(1):2-16.
    [115]WITS:Waikato Internet Traffic Storage, [online] available: "http://wand.net.nz/wits/"
    [116]卢刚,王康.数据网络[M].人民邮电出版社,2004.
    [117]B.Radunovic',J.-Y Le Boudec.A Unified Framework for Max-Min and Min-Max Fairness With Applications[J]. IEEE/ACM Transactions on networking,2007,15(5) 1073-1083.
    [118]徐童,廖建新.基于分段线性函数的广义效用max-min公平分配算法研究[J].通信学报,2006,27(10):25-30.
    [119]S.Avinash,K.Bhaskar.Maximizing network utilization with max-min fairness in wireless sensor networks[C]. Modeling and Optimizat ion in Mobile, Ad Hoc and Wireless Networks and Workshops,2007,1-9.
    [120]R.Nagarajan,J.Kurose and D.Towsley. Approximation Techniques for Computing Packet Loss in Finite-Buffered Voice Multiplexers[J]. IEEE Journal on Selected Areas in Communications,1991,9(3):368-377.
    [121]盛友招.排队论及其在现代通信中的应用[M].人民邮电出版社,2007.
    [122]F.Kelly,A.Maulloo,and D.Tan. Rate control for communicaiton networks:shadow prices,proportinal fairness and stability[J]. Journal of the Operational Research Society,1998,49 (3):237-252.
    [123]Z.Cao,E.Zegura. Utility max-min:an application-oriented bandwidth allocation scheme[C].INFOCOM'99,1999,793-801.
    [124]J.Cho,S.Chong. Utility Max-Min Flow Control Using Slope-Restricted Utility Functions[J].IEEE Transactions on Communicat ions,2007,55(5):963-972.
    [125]W. Fang, N. Seddigh, B. Nandy. A time-sliding window three colour marker (TSWTCM) [S]. IETF, RFC 2859,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700