用户名: 密码: 验证码:
移动分组业务流量规律及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能终端的普及、社区网络和即时通信等OTT应用的兴起,国内移动互联网市场正蓬勃发展。与网络技术革新、网络流量增长、网络规模扩张趋势不符的是运营商的ARPU值下降、网络质量下降,电信运营商在移动互联网时代面临被成为流量管道的风险。近年来,各运营商已强烈认识到对移动分组业务流量深入理解的必要性,尤其是从现网真实数据中挖掘基本的流量规律,提升现有网络的资源利用率,让“管道”智能化。当前国内移动分组业务网络处于3G网络增长时期,已部署的GPRS和EGPRS网络由于其既有用户规模及网络容量在未来相当长一段时间仍然不会退出国内市场。
     在此背景下,本文基于以被动测量方式采集的国内GPRS/EGPRS现网的海量真实数据,研究了移动分组业务流量分布的一些基本问题,致力于提供改善国内当前移动无线资源占用及网络性能且工程上易操作的方法。
     本文的主要研究内容和创新点如下:
     (1)基于IP测量的通用移动分组业务数据采集软件框架
     电信运营商有大量基于现网真实流量数据的测量与分析需要。随着网络技术演进、2/3G及LTE网络并存等原因,通信网待测量的接口协议栈种类繁多,为测量软件快速部署及维护都提出了严峻考验。受益于全网IP化趋势,本文创新性的提出了通用的模块化数据测量软件框架。该框架主要有三个特色:
     插件式的报文解析:相同协议插件只实现一次,在不同协议栈环境多次出现时只需重复调用。可灵活配置不同协议插件的连接关系以适配不同协议解析路径的需求。
     通用的控制面信令匹配处理模块:通过总结Gb接口各主要控制面信令过程的特点,将通信网信令抽象为通用字段(小区、用户、时间、方向)与各信令特色字段,只需设计少数几种匹配逻辑就可以适配绝大多数信令监测场景的需求。
     用户面处理模块可以根据配置准则将用户面流量汇聚成通用的5元组流记录,可将通用字段与控制面信令记录关联,满足实时查询的分析需要。
     (2)移动分组业务流量分布与无线资源占用的关联算法
     传统研究工作对移动分组业务流量分布与资源占用的分析是独立的或者不全面的。得益于研究团队的数据测量优势,本文采集了2012年国内某城市中心城区连续30个小时近2800个GPRS/EGPRS小区的Gb接口全报文数据,全面分析了当下移动分组业务流量的协议构成。将空中接口传输的流量划分为控制面开销、协议开销和用户净荷三个部分,其中控制面开销包括GMM/SM信令,协议开销包括协议累积头部、TCP控制消息以及重传。并创新性的提出了一组分析算法得出各部分流量在不同编码方案下的无线资源占用情况。研究发现:
     在流量构成方面:用户面流量占总空口流量99%以上,其中95%流量基于TCP协议,3%流量基于UDP协议;控制面流量占总空口流量不足1%。
     在无线资源占用方面:
     对于PDTCH资源,TCP和UDP协议开销占到总资源消耗的30%,GPRS控制面开销可忽略不计。协议开销大的主要原因是用户面报文净荷普遍较小,TCP纯控制报文的流量比例高。
     对于CCCH资源,本文创新性的提出了在Gb接口还原TBF及判定TBF建立场景的算法,并分析了算法的有效性。发现单次传输不高于100字节的小流量TBF约占总TBF建立数的40%。当TBF延时释放阈值从1s增加至l0s后,小区并发TBF数并未显著提高,但CCCH资源可节省20%。这说明当CCCH信道资源紧张时,可在信道扩容、业务提供商调整心跳频率之外,在网络侧调整TBF延时释放阈值通过减少TBF建立数来缓解信道压力。
     (3)移动分组业务的小区-时间流量分布模型
     通过分析移动分组域核心网全天的小区5分钟真实流量数据,得出各移动小区在一天内5分钟粒度的分组业务到达流量可用指数分布较好拟合的结论。以上研究说明大多数小区在大多数时段处于低速状态,高突发流量主要集中在少数小区少数时段。本研究还使用了在不同地域和不同采集时间的样本验证了服从指数分布具有一定普遍性。以上研究有助于工程和研究人员通过简单参数估算便快速了解现网GPRS/EGPRS小区在全天的流量表现。
     (4)移动分组业务网络容量性能分析
     基于现网实测的小区5分钟真实流量数据及BSSGP信令监测,分析了GPRS网络的丢包率及影响因素,研究发现LLC帧丢弃率与小区并发用户数有正相关性,与小区5分钟通过业务量相关度不大。以上研究说明当前小区容量的瓶颈在于并发用户数受限而不是信道带宽受限,在小流量用户占主流的大格局下,应适当调高小区的并发TBF数上限以降低丢弃率。研究同时发现小区重选导致的丢弃率与小区并发用户数及小区5分钟通过业务量相关度均不大。这说明小区重选在GPRS/EGPRS体制下并未作为小区容量均衡的手段,因此分析GPRS网络拥塞可以主要监测LLC帧丢弃率指标。
Domestic mobile Internet market is booming with the widespread use of intelligent terminals and the popularity of OTT (Over the Top) applications such as social network or instant message. Does not match with the innovation of network technology and growth of network traffic and expansion of network capacity, there are declines in the user's ARPU and the quality of the network, telecom operators are facing the risk of becoming a traffic pipe in the age of mobile internet. These years, various carriers have strongly recognized the necessity for deep understanding of the mobile packet service traffic, especially for mining basic traffic rules from the existing network real data, to enhance the utilization of existing network resources and make the "pipe" intelligent. Nowadays, domestic operators'mobile packet networks are under the deployment and expansion of3G network, for the existing network capacity and users, GPRS and EGPRS network will still on service for a long time.
     In this context, base to huge amounts of real data collected by passive measurement technology from one domestic operator's on service GPRS/EGPRS network, this paper researches on the basic issues of mobile packet traffic distribution, dedicated to provide easy-operated methods to improve the wireless resource consumption and network performance for domestic mobile telecom operators in current situation.
     The main research contents and innovations are as follows:
     (1) Based on IP-based measurement, this paper puts forward an universal software architecture for mobile packet service data acquisition system
     Telecom operators have to do extensive testing and analysis based to the real traffic data from their network. Due to the evolution of network technology and coexist of2/3G and LTE network, there are so many interfaces and communication protocol stacks need to be measured in communication network. These result to big challenge for rapid deployment of measurement software and easily maintenance. Benefit from the trend that the whole network equipments are becoming to support IP protocol, this paper innovatively puts forward an universal-model based measuring software framework. The framework has three main features:
     Plug-in for data packet parsing:Plug-in for one protocol only needed to implement once, reused in different protocol stacks. Set different connections between plug-ins to fit analysis path of different protocol stacks.
     Universal processing module for matching signals in control plane: By summary the features of Gb interface main signal processes in control plane, abstract general fields (such as mobile cell, user, time, direction) and featured fields of different protocol. A few matching logic can be used to adapt the vast majority of signal monitoring demand.
     Processing module in user plane can process date packet of user plane to a common5-tuple flow record based to the matching rules, and correspond universal maintenance field to signal record in control plane to meet the needs of real-time query.
     (2) Association algorithm of mobile packet traffic distribution and wireless resources occupation
     Traditional research and analysis on the distribution of mobile packet traffic and resource consumption is fragmented or incomplete. Thanks to the research team's advantage at data measurement and collection, this paper based to nearly2800GPRS/EGPRS cells'Gb interface packet data collected during in continuing30hours at urban centers of one city in China in2012, analyzed the composition of protocols in current mobile packet traffic, divides the traffic into three parts(the control plane overhead, protocol overhead and user pay load), proposes a set of analysis algorithms to find out wireless resource consumption of each part of the traffic in different encoding scheme. The study finds out:
     In terms of the composition of traffic:user plane traffic accounted for more than99%of the overall traffic in wireless interface, and95%of these traffic using the TCP protocol, and3%of the traffic using the UDP protocol; control plane traffic accounted for less than1%of the overall traffic.
     In terms of the wireless resource consumption:for PDTCH resources, the overhead of TCP and UDP protocols may account for30%of the total consumption of resources; the overhead of GPRS control plane can be negligible. Protocol overhead consists of cumulative message heads, TCP control messages and retransmission messages. Large protocol overhead is mainly due to user plane packet payload is generally small and the high proportion of pure TCP control packets. For CCCH resources, this paper innovatively proposes an algorithm to restore TBF and determine the scenarios for TBF establishment, and analyzes the impact of the variable algorithm parameters, and verifies the efficiency of the algorithm. This study finds out that small flow TBF accounts for about40%of the total TBF establishment number. Small flow TBF means that in a single transmission the flow isn't more than100bytes. At the same time, heartbeat TBF accounts for about70%of the small flow TBF, paging triggered by heartbeat TBF accounts nearly three times to non-heartbeat TBF. Experiments show that when threshold of TBF release delay is increased from1s to10s, the number of concurrent TBF doesn't significantly improve, but CCCH resources can save20%. This shows that when the CCCH channel resource constraints, besides of channel expansion and heartbeat rate adjusted by service providers, telecom operators can adjust the threshold of TBF release delay to relieve the channel pressure.
     (3) Mobile packet traffic cell-time distribution model
     Derived by analyzing the real data traffic volumes of mobile packet core network per cell in5minutes during whole day, this paper finds out data packets arriving volumes per5minutes of any mobile cell has a better fit with exponential distribution. The result shows that most of cells at most time are at low speed state; and high burst traffic is mainly concentrated in a small number of cells in a few hours. This study also uses other data samples collected in different regions and at different acquisition time to verify that arriving traffic volumes obey exponentially distribution has certain universality. The research can help engineers and researchers to understand the current network GPRS/EDGE cell flow performance throughout the day by simple parameter estimation.
     (4) Mobile packet service network capacity performance analysis
     Based to5minutes real traffic data measured on the current cell, analyzes GPRS network packet loss-ratio and influencing factors, then this study finds out that LLC-discarded discard ratio has a positive correlation with concurrent number of users in a cell, and has little correlation with the volume of traffic of5minutes in a cell. The research shows that bottleneck of the current cell capacity is due to limited number of concurrent users, not due to limited channel bandwidth.Under the situation that the majority of traffic is a small flow, telecom operators should increase the upper limit of concurrent TBF appropriately to reduce discard ratio. The study also shows that the discarded ratio of cell reselection has little correlation with concurrent number of users in a cell and the volume of traffic of5minutes in a cell. This discovery means that cell reselection hasn't been used for a method to balance cell capacity in GPRS/EGPRS system. As cell reselection discarded has nothing to do with network capacity congestion, analysis on GPRS network congestion can mainly focus on monitoring LLC-discarded discard ratio.
引文
[1]Mobile data traffic surpasses voice, http://www.ericsson.com/thecompany/press/releases/2010/03/1396928,2010.
    [2]三运营商统一移动支付标准强调价值链合作,中国信息产业网,http://www.cnii.com.cn/telecom/2013-02/27/content_1098975_2.htm,2013.
    [3]3GPP,TS 22.034,V11.0.0,"Services and System Aspects;High Speed Circuit Switched Data (HSCSD);Stage 1;(Release 11)",2012.
    [4]Brasche G. Walke B., "Concepts, services, and protocols of the new GSM phase 2+ general packet radio service", IEEE Communication Magazine, vol.35(no.8), pp.94-104,1997.
    [5]Ho J., Zhu Y. Madhavapeddy S., "Throughput and buffer analysis for GSM general packet radio service (GPRS)", in Wireless Communications and Networking Conference(WCNC), New Orleans, LA,1999,1427-1431.
    [6]3GPP,TS 23.060,V7.11.0,"General Packet Radio Service (GPRS);Service description;Stage 2(Release 7)",2011.
    [7]Ni S., "GPRS network planning on the existing GSM system", in Global Telecommunications Conference(GLOBECOM'00), San Francisco, CA, 2000,1432-1438.
    [8]Roslan S., Rizaudin S. M. Hasnain A., et al., "Preliminary study on GPRS throughput at Northern Region of Malaysia BSC network", in Asia-Pacific Conference on Applied Electromagnetics, (APACE 2007), Melaka,2007, 1-5.
    [9]Othman A. K., Zakaria M. Ab Hamid K., "TCP performance measurement in different GPRS network scenarios", in Asia-Pacific Conference on Applied Electromagnetics, (APACE 2007), Melaka,2007,1-5.
    [101]Prokkola J., Perala P. H. Hanski M., et al., "3G/HSPA performance in live networks from the end user perspective", in IEEE International Conference on Communications, (ICC'09), Dresden,2009,1-6.
    [11]Chakravorty R., Cartwright J. Pratt I., "Practical experience with TCP over GPRS", in Global Telecommunications Conference, (GLOBECOM'02), Taipei,2002,1678-1682.
    [12]Goff T., Moronski J. Phatak D. S., et al., "Freeze-TCP:A true end-to-end TCP enhancement mechanism for mobile environments", in Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. (INFOCOM 2000),2000,1537-1545.
    [13]Chen X., Wang W. Wei G., "A measurement based uplink packet latency analysis in GPRS network", in International Conference on Communication Software and Networks, (ICCSN'09),2009,106-110.
    [14]Ricciato F., Hasenleithner E. Romirer-Maierhofer P., "Traffic analysis at short time-scales:an empirical case study from a 3G cellular network", IEEE Transactions on Network and Service Management, vol.5(no.1), pp.11-21,2008.
    [15]Vacirca F., Ricciato F. Pilz R., "Large-scale RTT measurements from an operational UMTS/GPRS network", in First International Conference on Wireless Internet,2005,190-197.
    [16]Kilpi J. Lassila P., "Micro-and macroscopic analysis of RTT variability in GPRS and UMTS networks",Networks, pp.1176-1181, Springer,2006.
    [17]Benko P., Malicsko G. Veres A., "A large-scale, passive analysis of end-to-end TCP performance over GPRS", in Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies(INFOCOM 2004), Hong Kong,2004,1882-1892.
    [18]Tan W. L., Lam F. Lau W. C., "An empirical study on 3G network capacity and performance", in 26th IEEE International Conference on Computer Communications. IEEE, Anchorage(INFOCOM 2007), AK,2007, 1514-1522.
    [19]Ricciato F., Vacirca F. Svoboda P., "Diagnosis of capacity bottlenecks via passive monitoring in 3G networks:an empirical analysis", Computer Networks, vol.51(no.4), pp.1205-1231,2007.
    [20]Svoboda P. Ricciato F., "Analysis and detection of bottlenecks via TCP footprints in live 3G networks", in 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, (WiOPT 2008), Berlin,2008,37-42.
    [21]Ricciato F., Vacirca F. Svoboda P., "Diagnosis of capacity bottlenecks via passive monitoring in 3G networks:an empirical analysis", Computer Networks, vol.51(no.4), pp.1205-1231,2007.
    [22]Pang Q., Bigloo A. Leung V. C. M., et al., "Performance evaluation of retransmission mechanisms in GPRS networks", in Wireless Communications and Networking Conference, (WCNC 2000), Chicago, IL, 2000,1182-1186.
    [23]Meyer M., "TCP performance over GPRS", in Wireless Communications and Networking Conference(WCNC1999), New Orleans, LA,1999,1248-1252.
    [24]Ajib W. Godlewski P., "Acknowledgment Operations in the RLC Layer of GPRS", in IEEE International Workshop on Mobile Multimedia Communications(MoMuC'99), San Diego, CA,1999,311-317.
    [25]3GPP TS 44.060 V7.24.0, "Mobile Station (MS)-Base Station System (BSS) interface;Radio Link Control/Medium Access Control (RLC/MAC) protocol (Release 7)",2011.
    [26]3GPP TS 44.064 V7.3.0, "Mobile Station-Serving GPRS Support Node (MS-SGSN);Logical Link Control (LLC) layer specification;(Release 7)", 2008.
    [27]Wang Z., Qian Z. Xu Q., et al., "An untold story of middleboxes in cellular networks", SIGCOMM-Computer Communication Review, vol.41 (no.4), pp.374,2011.
    [28]RFC 1631-The IP network address translator (NAT),1994.
    [29]Alcock S., Nelson R. Miles D., "Investigating the impact of service provider NAT on residential broadband users", in Infocom2010, San Diego, CA, USA, 2010.
    [30]RFC1122-Requirements for Internet Hosts-Communication Layers,1989.
    [31]RFC4787-Network Address Translation(NAT) Behavioral Requirements for Unicast UDP,2007.
    [32]RFC5382-NAT Behavioral Requirements for TCP,2008.
    [33]Andersin M., Rosberg Z. Zander J., "Soft and safe admission control in cellular networks", IEEE/ACM Transactions on Networking, vol.5(no.2), pp.255-265,1997.
    [34]Bang J., Tekinay S. Ansari N., "Performance analysis of cell switching management scheme in wireless packet communications", in Global Telecommunications Conference(GLOBECOM'01), San Antonio, TX,2001, 3639-3643.
    [35]Gurtov A., Passoja M. Aalto O., et al., "Multi-layer protocol tracing in a GPRS network", in 56th Vehicular Technology Conference(VTC 2002-Fall), Quebec,2002,1612-1616.
    [36]Zayas A. D. Gomez P. M., "Evaluation of handover implementations in commercial GPRS/UMTS/HSDPA networks", in IEEE Global Telecommunications Conference (GLOBECOM'10), Miami, FL,2010,1-5.
    [37]Paul U., Subramanian A. P. Buddhikot M. M., et al., "Understanding traffic dynamics in cellular data networks", in INFOCOM(2011), Shanghai,2011, 882-890.
    [38]Qian F., Wang Z. Gerber A., et al., "Characterizing radio resource allocation for 3G networks", in Proceedings of the 10th annual conference on Internet measurement, San Diego, CA,USA,2010,137-150.
    [39]Shafiq M. Z., Ji L. Liu A. X., et al., "Characterizing geospatial dynamics of application usage in a 3G cellular data network", in INFOCOM2012,Orlando, FL,2012,1341-1349.
    [40]Liu J., Teng J. Wang W., et al., "A large-scale field study on 3G wireless networks", in IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai,2011,780-785.
    [41]Priggouris G., Hadjiefthymiades S. Merakos L., "Supporting IP QoS in the general packet radio service", Network, IEEE, vol.14(no.5), pp.8-17,2000.
    [42]Jiang Z., Chang L. F. Shankaranarayanan N. K., "Providing multiple service classes for bursty data traffic in cellular networks", in Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000), Tel Aviv,2000,1087-1096.
    [43]Jin Y., Duffield N. Gerber A., et al., "Characterizing data usage patterns in a large cellular network", in Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks:operations, challenges, and future design, Helsinki, Finland,2012,7-12.
    [44]Shafiq M. Z., Ji L. Liu A. X., et al., "Characterizing and modeling internet traffic dynamics of cellular devices", in Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems, San Jose, California,2011,305-316.
    [45]Kitahara T., Riikonen A. Hammainen H., "Characterizing traffic generated with laptop computers and mobile handsets in GPRS/UMTS core networks", in 2010 IEEE 35th Conference on Local Computer Networks (LCN), Denver, CO,2010,1046-1053.
    [46]Xu P., Mao J. Yu C., "On traffic analysis of UMTS/GPRS system based on RRC context", in Advanced Intelligence and Awareness Internet (AIAI 2011), ShenZhen,2011,141-145.
    [47]3GPP TS 48.018 V7.13.0, "General Packet Radio Service (GPRS);Base Station System (BSS)-Serving GPRS Support Node (SGSN);BSS GPRS Protocol (BSSGP)(Release 7)",2009.
    [48]wireshark, http://www.wireshark.org/.
    [49]tcpdump, http://www.tcpdump.org/.
    [50]net monitor, https://play.google.com/store/apps/details?id=com.parizene.netmonitor&hl=z h CN.
    [51]泰克测试仪,http://www.tekcomms.com/.
    [52]Pilot Pioneer, http://www.dingli.com/en/support-faq.php?fid=3.
    [53]罗德与施瓦茨测量仪,http://www.rohde-schwarz.com.cn/index.php?id=109.
    [54]Kivi A., "Measuring mobile service usage:methods and measurement points", International Journal of Mobile Communications, vol.7(no.4), pp.415-435,2009.
    [55]陈陆颖,”高速网络中面向应用的IP流研究”,[学位论文],北京邮电大学,2011.
    [56]3GPP TS 43.064 V11.0.0, "GSM/EDGE Radio Access Network;Overall description of the GPRS radio interface;Stage 2(Release 11)",2012.
    [57]3GPP TS 23.003 V11.5.0, "Numbering, addressing and identification (Release 11)",2013.
    [58]3GPP TS 24.007 V7.0.0, "Mobile radio interface signalling layer 3;General aspects (Release 7)",2005.
    [59]3GPP TS 48.016 V7.4.0, "General Packet Radio Service (GPRS);Base Station System (BSS)-Serving GPRS Support Node (SGSN) interface;Network Service(Release 7)",2008.
    [60]Zimmermann H., "OSI reference model--The ISO model of architecture for open systems interconnection", IEEE Transactions on Communications, vol.28(no.4), pp.425-432,1980.
    [61]RFC2865-Remote authentication dial in user service (RADIUS),2000.
    [62]RFC3588-Diameter base protocol,2003.
    [63]Lin P., Lin Y. Lee T., et al., "Using string matching for deep packet inspection", Computer, vol.41(no.4), pp.23-28,2008.
    [64]Xia T. Song R., "A Method of P2P Traffic Identification on Internet Based on the Deep Flow Inspection", in International Conference on Communication Software and Networks(ICCSN'09),2009,777-780.
    [65]林平,”网络流量的离线分析”,[学位论文],北京邮电大学,2010.
    [66]3GPP TS 45.002 V11.2.0, "GSM/EDGE Radio Access Network; Multiplexing and multiple access on the radio path (Release 11)",2013.
    [67]Kalden R., Meirick I. Meyer M., "Wireless Internet access based on GPRS", Personal Communications, IEEE, vol.7(no.2), pp.8-18,2000.
    [68]Kilpi J. Mannersalo P., "Performance analysis of GPRS/GSM from the single user point of view", ILIAS-2001 Project, VTT Information Technology, Tampere, Finland,2002.
    [69]Stiliadis D., Traffic scheduling in packet-switched networks:analysis, design, and implementation, University of California, Santa Cruz,1996.
    [70]Coluccia A., D Alconzo A. Ricciato F., "On the optimality of max-min fairness in resource allocation", annals of telecommunications-annales des telecommunications, vol.67(no.1-2), pp.15-26,2012.
    [71]Ke K. W., Tsai C. N. Wu H. T., "Performance analysis for hierarchical resource allocation in multiplexed mobile packet data networks", Computer Networks, vol.54(no.10), pp.1707-1725,2010.
    [72]An Introduction to the Vodafone GPRS Environment and Supported Services",in Vodafone Ltd.,2000.
    [73]RFC793-Transmission control protocol, September 1981,2003.
    [74]3GPP TS 44.065 V7.0.0, "Mobile Station (MS)-Serving GPRS Support Node (SGSN);Subnetwork Dependent Convergence Protocol (SNDCP) (Release 7)",2006.
    [75]韩斌杰,GPRS原理及其网络优化,机械工业出版社,2003.
    [76]Cai J. Goodman D. J., "General packet radio service in GSM", Communications Magazine, IEEE, vol.35(no.10), pp.122-131,1997.
    [77]WANG H., LEI Z. LIN W., et al., "Measuring QoS in Gb interface of GPRS networks based on user session", The Journal of China Universities of Posts and Telecommunications, vol.18, pp.40-45,2011.
    [78]Forouzan B. A., TCP/IP protocol suite, McGraw-Hill, Inc.,2006.
    [79]Zang H. Bolot J. C., "Mining call and mobility data to improve paging efficiency in cellular networks", in Proceedings of the 13th annual ACM international conference on Mobile computing and networking,2007, 123-134.
    [80]Escalle P. G., Giner V. C. Oltra J. M., "Reducing location update and paging costs in a PCS network", IEEE Transactions on Wireless Communications, vol.1(no.1), pp.200-209,2002.
    [81]王健,张耀兰,”不同类型数据业务对无线资源的需求及影响分析”,中国新通信01),pp.39-45,2010.
    [82]Leland W. E., Taqqu M. S. Willinger W., et al., "On the self-similar nature of Ethernet traffic (extended version)", IEEE/ACM Transactions on Networking, vol.2(no.1), pp.1-15,1994.
    [83]Karagiannis T., Molle M. Faloutsos M., "Long-range dependence:Ten years of Internet traffic modeling", IEEE Internet Computing, pp.57-64,2004.
    [84]Willinger W., Alderson D. Doyle J. C., et al., "More normal than normal: scaling distributions and complex systems", in Proceedings of the 36th conference on Winter simulation(WSC'04),2004,130-141.
    [85]Karagiannis T., Molle M. Faloutsos M., et al., "A nonstationary Poisson view of Internet traffic",in INFOCOM2004,2004,1558-1569.
    [86]Downey A. B., "Evidence for long-tailed distributions in the internet", in Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement(IMW'01),2001,229-241.
    [87]Martin-Lof P., "The Notion of Redundancy and Its Use as a Quantitative Measure of the Discrepancy between a Statistical Hypothesis and a Set of Observational Data [with Discussion]", JSTOR, Scand J Stat, pp.3-18,1974.
    [88]Paxson V., "Empirically derived analytic models of wide-area TCP connections", IEEE/ACM Transactions on Networking (TON), vol.2(no.4), pp.316-336,1994.
    [89]Pederson S. P. Johnson M. E., "Estimating model discrepancy", Technometrics, pp.305-314,1990.
    [90]Scott D. W., "On optimal and data-based histograms", Biometrika, vol.66(no.3), pp.605-610,1979.
    [91]Cooper R. B. "Introduction to queueing theory", Macmillan New York,1972.
    [92]Itkonen J., Salomaa V. Lempiainen J., "Air interface capacity for GPRS/EDGE over GSM traffic load", in Vehicular Technology Conference, (VTC 2002-Fall), Quebec,2002,396-400.
    [93]Foschini G. J., Gopinath B. Miljanic Z., "Channel cost of mobility", IEEE Transactions on Vehicular Technology, vol.42(no.4),1993-12-30, pp.414-424,1993.
    [94]Angus I., "An introduction to Erlang B and Erlang C", Telemanagement, vol.187, pp.6-8,2001.
    [95]栗永生,”面向混合业务的信道分配方法研究”,[学位论文],吉林大学,2008.
    [96]Ross K. W. Tsang D. H., "The stochastic knapsack problem", IEEE Transactions on Communications, vol.37(no.7),pp.740-747,1989.
    [97]RFC5681-TCP congestion control,1999.
    [98]Coluccia A., Ricciato F. Romirer-Maierhofer P., "On robust estimation of network-wide packet loss in 3g cellular networks", in GLOBECOM Workshops, Honolulu, HI,2009,1-7.
    [99]Caceres R., Duffield N. G. Horowitz J., et al., "Multicast-based inference of network-internal loss characteristics", IEEE Transactions on Information Theory, vol.45(no.7), pp.2462-2480,1999.
    [100]Padmanabhan V. N., Qiu L. Wang H. J., "Server-based inference of Internet link lossiness", in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 2003,145-155.
    [101]Coluccia A., Ricciato F. Romirer-Maierhofer P., "Bayesian estimation of network-wide mean failure probability in 3g cellular networks",Computer Science,vol.6821,pp.167-178, Springer,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700