用户名: 密码: 验证码:
镁合金膜引导骨再生修复重度萎缩下颌牙槽骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种植义齿作为现在广泛应用的口腔修复治疗方法,因为具有良好的美观效果、咀嚼效能和舒适度,无基牙损伤,及对牙槽骨的保存作用,已逐渐成为医生和患者的首选治疗方案。但由于种植义齿严格的适应症,要求患者有足够的骨质及骨量,使相当一部分缺牙患者无法选择综合评价最好的修复方法。例如糖尿病、骨质疏松、牙槽骨严重吸收的患者。为了解决这部分患者的需求,口腔工作者们致力于扩展种植义齿的适应症,从而提高修复治疗效果并进一步提高患者生活水平。
     牙槽骨严重吸收的患者,由于长时间缺牙未修复,局部牙槽骨失去生理刺激,在宽度和高度上会出现进行性的吸收,导致严重骨缺损,使种植修复难以实施。针对这种情况,骨增量是切实可行的解决办法。目前可实现牙槽骨垂直增量的方法主要有骨移植、自体牙材料移植、骨牵引。自体骨移植因为骨供区的损伤,术后并发症多等问题应用受到限制;自体牙移植的材料来源为自体可拔除的健康牙体组织,不仅可选择的病例少,材料数量也很有限,临床难以推广;骨牵引技术要求高,治疗时间长且期间患者有明显不适感,同时也易发感染等并发症;人工骨移植材料来源丰富,且具有良好生物相容性和骨传导性,无上述并发症,配合引导骨再生膜应用可得到良好的修复效果。应用人工骨进行骨增量在上颌牙槽骨和下颌牙槽骨实现的难度有显著不同,由于上颌骨体部内有上颌窦,可以上颌窦底部骨板为依托,通过上颌窦提升术达到垂直骨增量的目的,但在下颌骨,牙槽骨的垂直骨增量则存在如下难点:(1)修复材料的塑形;(2)骨再生空间的建立和维持;(3)血液供应。所以本研究以引导骨再生膜为切入点,配合组织工程骨进行设计创新,以期解决上述难点。
     在理想的引导骨再生膜的探索中,可总结出其应符合如下条件:具备良好的生物安全性和生物可降解性,且具有适应的降解速度,良好的机械性能可建立并维持骨再生空间。镁合金是一种可降解的金属,具有金属的力学性能,同时具备生物可吸收性,这就使它有望成为最适宜的引导骨再生膜材料。故本研究将镁合金引入引导骨再生膜的行列,并联合组织工程骨、PRP凝胶作为修复材料,以镁合金引导骨再生膜为内部修复材料解决塑形问题,并建立和维持骨再生空间,以PRP凝胶的促血管生成作用结合周围接触骨面血来源,从内外共同解决血液供应问题,探讨此修复方法对严重吸收下颌牙槽骨的垂直增量效果。
     镁合金作为可降解的金属,又因为其物理性质接近骨皮质,成为骨相关研究方向的热点。同时,镁合金在体内降解后,产物主要为MgCO3,Mg(OH)2,CaCO3,呈碱性,与细菌形成口腔主要致病源—菌斑的常规环境相反,是否可达到抑菌作用,成为新研究方向的思考。细菌在口腔内通过局部附着、聚集、增殖,引起局部炎症或者产酸破坏口腔软硬组织。其中,与修复及种植植入体密切相关的为引起种植体周围炎的主要致病菌。镁合金在口腔内持续降解的过程中,释放的碱性产物,会对种植体周围炎致病菌有何影响,局部生物相容性如何,以及对全身的影响,都是镁合金在口腔内应用的关键问题。实验第二部分通过对这些问题的探讨,为镁合金口腔内应用进行初步探索,并为新的研究方向奠定基础。
     降解性和力学性能是镁合金的两个重要性质,其降解速度直接关系到降解产物的浓度、体内用量的评估等,也直接影响力学指标的变化,是体内应用的一个重要参数。尤其是应用于引导骨再生膜时,镁合金的用量需在成骨期的降解中,能够经受一定外力维持结构完整,达到维持骨再生空间的目的。口颌面部是一个血运十分丰富的环境,且牙槽骨受到复杂的咬合力。镁合金在此处的降解速度可能与长骨环境中有差别,其在降解过程中,力学参数的改变是否会使它在咬合力的作用下失去结构完整性,将在实验第三部分中给予评价。
     第一部分镁合金膜引导骨再生修复重度萎缩下颌牙槽骨的成骨评价
     目的:探讨镁合金作为引导骨再生膜,联合组织工程骨垂直增量修复严重吸收下颌牙槽骨的成骨效果。
     方法:
     1、首先模拟临床,建立犬下颌牙槽骨严重吸收骨缺损模型。
     2、通过全骨髓培养法获得骨髓间充质干细胞,进行分化鉴定、培养扩增、矿化诱导10天后与nHA/PLA支架共培养,构建体外三维培养组织工程骨。
     3、依据牙槽骨缺损形态设计AZ31BB镁合金GBR膜形态,并通过有限元分析优化。
     4、通过不同离心速度设置探讨二次离心法制备PRP的具体方法。
     5、动物手术:组织工程骨于术前复合PRP凝胶,实验组联合AZ31BB镁合金GBR膜共同植入骨缺损区,阳性对照组联合钛合金GBR膜,无引导骨再生膜nHA/PLA+PRP为空白对照组。
     6、术后分1-10天、10-20天、20-30天三组,分别于每组收尾两天行四环素、钙黄绿素双荧光标记,激光共聚焦显微镜下观察,计算成骨速度。
     7、术后4W、8W、12W取材,行影像学、组织学观察,评价成骨。
     结果:
     1、成功建立犬下颌牙槽骨吸收骨缺损模型,骨缺损形态及骨生理状态贴近临床,缺损区被覆软组织正常,缩短常规建模时间。
     2、从骨髓中分离培养,获得骨髓间充质干细胞,并通过分化鉴定,细胞经矿化诱导后成功构建体外三维培养的组织工程骨。
     3. AZ31BB镁合金GBR膜外形符合骨缺损形态,固位钉中心至膜中心2.4mm组具有最优抗力形,在最大500N咬合力加载下,仍可维持结构完整性。
     4、固定离心机情况下,14ml全血2200r/min离心,弃上清,约6m1余液2400r/min二次离心,制备PRP所得血小板浓度810×109/L,为原血液5-8倍,为有效浓度。
     5、镁合金组初期成骨速度显著高于钛合金对照组和空白对照组,阳性对照组与空白对照组间差异无统计意义。
     6、镁合金组与钛合金组比较,骨密度、骨小梁体积分析差异无统计学意义,镁合金材料周围成骨活跃,但镁合金组由于降解产气,使成骨体积少于钛合金组,且表面高度不规则。
     第二部分ZA31B镁合金口内应用对口腔环境的影响及生物安全性评价
     目的:探讨ZA31镁合金口腔内应用对局部环境及全身安全性的影响。方法:
     1、于修复材料植入术前、取材术前,用精密PH试纸检测材料植入局部唾液PH值,进行对比分析。
     2、于修复材料植入术前、取材术前,取犬下颌第一磨牙近中颊尖龈上、龈下菌斑,提取基因组DNA,测量DNA浓度,初步评价细菌总量;合成引物,以β-actin为内参,通过Q-PCR进行细菌相对定量检测,评价镁合金对细菌数量的影响。
     3、于修复材料植入术前、取材术前,取4ml静脉血,检测血生化指标,比较材料植入前后数值变化。
     4、修复材料植入后,每天观察软组织愈合情况。取材后,取镁合金被覆软组织,制作组织学切片,亚甲基蓝染色,镜下观察。
     5、取材时,取心、肝、脾、肺、肾组织,制作组织学切片,HE染色,镜下观察。
     结果:
     1、材料植入局部术前、术后唾液PH值略有变化,但差异无统计学意义。
     2、由DNA浓度可见,镁合金植入后与植入前相比,总菌量显著下降,差异具有统计学意义。Q-PCR结果显示,各个菌种数量在术后均有所下降,差异均具有统计学意义,其中Pg、Pi数量减少显著,可达100倍以上。菌斑中的细菌组成因各个菌数量变化的差异出现改变。
     3、血生化指标显示,术前、术后差异无统计学意义,且均在正常值范围内。
     4、术后7天,口内观有4例黏膜组织因感染未愈合,局部有红肿表现,其余犬软组织愈合情况良好,未观察到炎症反应。正常愈合组软组织切片镜下观,上皮层、固有层细胞排列正常,未观察到炎症反应。
     5、心、肝、脾、肺、肾组织切片镜下观察结果显示,主要脏器的主要结构清晰,无损伤、无病变,未见异常。
     第三部分AZ31B镁合金口内应用时降解对力学性能的影响
     目的:评价AZ31B镁合金在口腔内应用的降解速率,并测量分析降解程度对力学性能的影响。
     方法:
     1、AZ31B镁合金引导骨再生膜、固定钉电子天平称重。
     2、将矿化诱导2代的骨髓间充质干细胞与nHA/PLA共培养,复合PRP凝胶后,联合AZ31B镁合金引导骨再生膜植入骨缺损区,术后4W、8W、12W取材,取出镁合金材料,清理后充分风干,称重后与术前空白对照组对比分析。
     3、扫描电镜下观察AZ31B镁合金材料降解表面形貌,描述其在口腔内植入后降解行为。
     4、对降解前后AZ31B镁合金材料表面进行能谱分析,探讨体内降解对表面成分的影响。
     5、用牙托粉制作模具,固定AZ31B镁合金材料,用力学加载仪测量最大加载力,分析不同降解组力的变化。
     结果:
     1、AZ31B镁合金呈层状剥脱式降解。
     2、AZ31B镁合金植入体内4W降解1.42%,8W降解4.27%,12W降解11.37%。
     3、降解后,镁合金表面组分变化明显,差异具有统计学意义,其中Ca、P、K元素变化最显著。
     3、随着降解程度的增加,力学性能成比例下降,但12W组仍可承受最大咬合力。
As a widely used restoration method, dental implant has many advantages including:satisfactory masticatory function; excellent aesthetics; optimal comfort; alveolar bone protection and avoiding abutment tooth injury. However, many patients cannot take those advantages by receiving implant therapy because of its strict indications, such as adequate bone mass and acceptable bone morphology. On this issue, dentists have endeavored to extend the application of implant, for instance, in improving implant survival rate of patients with osteoporosis or diabetes.
     Patients with severely absorbed alveolar bone usually suffer from severe bone defect because of lack of physiological stimulation followed by progressive bone absorption. In this situation, bone augmentation is an effective way. Several methods for alveolar bone vertical augmentation exist including bone grafting, autogenous dentin material transplantation, and distraction osteogenesis. However, bone grafting faces the donor site morbidity. Autogenous dentin material transplantation requires extractable healthy teeth as repairing materials thus its application is limited. Distraction osteogenesis requires a longer treat period and increases the discomfortableness and the risk of infection. Bone graft material is widely available and has good biocompatibility and osteoconductive, which promise a better result in bone repairing.unlike maxillary which can gain more bone height by maxillary sinus lifting, vertical bone augmentation in severely absorbed mandible is more difficult to achieve. The key issues are the following:(1)shaping and retention of repairing material;(2) The establishment and maintenance of the bone regeneration space;(3) Blood supply.
     The ideal GBR membrane should have favorable biosafety and bio-degradability; adaptive degradation rate and adequate mechanical property for establishment and maintenance of the bone regeneration space. Magnesium alloy, as biodegradable metal with both the mechanical property and the bio-degradability, is expected to be an optimal choice for GBR membrane. In this research we introduce magnesium alloy into to the GBR membranes combining with tissue engineered bone as the novel method in restoration. In addition, we add platelet-rich-plasma (PRP) as the osteogenetic factor which can promote angiogenesis in the prosthesis and therefore, resolve the blood supply problem both internally and externally.
     As the degradable metal, magnesium alloy's physical property is close to cortical bone. Meanwhile the degradation products are alkaline MgCO3, Mg(OH)2and CaCO3. The alkaline environment is in contrast to the regular bacterial plaque environment and possibly provides the bacteriostatic factors. Intraoral bacteria can incite local inflammation or undermine the hard tissue by attachment, aggregation and proliferation. The main issue is the pathogens cause peri-implantitis. During the degradation process of magnesium alloy, the alkaline products will have effect on the pathogens. Some other issues including local biocompatibility and general influence of magnesium alloy. The second part of this research will focus on these issues and makes a tentative research on intraoral applications of magnesium alloy.
     The main properties of magnesium alloy are degradation and mechanical property. The degradation rate is directly related to the concentration of the degradation products and dosage evaluation. When introduce magnesium alloy to the GBR membranes, the dosage should maintain the integral structure in order to resist the external force during Osteogenesis period. Because of the favorable blood supply and complex biting force in oral maxillofacial area, the degradation rate in this environment may differ from that in long bones. During the degradation, the influence of changing mechanics parameters in the structural integrity under biting force will be discussed in the third part of this research.
     Part Ⅰ
     The evaluation on osteogenetic effect of magnesium alloy membrane in severely absorbed mandibular alveolar bone
     Objective:to investigate the osteogenesis effects of magnesium alloy as GBR membrane combined tissue engineered bone in vertical augmentation of severely absorbed alveolar bone。
     Methord:
     1、Establish the severely absorbed canine alveolar bone defect animal model to simulate the clinical cases.
     2、To obtain the BMSCs through whole bone marrow culture. After differentiation and identification, culture and amplification, induced mineralization for10days, the BMSCs are cultured together with nHA/PLA graft to establish tissue engineered bone.
     3、Design the shape of AZ31B magnesium alloy GBR membrane based on alveolar defect morphology.
     4、To investigate the specific method of twice centrifugation to prepare PRP through adjust the centrifugal speed.
     5、Animal surgeries:experimental group:AZ31Bmagnesium alloy GBR membrane+PRP gel+tissue engineered bone; control group:titanium alloy GBR membrane+PRP gel+tissue engineered bone; blank group:tissue engineered bone+PRP.
     6、Fluorescence label the calcium deposition10days,20days and30days after the operation. Calculate the osteoporosis rate under the laser scanning confocal microscope
     7、Harvest after4,8and12weeks and evaluate the osteogenesis effects through Radiological and histological observation
     Result:
     1、We successfully establish the severely absorbed canine alveolar bone defect animal model. The morphology and physiological status approximate clinical situations.
     2、The BMSCs are obtained after induced mineralization to manifact the tissue engineered bone.
     3、The shape of AZ31B magnesium alloy GBR membrane is coincidence with that of the bone defect. When the distance from the centre of screw to the centre of the membrane is2.4mm, the resistance reached the maximum, which can maintain the whole structure under500N's biting force.
     4、To centrifugate14ml whole blood in speed of2200r/min. To decant the supernatant. The remaining liquid is conducted to the second centrifugation. The concentration of PRP received is810×109/L,(6times of that of original whole blood),which meet the criterion of5-8times.
     5、In early stage, the osteogenesis rate in magnesium alloy group is significantly higher than other two groups. No statistical difference founded between the positive control and the blank group.
     6、No statistical difference in bone density or Trabecular bone volume is founded between titanium alloy group and the magnesium alloy group. Although the osteogenesis is more active around the magnesium alloy, but the volume of new formed bone is less than that in titanium alloy group and exhibit highly irregular charistic because of the gas generated during magnesium degradation.
     Part2the effect of the application of AZ31B magnesium alloy on the oral environment and evaluation of its biological safety
     Objective:To investigate the effect of the application of AZ31B magnesium alloy on local environment and the safety throughout the body.
     Methods:
     1、Test and analysis the PH value of saliva with short range PH paper both before implantation and harvest procedure.
     2.To collect the supragingival and subgingival dental plaque of the first mandible molar in canine. Extract the genomic DNA, measure the DNA concentration, estimate the amounts of bacteria. To evaluate the impact of magnesium alloy on the amount of bacteria
     3、Draw venous blood4ml both before implantation and harvest procedure. Evaluate the changes in blood biochemical indexes.
     4、Observe the Healing characteristics of soft tissues after implantation. The soft tissues adhered to magnesium alloy are observed by using tissue sectioning under microscope.
     5、The tissues of heart, liver, spleen, lung and kidney are also observed using tissue sectioning (HE staining) under microscope.
     Result:
     1、The PH value of saliva with short range PH paper has a slightly change before and after implantation. However the difference is not statistically significant.
     2、The result of Q-PCR shows that the amounts in all sorts of bacteria are lower after the procedure. The differences were all statistically significant, especially Pg and Fn, the amount of which reduced more than100times.
     3、No statistical difference in blood biochemical indexes was founded before and after the procedure, and both are within the normal range.
     4、Mucous failed to heal in4cases7days after the procedure because of infection and presents local swelling. All other tissues healed well without inflammatory reaction. Normal cell arrangement is observed in both epithelial layer and固有层under microscope without inflammatory reaction.
     5、No damage, lesion or other abnormal founded in heart, liver, spleen, lung and kidney according to the results of tissue sectioning Part Ⅲ Effect of AZ31B magnesium alloy intraoral degradation on its mechanical property
     Objective:To investigate the intraoral degradation rate of the AZ31B magnesium alloy and analyze the effect of degradation level on its mechanical property.
     Methods:
     1、To weigh the AZ31B magnesium alloy GBR membrane and the screws with the electronic balance.
     2、The methods of preparation, implantation and harvest see part Ⅰ. The magnesium alloy materials harvested are weighed after cleaning and air-drying and analyzed compared with the blank control group.
     3、To observe the surface degradation morphology of the AZ31B magnesium alloy material and to describe the detail of its intraoral degradation.
     4、To conduct the energy spectrum analysis on the surface of AZ31B magnesium alloy and to investigate the effects of intraoral degradation on the surface substances.
     5、To manufacture the mould with denture acrylic for AZ31B magnesium alloy material fixation and to measure the maximum loading force.
     Result:
     1、The degradation process of AZ31B magnesium alloy are proved to be lamellar and exfoliative.
     2、The degradation rate of AZ31B magnesium alloy are1.42%in4weeks,4.27%in8weeks,11.37%in12weeks postoperatively
     3、The surfacing substances of the magnesium alloy are significantly changed, especially the amount of Calcium phosphorus and kalium
     4、The mechanism property of magnesium alloy descends during degradation, yet the maximum biting force can still be withstand12weeks after implantation.
引文
[1]K.-H. Bormann, M.M. Suarez-Cunqueiro, C.von See, et al. Sandwich osteotomy for vertical and transversal augmentation of the posterior mandible. Int. J. Oral Maxillofac. Surg.2010; 39:554-560.
    [2]谢庆华,阮成群.取髂骨植骨术的并发症及处理[J].中医正骨,2008,20(2):34-35。
    [3]钟里军.髂骨取骨术并发症分析[J].中华现代外科学杂志,2009,6(4):243-244。
    [4]Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by an osteopromotive mem-brane technique. A controlled clinical study. Clin Oral Implants Res 1991:2:159-165.
    [5]孙菲,陆尔奕。即刻种植的骨缺损动物模型。口腔材料器械,2011,20(1):40-44。
    [6]梁立民,柳春明,宋儒耀等。应用外科方法建立幼犬牙槽裂模型的研究。口腔颌面外科杂志2004,14(3):219-222。
    [7]李守宏,尚政军。保持拔牙术后牙槽窝骨量的研究进展。现代口腔医学杂志。2012,26(3):195-200。
    [8]Devlin H, Sloan P. Early bone healing events in the human extraction socket. Int J Oral Maxillofac Surg.2002;31(6):638-641.
    [9]唐琪,王仁飞,陈莉丽。实验性牙槽骨吸收动物模型的建立。浙江实用医学。2008,13(1):11-12。
    [10]Schou S, Holmstru P, Jorgensen T, et al. Anorganic porous bovine-derived bone mineral (Bio-Oss) and ePTFE membrane in the treatment of peri-implantitis In cynomolgus monkeys. Clin Oral Implant Res.2003; 14(5):535-547.
    [11]王磊,黄远亮,潘可风.实验性种植体周围骨缺损动物模型的建立[J].中国组织工程研究与临床康复,2009,13(33):6561—6564.
    [12]Darby I, Chen S, Depo R.Ridge preservation:what is it and when should it be considered, Australian Dental journal.2008,53 (1):11-21。
    [13]Daniele cardaropol, Giuseppe cardaropoli. Presentation of the postextraction alveolar ridge:A clinical and histologic study. J Periodontic Restorative Dent.2008, 28 (5):469-477.
    [14]Botticelli D, Berglundh T, Buser D, et al. The influence of a biomaterial on the closure of marginal hard tissue defect adjacent to implants. An experimental study in the dog[J].Clinical Oral Implants Research,2004,15(3):285-292.
    [15]鄂玲玲,王东胜,师占平等。一种新型的兔牙槽骨缺损模型的建立。中华老年口腔医学杂志。2011,9(3):137-140.
    [16]Sabin M A, Blake G M, Maclaughlin Black S M, et al. The Accuracy of volumetric bone density measurements in dual X-ray Absorptiometry. Caciffissue Int, 1995,56(3):210.
    [17]Wikesjo UM, Sorensen RG, Kinoshita A, et al. rhBMP-2/a BSM induces significant vertical alveolar ridge augumentation and dental implant osseointegration. Clinic Implant Dentistry and Related Research.2002;4(4):174-180.
    [18]陈志方。骨组织工程支架材料充填下颌阻生智牙拔牙窝的临床效果。上海口腔医学2011,20(1):93-96.
    [19]王健,胡秀莲,林野。Bio-oss和Bio-oss骨胶原保持牙槽骨量的临床研究。现代口腔医学杂志,2009,23(1):4-6.
    [20]高晓蔚,李珂。两种骨代材料引导组织再生用于牙槽嵴保存的可行性。中国组织工程研究。2012,16(29):5384-5388.
    [21]王承勇,卢萌,林海等。富血小板凝胶与拔牙窝新骨形成和骨量保持[J].中国组织工程研究与临床康复,2011,15(25):4638-4642.
    [22]余兰,吕亚林,丁芳等。拔牙窝位点保存的初步临床观察。中华老年口腔医学杂志。2012,10(2):86-89.
    [23]Hom-Lay Wang, Yi-Pin Tsao. Histologic evaluation of socket augmentation with mineralized human aIIograft.Int J Periodontics Restorative Dent.2008,28:231-237.
    [24]胡杨,马莹,何惠宇。p-磷酸三钙支架材料即刻植入对保存剩余牙槽嵴的影响[J].中国组织工程研究与临床康复,2011,15(16):2905-2910.
    [25]隋良朋,李建华,李海涛等.。氨基多糖羟基磷灰石复合人工骨充填拔牙窝临床观察[J].北京口腔医学,1996,4(4):164-165.
    [1]张广道,黄晶晶,杨柯,等。动物体内植入镁合金的早期实验研究。金属学报。2007,43(11):1186-1190.
    [2]刘峰,黄迪炎,马杰,等。下颌骨缺损钛重建板修复的生物力学分析。中国组织工程研究与临床康复。2010,14(35):6504-6507。
    [3]季彤,铁英,王冬梅,等。下颌骨缺损腓骨重建的三维有限元应力分析。华西口腔医学杂志。2009,27(2):143-146。
    [4]4Mauricio Assuncao Pereira,Paulo Henrique Luiz de Freitas,Tais Frenzel da Rosa, et al. Understanding distraction osteogenesis on the maxillofacial complex:a literature review. J Oral Maxillofac Surg.2007,65:2518-2523.
    [5]Watzek G, Zechner W, Crismani A, et al. A distraction abutment system for 3-dimensional distraction osteogenesis of the alveolar process:technical note. Int J Oral Maxillofac Implants.2000,15:731.
    [6]郑苍尚,周立伟,沈倍勇.颌骨骨量不足的牙种植术研究新进展.口腔医学研究.2007,23(1):109-111.
    [7]Saulacic N, Zix J, Iizuka T. Complication rates and associated factors in alveolar distraction osteogenesis:a comprehensive review. Int J Oral Max-illofac Surg 2009; 38:210-217.
    [8]陈钢,李树春,马练等。下颌骨取骨onlay植骨改善种植骨量不足的临床研 究。口腔颌面外科杂志。2005,15(2):166-169.
    [9]Young-Kyun Kim, Su-Gwan Kim, Ju-HeeByeon, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol OralRadiolEndod 2010,109:496-503.
    [10]周磊,徐淑兰,黄建生等。嵌贴式植骨术在牙槽嵴严重吸收患者牙种植术中的应用。中国口腔颌面外科杂志。2004,2(2):70-72.
    [11]Adeyemo WL, Reuther T, Bloch W, et al. Healing of onlay mandibular bone graft covered with collagen membrane or bovine bone substitutes:A microscopical and immunohistochemical study in the sheep. Int J Oral Maxillofac. Surg,2008, 37(7):651-659.
    [12]Cheng AC, Khin NT, Luen CS, et al. The management of a severely resorbed edentulous maxilla using a bone graft and a CAD/CAM-gueded immediately loaded definitive implant prosthesis:A clinical report. The Journal of Prosthetic dentistry. 2008,99(2):85-90.
    [13]Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by an osteopromotive mem-brane technique. A controlled clinical study. Clin Oral Implants Res 1991:2:159-165.
    [14]费伟,尹明平,李铮,等。纯钛膜结合自体骨修复种植牙美观区骨缺损的临床研究。中国口腔种植学杂志。2005,10(3):135-137。
    [15]张涛,尹庆水。镁合金及其涂层的生物学性能研究进展。中国骨科临床与基础研究杂志。2011,3(3):224-227.
    [16]Christoph Castellani, Richard A. Lindtner, Peter Hausbrandt. Bone-implant interface strength and osseointegration:Biodegradable magnesium alloy versus standard titanium control. Acta Biomaterialia 2011 (7) 432-440.
    [17]包崇云,陈治清。引导骨再生膜及其应用研究进展。中国口腔种植学杂志。2000,5(2):95-97.
    [18]Geng F, Tan LL, Jin XX, et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J Mater Sci Mater Med. 2009,20(5):1149-1157.
    [19]Smith MR, Atkinson P, White D, et al. Design and assessment of a wrapped cylindrical Ca-P AZ31B Mg alloy for critical-size ulna defect repair. J Biomed Mater Res B Appl Biomater.2012,
    [20]Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater.2010,6(5):1792-1799.
    [21]Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials.2009,30(8):1512-1523.
    [22]Song Y, Zhang S, Li J,et al. Electrodeposition of Ca-P coationgs on biodegradable Mg alloy:in vitro biomineralization behavior. Acta Biomater.2010,6(5):1736-1742
    [23]Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008;29(10):1329-44.
    [24]BinaRai,KeeHai Ho,Yang Lei,et al.Polycaprolactone-20% TricalciumPhosphate Scaffolds in Combination WithPlatelet-Rich Plasma for the Treatment ofCritical-Sized Defects of the Mandible:A Pilot Study.J Oral MaxillofacSurg, 2007,65:2195-2205.
    [25]Zechner W, Tangl S, Tepper QFurst G, Bernhart T, HaasR, Mai-lath G, WatzekG. Influence ofplate-let-rich plasma on osseous healing ofdental implants:a histologic and histo-morphometric study in minipigs. Int JOral Maxillofac Implants 2003:18:15-22.
    [26]Tae-Min You, Byung-Ho Choi, JingxuLi,et al. The effect of platelet-rich plasma on bone healing aroundimplants placed in bone defects treated with Bio-Oss:apilot study in the dog tibia. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2007;103:e8-el2
    [27]Batista MA, Leivas TP, Rodrigues CJ, Arenas GCF, Belitardo DR, Guarniero R. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia. Clinics.2011;66(10):1787-1792.
    [28]Weibrich G, Hansen T, Kleis W, et al.Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone,2004,34(6):665-667.
    [1]董维理,周影虹,李成章等。自然牙菌斑生物膜模型的构建及应用。上海口腔医学2010,19(2):196-201
    [2]姬亚昆.激光共聚焦扫描显微镜及其在牙菌斑生物膜研究中的应用[J].国际口腔医学杂志,2006,33(4):281-283.
    [3]Groessner -Schreiber B, Hannig M, Duck A, et al Do different implant surfaces exposed in the oral cavity of hum an s show different biofilm com positions and activities[J]. Eur J Oral Sci 2004,112(6):516-522.
    [4]Hiroshi Maeda a, Chiyo Fujimoto a, Yasuhiro Haruki, et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology and Medical Microbiology,2003 (39):81-86.
    [5]Evanice Menezes Marcal VIEIRA, Suzane A. RASLAN, Thais Cristina WAHASUGUI, et al. Occurrence of aggregatibacter actinomycetemcomitans in Brazilian Indians from umutina reservation, mato grosso, Brazil. J Appl Oral Sci. 2009,17(5):440-445.
    [6]Mi-Sun Kang, Hee-Sook Jang, Jong-Suk Oh, et al. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with fusobacterium nucleatum. The Journal of Microbiology.2009,47(6):760-767.
    [7]樊明文,牙体牙髓病学。第二版,人民卫生出版社:19
    [8]李成章。牙周生物膜的特性及其控制。国外医学,口腔医学分册,2004,31 (11):438-440.
    [9]Suchett-Kaye G, Morrier JJ, Barsotti O. Clinical usefulness of microbiological diagnostic tools in the management of periodontal disease. Res Microbiol,2001, 152(7):631-639.
    [10]Shaddox LM, Walker C. Microbial testing in periodontics:value,limitations and future directions. Periodontol 2000,2009,50(1):25-38.
    [11]裴振华,施生根,牛忠英等。三种牙周细菌定量方法的比较。北京口腔医学。2012,20(6):327-330.
    [12]Soon-Nang Park, Jae-Yoon Park, Joong-Ki Kook. Development of Porphyromonas gingivalis-specific quantitative real-time PCR primers based on the nucleotide sequence of rpoB. The Journal of Microbiology.2011,49(2):315-319.
    [13]Slots J., A. Ashimoto, M.J. Flynn, et al. Detection of putative periodontal pathogens in subgingival specimens by 16S ribosomal DNA amplification with the polymerase chain reaction. Clin. Infect. Dis.1995,20:304-307.
    [14]Ashimoto, A., C. Chen, I. Bakker, et al. Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol. Immunol.1996,11:266-273.
    [15]Conrads, G., T.F. Flemmig, I. Seyfarth, et al. Simultaneous detection of Bacteroides forsythus and Prevotella intermedia by 16S rRNA gene-directed multiplex PCR. J. Clin. Microbiol.1999,37:1621-1624.
    [16]Tran, S.D., J.D. Rudney. Improved multiplex PCR using conserved and species-specific 16S rRNA gene primers for simultaneous detection of Actinobacillus actinomycetemcomitans, Bacteroides forsythus, and Porphyromonas gingivalis. J. Clin. Microbiol.1999,37:3504-3508.
    [17]孙红钢,张玉杰,肖水清。正畸过程中伴防线菌聚集杆菌的检测及其毒力因子细胞致死性膨胀毒素的研究。现代口腔医学杂志。2011,25(5):355-358.
    [18]Hwan Seon Shin, Min-Jung Kim, Hwa-Sook Kim, et al. Development of strain-specific PCR primers for the identification of Fusobacterium mucleatum subsp. fusiforme ATCC 51190T and subsp. vincentii ATCC 49256T. Anaerobe.2010,16: 43-46.
    [19]钟德钰,宋文斌,袁昌青,等。采用PCR方法鉴别伴放线放线杆菌的6种血清型。实用口腔医学杂志。2007,23(6):855-858.
    [20]周婷,徐屹,丁一,等。慢性牙周炎龈下菌斑中五种牙周可疑致病微生物的分布。华西口腔医学杂志。2007,25(5):470-473.
    [21]刘正,口腔生物学。人民卫生出版社。2000:51
    [22]褚敏,梁景平。牙体充填材料充填前后菌斑内细菌组成比较。口腔材料器械杂志。1999,8(3):128-130。
    [23]Fontenier G, Freschard R, Mourot M. Study of the corrosion in vitro and in vivoof magnesium amodes involved in an implantable bioelectric battery. Med BiolEng 1975;13(5):683-9.
    [24]Seppa L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of streptococcus mutans ingbritt. Caries Res.1992,26:434.
    [25]Darveau R P, Tanner A, Page R C. The m icrob ia 1 challenge in per iodontitis[J]. Per iodonto,11997,14 (1):12-32.
    [26]Roberts GL. Fusobacterial infections:an underestimated threat. Br J Biomed Sci. 2000;57:156-62.
    [27]Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth ofPorphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology 2002;148:467-72.
    [28]黄香娥,韩谅,肖水清。多重PCR技术在治疗患者口腔细菌检测中的应用。山东大学学报(医学版)。2010,48(6):76-83.
    [29]杨禾。孟姝,赵蕾,等。应用实时荧光定量PCR定量检测慢性牙周炎患者龈下菌斑中牙龈卟啉单胞菌。现代口腔医学杂志。2008,22(2):143-146.
    [1]1 Frank Witte. The history of biodegradable magnesium implants:A review. Acta Biomaterialia 2010 (6) 1680-1692.
    [2]2Hoi Man Wong, Kelvin W.K. Yeung, Kin On Lam,et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010 (31) 2084-2096.
    [3]Vormann J. Magnesium:nutrition and metabolism. Mol Aspects Med 2003;24:27-37.
    [4]Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res A 2009;88(2):359-69.
    [5]Christoph Castellani, Richard A. Lindtner, Peter Hausbrandt. Bone-implant interface strength and osseointegration:Biodegradable magnesium alloy versus standard titanium control. Acta Biomaterialia 2011 (7) 432-440.
    [6]Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-63.
    [7]Pybus J. Determination of calcium and magnesium in serum and urine by atomic absorption spectrophotometry. Clin Chim Acta 1968;23(2):309-17.
    [8]张宗扬,艾红军。AZ31BB可降解镁合金的遗传毒性评价:鼠伤寒沙门氏菌营养缺陷型回复突变试验。中国组织工程研究与临床康复。2008,12(32):6315-6318.
    [9]袁青玲,阎钧,郑起,等。镁锌合金植入大鼠盲肠对肝肾功能电解质的影响。材料导报:研究篇。2010,24(12):42-44.
    [10]张涛,尹庆水。镁合金及其涂层的生物学性能研究进展。中国骨科临床与基础研究杂志。2011,3(3):224-227.
    [11]Lambotte A. L'utilisation du magnesium comme materiel perdu dansl'osteosynthe'se. Bull Me'm Soc Nat Chir 1932,28:1325-1334.
    [12]Saris NEL. Magnesium:nutrition and metabolism. Mol Aspects Med.2003, 24:27-37.
    [13]杨柯,谭丽丽,任伊宾,等。AZ31B镁合金的生物降解行为研究。中国材料进展。2009,28(2):26-30.
    [14]王冬平,曾林,尚世臣。实验动物血液生理生化参考手册。科学出版社。2011:151-153.
    [15]Witte F, Abeln I, Switzer E, et al. Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A.2008,86(4):1041-1047.
    [16]陈旭琼,尹庆水,张余,等。镁铝合金最大剂量的致敏试验。中国组织工程研究与临床康复。2010,14(6):2899-2902.
    [1]Rostock P.Ist das Magnesium als Naht- und Schienungsmaterial fur Knochenoperationen geeignet? Arch Orthop Trauma Surg 1937,38(3):486-92.
    [2]Hoi Man Wong, Kelvin W.K. Yeung, Kin On Lam, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010, (31):2084-2096.
    [3]Chen F, Zhou H, Yao B, Qin Z, Zhang Q. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31B magnesium alloy surfaces. Surf Coat Technol 2007,201:4905-4908.
    [4]S.F. Fischerauer, T. Kraus, X.Wu, et al. In vivo degradation performance of micro-arc-oxidized magnesium implants:A micro-CT study in rats. Acta Biomater, 2013,9(2):5411-5420.
    [5]Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials:a review[J]. Biomaterials,2006,27(9):1728-1734
    [6]包崇云,陈治清。引导骨再生膜及其应用研究进展。中国口腔种植学杂志。2000,5(2):95-97.
    [7]Fontenier G, Freschard R, Mourot M. Study of the corrosion in vitro and in vivo of magnesium amodes involved in an implantable bioelectric battery. Med Biol Eng 1975;13(5):683-9.
    [8]廖燚,王勇平,何耀华,等。可降解镁合金腐蚀及生物相容性。国际骨科学杂志。2011,32(3):158-169.
    [9]Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials.2005,26(17):3557-3563.
    [10]Fontenier G, Freschard R, Mourot M. Study of the corrosion in vitro and in vivo of magnesium amodes involved in an implantable bioelectric battery. Med Biol Eng 1975;13(5):683-9.
    [11]Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials,2008,29(10):1329-1344.
    [12]张涛,尹庆水。镁合金及其涂层的生物学性能研究进展。中国骨科临床与基础研究杂志。2011,3(3):224-227.
    [13]张广道,黄晶晶,杨柯,等。动物体内植入镁合金的早期实验研究。金属学报。2007,43(11):1186-1190.
    [14]Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999,1(1):11-33.
    [15]Levesque J, Hermawan H, Dube D, et al. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater.2008,4(2):289-295.
    [16]Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA:Toward guided tissue and bone regeneration:morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology 2008,96:1-11
    [1]Ulrich J, Johannes K. Reconstruction of the severely resorbed jawB:routine or exception[J]. J CraniomaxilofacSurg,2000,28:1-4。
    [2]陈宁。口腔种植技术。江苏科学技术出版社,2007:44。
    [3]Tallgren A. The continuing reduction of the residual alveolar ridges in completedenture wearers:a mixed-longitudinal study covering 25 years. J Prosthet Dent2003;89:427-35.
    [4]李守宏,.尚政军。保持拔牙术后牙槽窝骨量的研究进展。现代口腔医学杂志。2012,26(3):195-200。
    [5]朱亚丽,徐普。短种植体在后牙区的应用。中国口腔种植学杂志。2010,15(2):93-95.
    [6]Renouard F, Nisand D. Impact of implant length and diameter on survival rates.Clin Oral Implants Res.2006,17(2):35-51.
    [7]黄海云,徐欣,马跃等。后牙区短种植体种植的临床观察。中国口腔种植学杂志。2008,13(4):186-188.
    [8]Stellingsma K, Slagter AP, Stegenga B, et al. Masticatory function in patients with an extremely resorbed mandible restored with mandibular implant-retained overdentures:comparison of three types of treatment protocol. J Oral Rehabil. 2005,32(6):403-410.
    [9]任志伟,韩红娟。模板定向在牙种植中的应用。中国口腔种植学杂志,1999,4(2):84-85.
    [10]Le Gall MG, Lauret JF. In:Occlusion et function. CDP Ed.2002 Paris.
    [11]王晗,李德超,朱扬等。Ⅱ类骨质下上颌窦区垂直骨高度不足时应用短种植体长度和直径的优化分析。中国组织工程研究与临床康复。2011,15(22):4069-4072.
    [12]韩科。种植义齿。人民军医出版社。2007:
    [13]黄建生,董毅。下颌后牙区Straumann短种植体的临床效果观察。广东牙病防治。2009,17(2):60-62.
    [14]Bianchi A, Felice P, LizioG, et al. Alveolar distraction osteogenesisversus inlay bone grafting in posteriormandibular atrophy:a prospective study.OralSurg Oral Med Oral Pathol OralRadiolEndod.2008,105:282-292.
    [15]Louis PJ, Gutta R, Said-Al-Naief N, et al. Reconstruction of themaxilla and mandible with particulatebone graft and titanium mesh for implantplacement. J Oral Maxillofac Surg.2008,66:235-245.
    [16]Ferrigno N, LauretiM,FanaliS.Inferior alveolar nerve transposition inconjunction with implant placement. IntJ Oral Maxillofac Implants.2005,20:610-620.
    [17]K.-H. Bormann, M.M. Suarez-Cunqueiro, C. von See, et al. Sandwich osteotomy for vertical and transversal augmentation of the posterior mandible.Int. J. Oral Maxillofac. Surg.2010,39:554-560.
    [18]吴景泉,刘俊,柳大烈等。自体骨粉移植修复下颌骨部分缺损的组织学检测。中国组织工程研究与临床康复。2007,2(29):5661-5664.
    [19]夏景君,阎景龙,张志鹏,等.颗粒骨和块状骨对骨髓基质细胞作用的实验研 究.哈尔滨医科大学学报,2002,36(2):141-143.
    [20]Lee SH, Choi BH, Kim HS, et al. Comparison of corticocancellous block and particuate bone grafts in maxillary sinus floor augmentation for bone healing around dental implants. J Oral Surg Oral Med Oral Pathol Oral RadiolEndod,2007, 104(3):324-328.
    [21]Isaksson S, Alberius P. Maxillary alveolar ridge augmentation with onlay bone-grafts and immediate endosseous implants. J Craniomaxillofac Surg.1992, 20(1):2-7.
    [22]Orsini G, Bianchi AE, Vinci R, et al. Histologic evaluation of autogenouscalvarial bone in maxillary onlay bone grafts:a report of 2 cases. Int J Oral Maxillofac Implants.2003,18(4):594-598.
    [23]谢正旭,汤春仙,沈永玲等。自体肋骨游离移植修复下颌骨缺损的临床应用。中国现代医生。2008,46(24):145-146.
    [24]Vu, DD, Schmidt BL. Quality of life evaluation for patients receiving vascularized versus nonvascularized bone graft reconstruction of segmental mandibular defects. Journal of Oral and Maxillofacial Surgery.2008, 66(9):1856-1863.
    [25]陈钢,李树春,马练等。下颌骨取骨onlay植骨改善种植骨量不足的临床研究。口腔颌面外科杂志。2005,15(2):166-169.
    [26]Cordaro L, Amade DS, Cordaro M. Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clin Oral Implants Res.2002,13(1):103-111.
    [27]McCarthy C, Patel RR, Wragg PF, et al. Dental implants and onlay bone grafts in the anterior maxilla:analysis of clinical outcome. Int J Oral Maxillofac Implants. 2003,18(2):238-241.
    [28]齐翊,张健,哈斯巴根等。Onlay植骨术对改善齿槽嵴种植骨量重度不足的临床应用。天津医药。2008,36(6):458-460.
    [29]Schward-Arad D, Levi n L. Intraoralautogenousblockonl ay bonegrafting for extensivereconstructi on of at rophi c maxi 1 lary al veolarridges[J]. J Periodontol, 2005,76(4):636-641.
    [30]周磊,徐淑兰,黄建生等。嵌贴式植骨术在牙槽嵴严重吸收患者牙种植术中的应用。中国口腔颌面外科杂志。2004,2(2):70-72.
    [31]谢庆华,阮成群.取髂骨植骨术的并发症及处理[J].中医正骨2008,20(2):34-35.
    [32]钟里军.髂骨取骨术并发症分析[J].中华现代外科学杂志,2009,6(4):243-244
    [33]Antonio B, Paolo, V, Bruno O, et al. Deep-frozen allogeneic onlay bone grafts for reconstruction of atrophic maxillary alveolar ridges:a preliminary study. Journal of Oral and Maxillofacial Surgery.2009,67(6):1300-1306.
    [34]张志宏,刘志礼,高志增等。骨修复替代材料修复骨缺损的选择与应用。中国组织工程研究。2012,16(52):9836-9843.
    [35]曹前来,王臻,李晓娟等。大段同种异体骨移植后骨密度变化与骨折。中国临床实用医学。2009,3(11):87-88.
    [36]Cheung S, Westerheide K, Ziran B. Effecacy of contained metopoyseal and periarticular defects treated with two different demineralized bone matrix allografts. IntOrthop.2003,27(1):56-59.
    [37]郑丽纯,周延民。上置法(onlay)植骨术中块状骨应用的研究进展。口腔医学研究。2010,26(6):909-911.
    [38]P J Zecha, J. Schortinghuis, J.E. van der Wal, et al. Applicability of. equine hydroxyapatite collagen(eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats.Int. J. Oral Maxillofac. Surg.2011,40:533-542.
    [39]Tae-Min You, Byung-Ho Choi, Jingxu Li, et al. The effect of platelet-rich plasma on bone healing around implants placed in bone defects trested with bio-oss:a pilot study in the dog tibia. OralSurg Oral Med Oral PatholOralRadiolEndod.2007, 103:e8-e12
    [40]陈鹏,毛天球。活性纳米羟基磷灰石复合胶原聚乳酸材料应用于牙槽嵴扩增的研究。口腔医学研究。2008,24(3):282-284.
    [41]Elshahat A, Inoue N, Marti G, Safe I, Manson P, Vanderkolk C. Role of guided bone regeneration principle in preventing fibrous healing in distraction osteogenesis at high speed:experimental study in rabbit mandibles. J Craniofac Surg.2004;15(6):916-921.
    [42]Gottlow J:Guided tissue regeneration using bioresorbable and nonresorbable devices:initial healing and long-term results. J Periodontol 1993,64(11 Suppl):1157-1165.
    [43]文勇,徐欣。骨增量技术在口腔种植中的应用。中国口腔种植学杂志。2008,13(4):204-207.
    [44]Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by an osteopromotivemem-brane technique. A controlled clinical study. Clin Oral Implants Res 1991:2:159-165.
    [45]Adeyemo WL, Reuther T, Bloch W, et al. Healing of onlay mandibular bone graft covered with collagen membrane or bovine bone substitutes:A microscopical and immunohistochemical study in the sheep.Int J Oral Maxillofac.Surg,2008, 37(7):651-659.
    [46]Cheng AC, Khin NT, Luen CS, et al. The management of a severely resorbed edentulous maxilla using a bone graft and a CAD/CAM-gueded immediately loaded definitive implant prosthesis:A clinical report. The Journal of Prosthetic dentistry. 2008,99(2):85-90.
    [47]Sal at a LZ, Rasmusson L, Kahnberg KE. Effect s of a mechanicalbarrier on t heintegrati on of corticalonl ay bone graft s p1 aced simul-t aneousl y wi t h endosseousimpl ant [J]. Cli n Impl ant Dent Rel at Res,2002,4(2):60-68.
    [48]Alpar B, Leyhausen G, Gtinay H, Geurtsen W. Compatibility of resorbable and nonresorbable guided tissue regeneration membranes in cultures of primary human periodontal ligament fibroblasts and human osteoblast-like cells. Clin Oral Investig 2000,4:219-225.
    [49]Deppe H, Stemberger A, Hillemanns M. Effects of osteopromotive and anti-infective membranes on bone regeneration:an experimental study in rat mandibular defects. Int J Oral Maxillofac Implants.2003,18(3):369-376
    [50]Wiltfang J, Merten HA, Peters JH:Comparative study of guided boneregeneration using absorbable and permanent barrier membranes:ahistologic report. Int J Oral Maxillofac Implants 1998,13:416-421.
    [51]Zellin G, Gritli-Linde A, Linde A. Healing of mandibular defects with different biodegracable and non-biodegradable membranes:an experimental study in rats. Biamaterials.1995,16(8):601-609.
    [52]Hardwick R, Hayes BK, Flynn C:Devices for dentoalveolar regeneration:an up-to-date literature review. J Periodontol1995,66:495-505.
    [53]包崇云,陈治清。引导骨再生膜及其应用研究进展。中国口腔种植学杂志。2000,5(2):95-97.
    [54]王兴。颌骨牵引成骨技术。继续医学教育。2006,20(22):55-57.
    [55]MauricioAssuncaoPereira,Paulo Henrique Luiz de Freitas,TaisFrenzel da Rosa, et al. Understanding distraction osteogenesis on the maxillofacial complex:a literature review. J Oral Maxillofac Surg.2007,65:2518-2523.
    [56]BlockMS, BristerGD. Useof distraction osteogenesisformaxillaryadvancement. JOralMaxillofacSurg,1994,52:282-286
    [57]刘艳梅,黄建华。颌骨牵张成骨的影响因素。口腔颌面外科杂志。2003,13(4):329-331.
    [58]IlizarovGA. Clinical application of the tension stress effect for limblengthening.ClinOrthop.1990,250:8.
    [59]凌宁,王银龙。影响颌骨牵张成骨技术的主要因素。安徽医药。2008,12(9):856-858.
    [60]王兴,林野,伊彪,等.牵引成骨技术在肿瘤术后下颌骨重建中的应用.中华口腔医学杂志,2000,35(6):409-412。
    [61]李宁毅,林锡江。下颌骨垂直牵张成骨在牙种植术中的应用价值。青岛大学医学院学报。2001,37(3):176-178.
    [62]林野,王兴,李健慧等。牙槽骨垂直牵引成骨种植术的临床研究。中华口腔医学杂志。2002,37(4):253-256.
    [63]Watzek G, Zechner W, Crismani A, et al. A distraction abutment system for 3-dimensional distraction osteogenesis of the alveolar process:technical note. Int J Oral Maxillofac Implants.2000,15:731.
    [64]张陈平.下颌骨重建术.口腔颌面外科杂志,2005,15(3):215—-218.
    [65]Kunkel M, Wahlmann U, Reichert TE, et al. Reconstruction of mandibular defects following tumor ablation by vertical distraction osteogenesis using intraosseous distraction devices. Clin Oral Implants Res.2005,16:89-97.
    [66]Chiapasco M, Romeo E, Vogel G. Vertiacal distraction osteogenesis of edentulous ridges for improvement of oral implant positioning:a clinical report of preliminary results. Int J Oral Maxillofacc Implants.2001,16:43.
    [67]廖贵清,李国永,蔡斌,等.兔下颌骨放疗后牵张成骨的组织学观察.河北医科大学学报,2006,27(4):260-264.
    [68]Douglas LR, Douglas JB, Smith PJ:Intraoral mandibular distractionosteogenesis in patient with severe micrognathia secondary toTMJankylosis using a tooth and bone-anchored device (PIT device):A case report. J Oral MaxillofacSurg 2000, 58:1429.
    [69]Yamamoto H, Sawaki Y, Ohkubo H, et al. Maxillary advancement by distraction osteogenesis using osseointegrated implants. J CraniomaxillofacSurg 1997,25:186.
    [70]Suhr MAA, Kreusch TH:Technical considerations in distractionosteogenesis. Int J Oral MaxillofacSurg 2004,33:89.
    [71]郑苍尚,周立伟,沈倍勇.颌骨骨量不足的牙种植术研究新进展.口腔医学研究.2007,23(1):109-111.
    [72]Sawaki Y, Ohkubo H, Hibi H, et al. Mandibular lengthening bydistractionosteogenesis of the mandible using osseointegratedimplants and an intraoral device:A preliminary report. J OralMaxillofacSurg 1996,54:594. Yamamoto H, Sawaki Y, Ohkubo H, et al. Maxillary advancement by distraction osteogenesis using osseointegrated implants. J CraniomaxillofacSurg 1997,25:186.
    [73]Saulacic N, Zix J, Iizuka T. Complication rates and associated factors inalveolar distraction osteogenesis:a comprehensive review. Int J Oral Max-illofacSurg 2009; 38:210-217
    [74]Enislidis G, Fock N, Schobel GM, et al.Analysis of complications followingalveolar distraction osteogenesis and implant placement in the partiallyedentulous mandible. Oral Surg Oral Med Oral PatholRadiolEndod.2005; 100:25-30.
    [75]Lizio G, Corinaldesi G, Pieri F, et al. Problems with dental implants thatwereplaced on vertically distracted fibular free flaps after resection:a reportof six cases. Br J Oral MaxillofacSurg 2009,47:455-460.
    [76]Morris,M.L. The Implantation of decalcified human dentin and cementum into the subcutaneous tissues of the rat.Periodont. Res.,1967,2:75-83.
    [77]Bang G, Urist MR. Bone induction in excavation chambers in matrix of decalcified dentin. Arch. Surg.,1967,94:781-789.
    [78]Yeomans JD, Urist MR. Bone induction by decalcified dentin implanted into oral, osseous and muscle tissues. Arch Oral Biol.1967,12:999-1008.
    [79]Melvin L. Morris. The Implantation of human dentin and cementum with autogenous bone and red marrow into the subcutaneous tissues of the rat.J Periodontol.1969,40(5):259-263.
    [80]A.J. Smith, B.A. Scheven, Y. Takahashi, et al. Dentine as a bioactive extracellular matrix. Arch Oral Biol.2012,57:109-121.
    [81]So Young Chun, Hyo Jung Lee, Young Ae Choi, et al. Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue Engineering:Part A.2011,17(1-2):181-191.
    [82]Hunter GK, Goldberg HA.Nucleation of hydroxyapatiteby bone sialoprotein-ProcNatlAcadSci U S A 1993,90:8562-565.
    [83]He G, Dahl T, Veis S, George A. Nucleation of apatitecrystals in vitro by self-assembled dentin matrix protein 1.Nat Mater 2003,2:552-558.
    [84]Fisher LW, TorchiaDA,Fohr B, Young MF, FedarkoNS.Flexible structures of SIBLING proteins, bone sialoprotein,andosteopontin.BiochemBiophys Res Commun2001,280:460-465.
    [85]Young Suk Choi, Jun Yeon Lee, Jin SookSuh, et al. The mineralization inducing peptide derived from dentin sialophosphoprotein for bone regeneration. J Biomed Mater Res Part A.2013,101A:590-598.
    [86]Cassidy N, Fahey M, Prime SS, Smith AJ.Comparativeanalysis of transforming growth factor-beta isoforms 1-3in human and rabbit dentine matrices. Arch OralBiol1997,42:219-223.
    [87]Zhao S, Sloan AJ, Murray PE, Lumley PJ,Smith AJ.Ultrastructurallocalisation of TGF-beta exposure indentine by chemical treatmentHistochem J 2000,32:489-494.
    [88]Finkelman RD, Mohan S, Jennings JC, Taylor AK, JepsenS,Baylink DJ. Quantification of growth factors IGF-Ⅰ, SGF/IGFⅡ, and TGF-beta in human dentin. J Bone Miner Res1990,5:717-723.
    [89]Roberts-Clark DJ, Smith AJ. Angiogenic growth factors inhuman dentine matrix. Arch Oral Biol 2000,45:1013-1016.
    [90]Musson DS, McLachlan JL, Sloan AJ, Smith AJ, Cooper PR.Adrenomedullin is expressed during rodent dental tissuedevelopment and promotes cell growth andmineralisation. Biol Cell 2010,102:145-157.
    [91]Hye-Sun Kim, Dong-Seol Lee, Ji Hyun Lee, et al. The effect of odontoblast conditioned media and dentin non-collagenous proteins on the differentiation and mineralization of cementoblasts in vitro. Arch Oral Biol.2009,54:71-79.
    [92]Young-Kyun Kim, Su-Gwan Kim, Ju-HeeByeon, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral PatholOralRadiolEndod 2010,109:496-503.
    [93]Tomoki Nampo, JunichiWatahiki, Akiko Enomoto, et al. A New Method for Alveolar Bone RepairUsing Extracted Teeth for the GraftMaterial. J Periodontal.2010, 81(9):1264-1272.
    [94]Kai-Hendrik Bormann, Maria Mercedes Suarez-Cunqueiro, BrankoSinikovic, et al. Dentin as a suitable bone substitute comparable to beta-TCP-an experimental study in mice.Microvascular Research,2012,84:116-122.
    [95]Morris ML. The implantation of human dentin and cementum with autogenous red marrow into the subcutaneous tissues of the rat.J Periodontal.1969, 40(10):571-576.
    [96]Ibrahim Hussain, KeyvanMoharamzadeh, Ian M. Book, et al. Evaluation of osteoconductive and osteogenic potential of a dentin-based bone substitute using a calvarial defect model. Int J Dent.2012,2012:396316.
    [97]邱立新,林野,王兴等。骨劈开技术在上颌前牙种植外科中的应用。中国口腔种植学杂志。2000,5(2):67-69.
    [98]郎荣建,李玉民,肖秀娟等。垂直骨劈开法的临床应用效果观察。中国口腔种植学杂志。2003,8(3):124-133。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700