用户名: 密码: 验证码:
针对TGF-β1启动子的ASODNs对新西兰兔腹主动脉支架植入后再狭窄及再内皮化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然药物洗脱支架(DES)的应用在较大程度上解决了支架术后再狭窄(ISR)的问题,但是许多经皮冠脉介入治疗(PCI)的病人仍然出现ISR。此外,尽管DES可较为有效降低地ISR,但也引入新的问题,DES所携带的药物或/和涂层载体对局部血管再内皮化的不良影响可增加支架内血栓形成的风险。ISR高度局部化的特征使局部的基因治疗成为可能。基因治疗即将核苷酸,或者是功能基因或者是反义寡核苷酸(ASODNs)转移至个体的体细胞内发挥治疗作用。与其它基因技术相比,ASODNs具有诸多优点且应用成熟,将ASODNs与在疾病过程中起关键作用的特异性靶基因结合,具有靶向治疗高效及毒副作用少的优点。将ASODNs涂在药物支架系统,开发出新一代药物涂层支架,也是减少再狭窄的发生率及预防并发症发生的希望所在。
     ISR是一个涉及到血管壁与植入物(包括支架本身,涂层药物及载体药物)相互作用的复杂过程,其主要的发病机制包括血管平滑肌细(VSMCs)的增殖与迁移、内皮细胞的损伤、局部血小板的集聚及炎症细胞的激活,而这其中最重要的机制是VSMCs的增殖与迁移。如何抑制VSMCs的增殖与迁移是防止PCI术后ISR的关键。生长转移因子-β1(TGF-β1)是蛋白质超家族中的成员,对VSMCs生长的调控、分化、迁移和凋亡起重要作用。在血管损伤后,TGF-β1被证实能刺激VSMCs的增殖和迁移,最终导致管腔狭窄。因此,我们设想合成针对TGF-β1基因启动子的ASODNs,通过特异性抑制TGF-β1的功能或持续表达,减少VSMCs的增殖和迁移,从而为防止ISR提供新的思路。
     研究由两个部分组成:①合成能特异性沉默TGF-β1基因启动子的ASODNs化合物。体外培养VSMCs,观察针对TGF-β1基因启动子的ASODNs对VSMCs的增殖和迁移的影响;②制作特异性沉默TGF-β1基因启动子的ASODNs药物涂层支架,并将其植入新西兰兔的腹主动脉内,观察其对靶血管局部支架内再狭窄及再内皮化产生的影响。
     一、针对TGF-β1启动子的ASODNs化合物对VSMCs增殖和迁移的影响
     目的合成能特异性沉默TGF-β1基因启动子的ASODNs化合物,通过体外培养VSMCs,观察其对VSMCs的增殖和迁移的影响
     方法构建新西兰兔TGF-β1基因启动子的报告基因质粒并将其转染入HEK293细胞,确定TGF-β1基因AP-1增强子位点,根据核苷酸碱基配对的原则确定能特异性沉默TGF-β1基因启动子的ASODNs结构式并合成ASODNs化合物。体外培养新西兰兔腹主动脉VSMCs并行α-肌动蛋白(α-SMA)特异性免疫细胞化学染色鉴定。通过血小板衍生因子(PDGF)10ng/ml诱导VSMCs生长后,将细胞实验共分为3组:分别为control(单纯加入PDGF)组, PDGF+ASODNs (10ug/ml)组,PDGF+mismatchASODNs(10ug/ml)组。通过Westblot法测定各组细胞TGF-β1表达的情况,通过5-溴脱氧尿嘧啶核苷(BrdU)渗入法和水溶性四唑盐-1(WST-1)法测定各组细胞的增殖及代谢情况,通过Transwell细胞迁移实验观察各组细胞的迁移情况。
     结果采用胶原酶消化法培养原代VSMCs,细胞生长呈典型的“峰-谷”状,经α-SMA特异性免疫细胞化学染色后,细胞胞浆呈阳性反应,证实为VMSCs。加入PDGF (10ng/ml),能诱导VSMCs的代谢率增高,促进VSMCs的迁移与增殖。ASODNs能够显著抑制VSMCs的代谢率、VSMCs的迁移及VSMCs的增殖(P<0.01),而mismatch ASODNs则不能达到此效果(P>0.05)。
     结论针对TGF-β1基因AP-1启动子位点的ASODNs可特异性沉默TGF-β1基因,并能显著降低VSMCs的增殖和迁移。能特异性沉默TGF-β1基因启动子的ASODNs化合物应用于药物支架系统预防支架植入后再狭窄的作用值得进一步探讨。
     二、针对TGF-β1启动子的ASODNs对新西兰兔腹主动脉支架植入后再狭窄及再内皮化的影响
     目的制作特异性沉默TGF-β1基因启动子的ASODNs药物涂层支架,并将其植入新西兰兔的腹主动脉内,观察其对损伤血管局部支架内再狭窄及再内皮化的影响,并探讨其机制。
     方法按照1.0μg/mm2的载药量构建2.0×12mm的ASODNs药物涂层支架。使用高效液相色谱法(HPLC)测定支架的体内外药物释放动力学。建立动物模型,在新西兰兔的腹主动脉内植入ASODNs药物涂层支架。实验共分为3组:裸支架组(n=10),ASODNs药物涂层支架组(n=10),mismatchASODNs药物涂层支架组(n=10)。每组各3只动物于支架植入4周后处死,留取少量标本行HPLC检测后,将含支架的血管行扫描电镜检查观察各组的支架表面内皮化情况。另外每组各6只动物与支架植入8周后处死,留取少量标本行HPLC检测后,将标本分为两部分。一部分-80°C保存,使用实时聚合酶链反应(Real-time PCR)及蛋白质印迹法(Western Blotting)法检测各组的TGF-β1、结缔组织生长因子(CTGF)的mRNA及蛋白表达情况,另一部分组织包埋入甲基丙烯酸甲酯中,分别从支架的近、中、远三处切取5μm的切片,然后行苏木精-伊红(HE)染色及弹力纤维(ETVG)染色,然后置于显微镜下观察并计算新生内膜厚度、新生内膜面积及血管狭窄面积的平均值。
     结果在体外试验中,ASODN药物涂层支架24h内ASODNs释放超过90%;但在体内试验中,支架植入4周和8周后,局部血管组织中分别仍有一定量和微量ASODNs留存。扫描电镜显示,裸支架、ASODNs药物涂层支架、mismatchASODNs药物涂层支架表面均具有较高的内皮化程度。与对照组相比,裸支架组损伤血管局部的TGF-β1和CTGF的mRNA及蛋白表达均明显升高(P<0.01)。ASODN药物涂层支架能够降低损伤血管局部的TGF-β1和CTGF的mRNA及蛋白表达(P<0.01)。与裸支架组相比,ASODNs组支架内新生内膜面积明显降低(P<0.05),再狭窄程度明显降低(P<0.05);而mismatch ASODNs药物涂层支架的上述指标与裸支架相比均无明显差异(P>0.05)。
     结论针对TGF-β1基因启动子的ASODNs药物涂层支架尽管体外释放药物动力学不理想,但植入体内仍能够显著抑制血管局部的TGF-β1和CTGF的mRNA及蛋白表达,从而能显著减少支架内再狭窄,而且不影响支架表面的再内皮化。
Clinical application of drug eluting stent (DES) has significantly reduced but notcompleptely sovled in-stent restenosis (ISR) for patients undergoing percutaneouscoronary intervention (PCI). Despite the benefits of DES, it also induces anotherunexpected issue, the in-stent thrombosis, which is associated with the delayedvascular healing or re-endotheliazation due to toxicities of the drugs and/or polymersused for manufacturing DES. The focal nature of restenosis makes it a highlyattractive target for gene therapy. Forecasting possibility of restenosis according togenes is conducive to enhancing values of risk stratification and providing morereasonable therapeutic options for patients. Gene therapies include transferringnucleotide, functional genes, or antisense oligonucleotides (ASODNs) and so on tosomatic cells of individuals to generate therapeutic effects. Many studies show thatASODNs has advantages over the traditional or other genic therapies due to thecombining with special target genes playing pivotal role in the disease process,thereby probably preserving more therapeutic efficacy and fewer side-effects. Hence,ASODNs as a candidate may be promising and particularily suitable for thedevelopment of next generation of DES.
     ISR is a complicated interaction process between the vessel wall and implantedstent (stent itself, polymers and drugs). The pathophysiological mechanisms of ISRmainly include damage of endothelial cells, aggregation of platelet and activation of inflammatory cells and subsequently over-expression of various growth factors.Despite other probable mechanisms, proliferation and transfer of vascular smoothmuscle cells (VSMCs) has been considered as the most important mechanisminvolved in ISR process. Accordingly, inhibiting the proliferation and transfer ofVSMCs is the key mechanism to prevent ISR. Growth transfer factor-β1(TGF-β1) isa member in the protein super-family, which plays an important role in regulating thedifferentiation, transfer, and apoptosis of VSMCs. Once vessel wall is injured,TGF-β1might serve as one of the dominant mediators stimulating proliferation andtransfer of VSMCs, leading to neoimtimal formation and thickening, vascular lumenloss and re-stenosis. Therefore, we hypothesized that ASODNs targeting TGF-β1could efficiently inhibit the expression of TGF-β1, thus reducing the proliferation andtransfer of VSMCs. The ASODNs targeting TGF-β1represents a promising feasibleagent to be used in drug eluting stent system for preventing ISR.
     The study consisted of two parts:(1) To investigate the effects of ASODNstargeting TGF-β1gene on inhibiting the proliferation and transfer of VSMCs in vitro;(2) To investigate the effects of ASODNs-drug eluting stent on preventing in-stentrestenosis and promoting reendothelialization in vivo.
     I. Effects of ASODNs targeting TGF-β1promoter gene on proliferation andtransfer of VSMCs in vitro
     Objectives: To synthesize ASODNs specifically silencing TGF-β1promoter gene andto observe its effectes on inhibiting the proliferation and transfer of VSMCs in vitro.
     Methods: HEK293cells were transfected with recombinant rabbit TGF-β1promoterplasmids to determine AP-1binding sites. ASODNs targeting rabbit TGF-β1was thensynthesized according to base pairing of nucleotide. VSMCs were cultured in vitroand identified by α-SMA immunoflurescence staining. After incubating with PDGF(10ng/ml), the in vitro study consisted of three groups: control group (only PDGF),PDGF+ASODNs (10ug/ml) group, PDGF+mismatch ASODNs (10ug/ml) group.TGF-β1expression was detected by west-blotting, cell proliferation and metabolismby5-BrdU infiltration method and WST-1method, cell transfer by Transwelltechnique.
     Results: Enzyme digestion of collagenase I was applied for the culture of normalVSMCs, which showed the typical pattern “Valley-peak”. α-SMA was abundant in theVSMCs by immunoflurescence staining.. PDGF at lower concentrations of10ng/mlrised the metabolic rate of VSMCs and promoted transfer and proliferation of VSMCs.ASODNs but not mismatch ASODNs significantly inhibted metabolic rate, transferand proliferation of VSMCs(P<0.01).
     Conclusions: ASODNs targeting AP-1enhancer locus of TGF-β1gene can efficiently silence TGF-β1gene and remarkably reduce the proliferation and transfer of VSMCs.
     II. Effects of ASODNs eluting stent targeting TGF-β1promotrer gene on in-stentrestenosis and reendothelialization in vivo
     Objectives: To produce ASODNs eluting stent targeting TGF-β1promotrer gene andto evaluate the potential effects of them on in-stent restenosis andre-endothelialization and to investigating the underlying mechanisms.
     Methods: ASODNs-drug eluting stent of2.0×12mm were developed with aconcentration of1.0μg/mm2ASODNs. Drug release dynamics of stent was measuredwith the use of HPLC in vitro. The ASODNs-drug eluting stent was then implantedinto aorta abdominalis of New Zealand rabbits. Rabbits were assigned to three groups:naked stent group (n=10), ASODNs-drug eluting stent group (n=10), and mismatchASODNs-drug eluting stent group (n=10). Three animals were sacrificed four weeksafter stent implantation; some tissue samples were preserved for HPLC detection, andsome for scanning electron microscope to observe stent surface endothelialization.Additionally, six animals were sacrificed eight weeks after stent implantation, and thestented segments of abdominal aorta were harvested with some samples preserved forHPLC detection and the renant samples for subsequent molecular and histologicalstudies. For molecular study, the samples were kept under the temperature of-80°C,mRNA and protein expression of TGF-β1and connective tissue growth factor (CTGF)were detected by real-time PCR and western blotting. For histological study, thesamples were embedded with methyl methacrylate, cutted into sections of5μm respectively from near, middle, and distant segment of stents, and then stained withHE and ETVG, the neointimal area and mean thickness was measured under themicroscope.
     Results: ASODNs eluting stent released more than90%of ASODNs within24h invitro. There remained some and trace ASODNs detected in local vascular tissuesrespectively after4and8weeks after stent implamtation. Scanning electronmicroscope showed re-endothelialization was nearly complete in all the three stentsgroups (n=3). Compared with the control group, mRNA and protein expressions ofTGF-β1and CTGF in naked stent group were upregulated obviously (P<0.01for all),ASODNs-drug eluting stent significantly reduced mRNA and protein expressions(P<0.01for all) of TGF-β1and CTGF. Compared with naked stent, there wassignificant reduction of neointima area (P<0.05) and restenosis degree (P<0.05for all)in ASODNs-drug eluting stent, and there were no differences of these indexesbetween the naked stent and mismatch ASODNs-drug eluting groups (P>0.05for all).
     Conclusions: Despite poorly controlled releasing of ASODNs with ASODNs-drugeluting stent in vitro, ASODNs-drug eluting stent targeting TGF-β1can inhibit mRNAand protein expression of TGF-β1, reduced in-stent restenosis without imparingre-endothelialization.
引文
1. Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimus-elutingand paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial.Lancet2010;375:201–9.
    2. Lemos PA, Serruys PW, van Domburg RT, et al. Unrestricted utilization ofsirolimus-eluting stents compared with conventional bare stent implantation in the“real world”: the Rapamycin-Eluting Stent Evaluated at Rotterdam CardiologyHospital (RESEARCH) registry. Circulation2004;109:190–5.
    3. Doi H, Maehara A, Mintz GS, et al. Impact of in-stent minimal lumen area at9months poststent implantation on3-year target lesion revascularization-free survival:a serial intravascular ultrasound analysis from the TAXUS IV, V, and VI trials. CircCardiovasc Interv2008;1:111–8.
    4. Abergel E, Beyar R, Roguin A. Repeat instent restenosis of drug eluting stents in abifurcation treated successfully with kissing drug eluting balloons.Cardiovasc Revasc2012;56:12-15.
    5. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role oftransforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia.Immunology2006;118:10–24.
    6. Venkateswaran Subramanian, Jonathan Golledge, Elizabeth B. Heywood, DennisBruemmer, Alan Daugherty. Regulation of Peroxisome Proliferator–ActivatedReceptor-γ by Angiotensin II Via Transforming Growth Factor-β1–Activated p38Mitogen-Activated Protein Kinase in Aortic Smooth Muscle Cells. ArteriosclerThromb Vasc Biol,2012;32:397-405.
    7. Massague J, Gomis RR. The logic of TGF-beta signaling. FEBS Lett2006;580:2811–20.
    8. Ghosh J, MurphyMO, Turner N, Khwaja N, Halka A, KieltyCM, et al. The role oftransforming growth factor beta1in the vascular system. Cardiovasc Pathol2005;14:28–36.
    9. Thoru Pederson. Sense and Antisense in Biotech: The First Antisense DNACompany. FASEB J, Sep2012;26:3594-3601.
    10. Li Wu, Yuan Wang, Junzhou Wu, Cong Lv, Jie Wang, and Xinjing Tang. Cagedcircular antisense oligonucleotides for photomodulation of RNA digestion and geneexpression in cells. Nucleic Acids Res., Jan2013;41:677-686.
    11. Adam E. Mullick, Wuxia Fu, Mark J. Graham, Richard G. Lee, Donna Witchell,Thomas A. Bell, Charles P. Whipple, and Rosanne M. Crooke.Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDLreceptor-deficient mice. J. Lipid Res., May2011;52:885–896.
    12. Emine Din, Szilvia Z. Tóth, Gert Schansker, Ferhan Ayaydin, László Kovács,Dénes Dudits, Gyozo Garab, and Sándor Bottka.Synthetic Antisense Oligodeoxynucleotides to Transiently Suppress DifferentNucleus-and Chloroplast-Encoded Proteins of Higher Plant Chloroplasts. PlantPhysiology, Dec2011;157:1628-1641.
    13. Joana Jesus, Marius Vantler, Olli Lepp nen, Eva Berghausen, Evren Caglayan,Hendrik ten Freyhaus, Jean Zhao, Florian Blaschke, Stephan Rosenkranz. The Pi3-kinase Isoform p110alpha is Essential for Neointima Formation FollowingPercutaneos Coronary Intervention by Mediating Vascular Smooth Muscle CellProliferation, Migration and Survival. Circulation,2012;126: A14682.
    14. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, ThomasJA, Leitinger N, Owens GK. Oxidized phospholipids induce phenotypic switching ofvascular smooth muscle cells in vivo and in vitro. Circ Res.2007;101:792–801.
    15. David S Weber, Lydia M Sullivan, Justin R Bennett, Cullen McCarthy. Activationof PDK1mediates VSMC migration and may contribute to vascular remodelingfollowing injury. FASEB J,2013;27:922.10.
    16. Ruan XZ, Moorhead JF, Tao JL, Ma KL, Wheeler DC, Powis SH, Varghese Z.Mechanisms of dysregulation of low-density lipoprotein receptor expression invascular smooth muscle cells by inflammatory cytokines. Arterioscler Thromb VascBiol.2006;26:1150–1155.
    17. Zela Keuylian, Jeroen H. F. de Baaij, Martine Glorian, Clotilde Rouxel, EliseMerlet, Larissa Lipskaia, Régis Blaise, Véronique Mateo, and Isabelle Limon. TheNotch Pathway Attenuates Interleukin1β-mediated Induction of Adenylyl Cyclase8Expression during Vascular Smooth Muscle Cell Trans-differentiationJ. Biol. Chem.,2012;287:24978-24989.
    18.Nagao S, Murao K, Imachi H, Cao WM, Yu X, Li J, Matsumoto K, Nishiuchi T,Ahmed RA, Wong NC, Ueda K, Ishida T. Platelet derived growth factor regulatesABCA1expression in vascular smooth muscle cells. FEBS Lett.2006;580:4371–4376.
    19.Ghosh J, Baguneid M, Khwaja N, Murphy MO, Turner N, Halka A, et al.Reduction of myointimal hyperplasia after arterial anastomosis by local injection oftransforming growth factor beta3. J Vasc Surg2006;43:142–9.
    20. Bobik A. Transforming growth factor-betas and vascular disorders. ArteriosclerThromb Vasc Biol2006;26:1712–20.
    21.WangM, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al.Matrixmetalloproteinase2activation of transforming growth factor-beta1(TGF-beta1) andTGF-beta1-type II receptor signaling within the aged arterial wall. ArteriosclerThromb Vasc Biol2006;26:1503–9.
    22. Xin-hua Zhang, Bin Zheng, Chun Gu, Jian-ran Fu, and Jin-kun Wen. TGF-β1Downregulates AT1Receptor Expression via PKC--Mediated Sp1Dissociation FromKLF4and Smad-Mediated PPAR-Association With KLF4. Arterioscler ThrombVasc Biol,2012;32:1015-1023.
    23. Conrad Ortiz, Laia Caja, Esther Bertran, águeda Gonzalez-Rodriguez, ángela M.Valverde, Isabel Fabregat, and Patricia Sancho. J. Protein-tyrosine Phosphatase1B(PTP1B) Deficiency Confers Resistance to Transforming Growth Factor-β(TGF-β)-induced Suppressor Effects in Hepatocytes. Biol. Chem.,2012;287:15263-15274.
    24. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci2005;118:3573–84.
    25. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signalingand cardiovascular disorders. Curr Vasc Pharmacol2005;3:55–61.
    26. Joshua Daniel Stone, Jackson R Vuncannon, Patti Shaver, Jonathan Clay Fox, andDavid Anthony Tulis.AMP-Activated Protein Kinase Reduces Vascular SmoothMuscle Growth by Inhibiting TGF-β/Smad Signaling and MMP Activity. FASEB J,2012;26:870.29.
    27. Xin-hua Zhang, Bin Zheng, Chun Gu, Jian-ran Fu, and Jin-kun Wen.TGF-β1Downregulates AT1Receptor Expression via PKC--Mediated Sp1Dissociation FromKLF4and Smad-Mediated PPAR-γ Association With KLF4. Arterioscler ThrombVasc Biol,2012;32:1015-1023.
    28. Akihiko Yoshimura, Yu Wakabayashi, and Tomoaki Mori.J.Cellular and molecularbasis for the regulation of inflammation by TGF-β. Biochem.Jun2010;147:781-792.
    29. MH Hwang, SW Lee, JE Kim, HW Lee, YH Jeon, JH Ha, BC Ahn, and J Lee.Enhanced antiproliferative effects of combination hexokinase II shRNA and NISgene therapy on vascular smooth muscle cells. Nucl Med Biol, Feb2012;39(2):269-78.
    30. Manli Shen, Eduardo Eyras, Jie Wu, Amit Khanna, Serene Josiah, MathieuRederstorff, Michael Q. Zhang, and Stefan Stamm.Direct cloning of double-strandedRNAs from RNase protection analysis reveals processing patterns of C/D boxsnoRNAs and provides evidence for widespread antisense transcript expression.Nucleic Acids Res.,2011;39:9720-9730.
    31. K Hokamura, H Inaba, K Nakano, R Nomura, H Yoshioka, K Taniguchi, TOoshima, K Wada, A Amano, and K Umemura.Molecular analysis ofaortic intimal hyperplasia caused by Porphyromonas gingivalis infection in mice withendothelial damage. J Periodontal Res, Jun2010;45(3):337-44.
    32. Mortimer Gierthmuehlen, Per Sommer, Maaz Zuhayra, Juergen Hedderich, UteJaenig, Fred Faendrich, Eberhard Henze, and Willm Uwe Kampen. Imaging of acuteheart-transplant rejection using99m-Technetium labelled oligonucleotides againstinterleukin-2mRNA in rats. Eur J Cardiothorac Surg, May2010;37:1111-1116.
    33. Robert E. Sharwood, Amber M. Hotto, Thomas J. Bollenbach, and David B.Stern.Overaccumulation of the chloroplast antisense RNA AS5is correlated withdecreased abundance of5S rRNA in vivo and inefficient5S rRNA maturation in vitro.RNA,2011;17:230-243.
    34. Alessia David, Umasuthan Srirangalingam, Louise A. Metherell, Bernard Khoo,and Adrian J. L. Clark. Repair of Aberrant Splicing in Growth Hormone Receptor byAntisense Oligonucleotides Targeting the Splice Sites of a Pseudoexon. J. Clin.Endocrinol. Metab., Jul2010;95:3542-3546.
    35. Huafeng Fang, Yuefei Shen, John-Stephen Taylor.Native mRNA antisense-accessible sites library for the selection of antisense oligonucleotides, PNAs, andsiRNAs. RNA,2010;16:1429-1435.
    36. Peng Fu, Baozhong Shen, Changjiu Zhao, and Guomei Tian. Molecular Imagingof MDM2Messenger RNA with99mTc-Labeled Antisense Oligonucleotides inExperimental Human Breast Cancer Xenografts.J. Nucl. Med.,2010;51:1805-1812.
    37. Gregor M. Bran, Ulrich R. Goessler, Ariton Baftiri, Karl Hormann, Frank Riedel,and Haneen Sadick. Effect of transforming growth factor-β1antisenseoligonucleotides on matrix metalloproteinases and their inhibitors in keloid fibroblasts.Otolaryngology--Head and Neck Surgery,2010;143:66-71.
    38. Egli M, Pallan PS, Allerson CR, Prakash TP, Berdeja A, J Yu, S Lee, Watt A, GausH, Bhat B, Swayze EE, and Seth PP. Synthesis, improved antisense activity andstructural rationale for the divergent RNA affinities of3'-fluoro hexitol nucleic acid(FHNA and Ara-FHNA) modified oligonucleotides. J Am Chem Soc, Oct2011;133(41):16642-9.
    39. LJ Popplewell, A Malerba, and G Dickson. Optimizing antisense oligonucleotidesusing phosphorodiamidate morpholino oligomers..Methods Mol Biol,2012;867:143-67.
    40. Steven O. Marx, Hana Totary-Jain, and Andrew R. Marks. Vascular SmoothMuscle Cell Proliferation in Restenosis. Circ Cardiovasc Interv, Feb2011;4:104-111.
    41.司徒镇强,吴军正.细胞培养.世界图书出版公司,1996:181.
    42.吴窈画,谈书华,范超超,李正华. MTT法检测细菌细胞数的主要影响因素分析.微生物学杂志.2011;31(3).
    43. Solinas E, Dangas G, Kirtane AJ, et al. Angiographic patterns of drug-elutingstent restenosis and one-year outcomes after treatment with repeated percutaneouscoronary intervention. Am J Cardiol2008;102:311–5.
    44. Zahn R, Hamm CW, Schneider S, et al. Incidence and predictors of target vesselrevascularization and clinical event rates of the sirolimuseluting coronary stent(results from the prospective multicenter German Cypher Stent Registry). Am JCardiol2005;95:1302–8.
    45. Morice MC, Colombo A, Meier B, et al. Sirolimus-vs paclitaxeleluting stents inde novo coronary artery lesions: the REALITY trial: a randomized controlled trial.JAMA2006;295:895–904.
    46. Windecker S, Serruys PW, Wandel S, et al. Biolimus-eluting stent withbiodegradable polymer versus sirolimus-eluting stent with durable polymer forcoronary revascularisation (LEADERS): a randomized non-inferiority trial. Lancet2008;372:1163–73.
    47. Stone GW, Rizvi A, Newman W, et al. A large-scale randomized comparison ofeverolimus-eluting and paclitaxel-eluting stents: oneyear clinical outcomes from theSPIRIT IV trial. Am J Cardiol2009;104:XV.
    48. Mauri L, Silbaugh TS, Wolf RE, et al. Long-term clinical outcomes afterdrug-eluting and bare-metal stenting in Massachusetts. Circulation2008;118:1817–27.
    49. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stenttrials: a case for standardized definitions. Circulation2007;115:2344–51.
    50. Rathore S, Kinoshita Y, Terashima M, et al. A comparison of clinicalpresentations, angiographic patterns and outcomes of in-stent restenosis between baremetal stents and drug eluting stents. EuroIntervention2010;5:841–6.
    51. Chen MS, John JM, Chew DP, Lee DS, Ellis SG, Bhatt DL. Bare metal stentrestenosis is not a benign clinical entity. Am Heart J2006;151:1260–4.
    52. Hagiwara S, Iwasaka H, Shingu C, Matumoto S, Hasegawa A, and Noguchi T.Heat shock protein47(HSP47) antisense oligonucleotides reduce cardiac remodelingand improve cardiac function in a rat model of myocardial infarction..ThoracCardiovasc Surg,2011;59(7):386-92.
    53. Andrew Leask. Potential Therapeutic Targets for Cardiac Fibrosis: TGFβ,Angiotensin, Endothelin, CCN2, and PDGF, Partners in Fibroblast Activation.Circ.Res.,2010;106:1675-1680.
    54. Katharine J. Bee, David C. Wilkes, Richard B. Devereux, Craig T. Basson, andCathy J. Hatcher. TGFβRIIb Mutations Trigger Aortic Aneurysm Pathogenesis byAltering Transforming Growth Factor β2Signal Transduction. Circ Cardiovasc Genet,2012;5:621-629.
    55. Xiaochun Long and Joseph M. Miano.Transforming Growth Factor-β1(TGF-β1)Utilizes Distinct Pathways for the Transcriptional Activation of MicroRNA143/145inHuman Coronary Artery Smooth Muscle Cells.J. Biol. Chem.,2011;286:30119–30129.
    56. Jianyun Yan, Sally E. Stringer, Andrew Hamilton, Valentine Charlton-Menys,Christian G tting, Benjamin Müller, Daniel Aeschlimann, and M. Yvonne Alexander.Decorin GAG Synthesis and TGF-β Signaling Mediate Ox-LDL–InducedMineralization of Human Vascular Smooth Muscle Cells. Arterioscler Thromb VascBiol,2011;31:608-615.
    57. Pasithorn A. Suwanabol, Stephen M. Seedial, Fan Zhang, Xudong Shi, Yi Si, BoLiu, and K. Craig Kent. TGF-β and Smad3modulate PI3K/Akt signaling pathway invascular smooth muscle cells. Am J Physiol Heart Circ Physiol,2012;302: H2211-H2219.
    58. Takashi Miyake, Munehisa Shimamura, Hironori Nakagami, and RyuichiMorishita. Prevention of Neointimal Hyperplasia After Angioplasty Using NF-kappaBDecoy Oligodeoxynucleotides-Coated Balloon Catheter in Rabbit Restenosis Model.Circulation, Nov2011;124: A14963.
    59. VR Sanchez, MN Pitkowski, AV Fernandez Cuppari, FM Rodriguez, IM Fenoy,FM Frank, A Goldman, RS Corral, and V Martin. Combination ofCpG-oligodeoxynucleotides with recombinant ROP2or GRA4proteins inducesprotective immunity against Toxoplasma gondii infection. Exp Parasitol, Aug2011;128(4):448-53.
    60. Imai M, Ishibashi H, Nariai Y, Kanno T, Sekine J, Onimaru M, and Mori Y.Transfection of hypoxia-inducible factor-1decoy oligodeoxynucleotides suppressesexpression of vascular endothelial growth factor in oral squamous cell carcinoma cells.J Oral Pathol Med, Oct2012;41(9):675-81.
    61. MR Putta, D Yu, and ER Kandimalla. Synthesis, purification, and characterizationof immune-modulatory oligodeoxynucleotides that act as agonists of Toll-likereceptor9.Methods Mol Biol, Jan2011;764:263-77.
    62. Edward G. Tall, Audrey M. Bernstein, Noelynn Oliver, Julia L. Gray, and SandraK. Masur. TGF-β–Stimulated CTGF Production Enhanced by Collagen andAssociated with Biogenesis of a Novel31-kDa CTGF Form in Human CornealFibroblasts. Invest. Ophthalmol. Vis. Sci.,2010;51:5002-5011.
    63. Q Wang, W Usinger, B Nichols, J Gray, L Xu, TW Seeley, M Brenner, G Guo, WZhang, N Oliver, A Lin, and D Yeowell. Cooperative interaction of CTGF and TGF-βin animal models of fibrotic disease.Fibrogenesis Tissue Repair,2011;4(1):4.
    64. Katarína Larsen, Caroline Cheng, Dennie Tempel, Sherry Parker, et al. Capture ofcirculatory endothelial progenitor cells and accelerated re-endothelialization of abio-engineered stent in human ex vivo shunt and rabbit denudation model. Eur. HeartJ., Jan2012;33:120-128.
    65. Mihail Hristov, Denis Gümbel, Esther Lutgens, Alma Zernecke, and ChristianWeber. Soluble CD40Ligand Impairs the Function of Peripheral Blood AngiogenicOutgrowth Cells and Increases Neointimal Formation After Arterial Injury.Circulation, Jan2010;121:315-324.
    66. Activation of the Connective Tissue Growth Factor (CTGF)-Transforming GrowthFactor β1(TGF-β1) Axis in Hepatitis C Virus-Expressing Hepatocytes.T Nagaraja, LChen, A Balasubramanian, JE Groopman, K Ghoshal, ST Jacob, A Leask, DRBrigstock, AR Anand, and RK Ganju.PLoS One,2012;7(10): e46526.
    67. A Perez de Prado, C Cuellas, A Diego, JM Gonzalo-Orden, et al. Vasomotorresponse to different endothelium-dependent vasodilators in an animal model. JInvasive Cardiol, Jul2012;24(7):320-3.
    68. Z Chen, J Qian, J Ma, S Chang, H Yun, H Jin, A Sun, Y Zou, and J Ge.Glucocorticoid ameliorates early cardiac dysfunction after coronarymicroembolization and suppresses TGF-?1/Smad3and CTGF expression. Int JCardiol,2012;70(2):112-114.
    69. W Li, M Cui, Y Wei, X Kong, L Tang, and D Xu. Inhibition of the expression ofTGF-β1and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1receptor agonist. Cell Physiol Biochem,2012;30(3):749-57.
    70. J Du, L Wang, L Liu, Q Fan, L Yao, Y Cui, P Kang, H Zhao, X Feng, and H Gao.IFN-γ suppresses the high glucose-induced increase in TGF-β1and CTGF synthesisin mesangial cells. Pharmacol Rep,2011;63(5):1137-44.
    71.T Inoue, K Croce, T Morooka, M Sakuma, K Node, and DI Simon. Vascularinflammation and repair: implications for re-endothelialization, restenosis, and stentthrombosis. JACC Cardiovasc Interv, Oct2011;4(10):1057-66.
    72. Shu-Qin Liu, Zeng-Li Li, Yong-Xiao Cao, Le Li, Xin Ma, Xiao-Ge Zhao, et al.Transfusion of autologous late-outgrowth endothelial cells reduces arterial neointimaformation after injury. Cardiovasc Res, Apr2011;90:171-181.
    73. Woo-Hyun Lim, Won-Woo Seo, WonSeok Choe, Chan-Koo Kang, JonghannePark, Hyun-Ju Cho, San Kyeong,et al. Stent Coated With Antibody Against VascularEndothelial-Cadherin Captures Endothelial Progenitor Cells, Accelerates Re-Endothelialization, and Reduces Neointimal Formation. Arterioscler Thromb VascBiol, Dec2011;31:2798-2805.
    74. Pauline Chieng-Yane, Arnaud Bocquet, Robert Létienne, Thierry Bourbon, SylvieSablayrolles, Michel Perez, et al. Protease-Activated Receptor-1Antagonist F16618Reduces Arterial Restenosis by Down-Regulation of Tumor Necrosis Factor andMatrix Metalloproteinase7Expression, Migration, and Proliferation of VascularSmooth Muscle Cells. J. Pharmacol. Exp. Ther., Mar2011;336:643-651.
    75. Waksman R, Ajani AE, Pichard AD, Torguson R, Pinnow E, Canos D, et al. OralRapamune to Inhibit Restenosis study. Oral rapamycin to inhibit restenosis afterstenting of de novo coronary lesions: the Oral Rapamune to Inhibit Restenosis(ORBIT) study. J Am Coll Cardiol2004;44:1386–92.
    76. Mihail Hristov, Denis Gümbel, Esther Lutgens, Alma Zernecke, and ChristianWeber. Soluble CD40Ligand Impairs the Function of Peripheral Blood AngiogenicOutgrowth Cells and Increases Neointimal Formation After Arterial Injury.Circulation, Jan2010;121:315-324.
    77. Ryer EJ, Hom RP, Sakakibara K, Nakayama KI, Nakayama K, Faries PL, et al.PKCdelta is necessary for Smad3expression and transforming growth factorbeta-induced fibronectin synthesis in vascular smooth muscle cells. ArteriosclerThromb Vasc Biol2006;26:780–6.
    78. A Perez de Prado, C Cuellas, A Diego, JM Gonzalo-Orden, et al. Vasomotorresponse to different endothelium-dependent vasodilators in an animal model. JInvasive Cardiol, Jul2012;24(7):320-3.
    79.Majesky MW, Schwartz SM, Clowes MM, Clowes AW. Heparin regulates smoothmuscle S phase entry in the injured rat carotid artery. Circ Res.1987;61:296-300.
    80. Bossi I, Klersy C, Black AJ, et al. In-stent restenosis: long-term outcome andpredictors of subsequent target lesion revascularization after repeat balloonangioplasty. J Am Coll Cardiol2000;35:1569–76.
    81. Miano JM, Tota RR, Vlasic N, Danishefsky KJ, Stemerman MB. Earlyprotooncogene expression in rat aortic smooth muscle cells following endothelialremoval. Am J Pathol.1990;137:761-765.
    82. Bauters C, de Groote P, Adamantidis M, Delcayre C, Hamon M, Lablanche JM,Bertrand ME, Dupuis B, Swynghedauw B. Proto-oncogene expression in rabbit aortaafter wall injury: first marker of the cellular process leading to restenosis afterangioplasty? Eur Heart J.1992;13:556-559.
    83. Shi Y, Pieniek M, Farb A, O'Brien JE, Mannion JD, Zalewski A. Adventitialremodeling after coronary arterial injury. Circulation1996;93:340–8.
    84. Madri JA, Reidy MA, Kocher O, Bell L. Endothelial cell behavior afterdenudation injury is modulated by transforming growth factorbeta1and fibronectin.Lab Invest1989;60:755–65.
    85. Miyazawa K, Kikuchi S, Fukuyama J, Hamano S, Ujiie A. Inhibition of PDGF-and TGF-beta1-induced collagen synthesis, migration and proliferation by tranilast invascular smooth muscle cells from spontaneously hypertensive rats. Atherosclerosis1995;118:213–21.
    86. Michitomo Sakuma, Kyosuke Hatsushika, Kensuke Koyama, Ryohei Katoh,Takashi Ando, Yoshiyuki Watanabe, Masanori Wako, Mirei Kanzaki, Shinichi Takano,Hajime Sugiyama, Yoshiki Hamada, Hideoki Ogawa, Ko Okumura, and AtsuhitoNakao. TGF-β type I receptor kinase inhibitor down-regulates rheumatoidsynoviocytes and prevents the arthritis induced by type II collagen antibody. Int.Immunol., Feb2007;19:117-126.
    87. Ishiwata S, Verheye S, Robinson KA, Salame MY, de Leon H, King III SB, et al.Inhibition of neointima formation by tranilast in pig coronary arteries after balloonangioplasty and stent implantation. J Am Coll Cardiol2000;35:1331–7.
    88. Teng J, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K.DNA–RNA chimeric hammerhead ribozyme to transforming growth factor-beta(1)mRNA inhibits the exaggerated growth of vascular smooth muscle cells fromspontaneously hypertensive rats. Cardiovasc Res2000;48:138–47.
    89. Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A, etal. Ribozyme oligonucleotides against transforming growth factor-beta inhibitedneointimal formation after vascular injury in rat model: potential application ofribozyme strategy to treat cardiovascular disease. Circulation2000;102:1308–14.
    90. Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ, Park HY. PPARgammaactivation induces CD36expression and stimulates foam cell like changes in rVSMCs.Prostaglandins Other Lipid Mediat.2006;80:165–174.
    91. Merrilees M, Beaumont B, Scott L, Hermanutz V, Fennessy P. Effect ofTGF-beta(1) antisense S-oligonucleotide on synthesis and accumulation of matrixproteoglycans in balloon catheter-injured neointima of rabbit carotid arteries. J VascRes2000;37:50–60.
    92. Ishiwata S, Verheye S, Robinson KA, Salame MY, de Leon H, King III SB, et al.Inhibition of neointima formation by tranilast in pig coronary arteries after balloonangioplasty and stent implantation. J Am Coll Cardiol2000;35:1331–7.
    93. Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A. Inhibitoryeffects of tranilast on expression of transforming growth factor-beta isoforms andreceptors in injured arteries. Atherosclerosis1998;137:267–75.
    94. Waksman R, Ajani AE, Pichard AD, Torguson R, Pinnow E, Canos D, et al. OralRapamune to Inhibit Restenosis study. Oral rapamycin to inhibit restenosis afterstenting of de novo coronary lesions: the Oral Rapamune to Inhibit Restenosis(ORBIT) study. J Am Coll Cardiol2004;44:1386–92.
    95. Majesky MW, Reidy MA, Bowen-Pope D, Hart CE, Wilcox JN, Schwartz SM.PDGF ligand and receptor gene expression during repair of arterial injury. J Cell Biol.1990;111:2149-2158.
    96. Mallawaarachchi CM, Weissberg PL, Siow RC. Smad7gene transfer attenuatesadventitial cell migration and vascular remodeling after balloon injury. ArteriosclerThromb Vasc Biol2005;25:1383–7.
    97. Hajime Mihira, Hiroshi I. Suzuki, Yuichi Akatsu, Yasuhiro Yoshimatsu, TakashiIgarashi, Kohei Miyazono, and Tetsuro Watabe. TGF-β-induced mesenchymaltransition of MS-1endothelial cells requires Smad-dependent cooperative activationof Rho signals and MRTF-A. J. Biochem.,2012;151:145-156.
    98. Hyun-A Seong, Haiyoung Jung, and Hyunjung Ha. Murine ProteinSerine/Threonine Kinase38Stimulates TGF-β Signaling in a Kinase-dependentManner via Direct Phosphorylation of Smad Proteins. J. Biol. Chem.,2010;285:30959-30970.
    99. L Sun, T Zhang, X Yu, W Xin, X Lan, D Zhang, C Huang, and G Du. Asymmetricdimethylarginine confers the communication between endothelial and smooth musclecells and leads to VSMC migration through p38and ERK1/2signaling cascade..FEBS Lett, Sep2011;585(17):2727-34.
    100. S Chen, Y Ding, W Tao, W Zhang, T Liang, and C Liu. Naringenin inhibitsTNF-γ induced VSMC proliferation and migration via induction of HO-1. Food ChemToxicol,2012;50(9):3025-31.
    101. Ying Cai, Geum-Sil Cho, Chung Ju, Si-Ling Wang, Jong Hoon Ryu, Chan YoungShin, Hee-Sun Kim, Kung-Woo Nam, Angela M. A. Anthony Jalin, Woong Sun,In-Young Choi, and Won-Ki Kim. Activated Microglia Are Less Vulnerable to HeminToxicity due to Nitric Oxide-Dependent Inhibition of JNK and p38MAPK Activation.J. Immunol.,2011;187:1314-1321.
    102. Douglas S. Micalizzi, Chu-An Wang, Susan M. Farabaugh, William P.Schiemann, and Heide L. Ford. Homeoprotein Six1Increases TGF-β Type I Receptorand Converts TGF-β Signaling from Suppressive to Supportive for Tumor Growth.Cancer Res.,2010;70:10371-10380.
    103. John R. Grainger, Katie A. Smith, James P. Hewitson, Henry J. McSorley,Yvonne Harcus, Kara J. Filbey, Constance A.M. Finney, Edward J.D. Greenwood,David P. Knox, Mark S. Wilson, Yasmine Belkaid, Alexander Y. Rudensky, and RickM. Maizels. Helminth secretions induce de novo T cell Foxp3expression andregulatory function through the TGF-β pathway. J. Exp. Med.,2010;207:2331-2341.
    104. Natalia Martin-Martin, Craig Slattery, Tara McMorrow, and Michael P. Ryan.TGF-β1mediates sirolimus and cyclosporine A-induced alteration of barrier functionin renal epithelial cells via a noncanonical ERK1/2signaling pathway. Am J PhysiolRenal Physiol,2011;301: F1281-F1292.
    105. Ryer EJ, Hom RP, Sakakibara K, Nakayama KI, Nakayama K, Faries PL, et al.PKCdelta is necessary for Smad3expression and transforming growth factorbeta-induced fibronectin synthesis in vascular smooth muscle cells. ArteriosclerThromb Vasc Biol2006;26:780–6.
    106. Saura M, Zaragoza C, Herranz B, Griera M, Diez-Marques L, Rodriguez-PuyolD, et al. Nitric oxide regulates transforming growth factor-beta signaling inendothelial cells. Circ Res2005;97:1115–23.
    107. Kyung-Sook Chung, Sung-Hee Cho, Ji-Sun Shin, Dong-Hyun Kim, Jung-HyeChoi, Sang Y. Choi, Young K. Rhee, Hee-Do Hong, and Kyung-Tae Lee. leukemiacells by upregulating TGF-β expression. Carcinogenesis,2013;34:331-340.
    108. W. Wen, E. Chau, L. Jackson-Boeters, C. Elliott, T.D. Daley, and D.W. Hamilton.TGF-β1and FAK Regulate Periostin Expression in PDL Fibroblasts. Journal ofDental Research, Dec2010;89:1439-1443.
    109. Mattias H ger, Corinna Cavan Pedersen, Maria Torp Larsen, Mette Klarskov
    Andersen, Christoffer Hother, Kirsten Gr nb k, Hanne Jarmer, Niels Borregaard, and
    Jack Bernard Cowland. MicroRNA-130a–mediated down-regulation of Smad4
    contributes to reduced sensitivity to TGF-β1stimulation in granulocytic precursors.
    Blood, Dec2011;118:6649-6659.
    1. Thom T, Haase N, RosamondW, Howard VJ, Rumsfeld J, Manolio T, et al. Heartdisease and stroke statistics—2006update: a report from the American HeartAssociation Statistics Committee and Strokes Statistics Subcommittee. Circulation2006;113:e85–e151.
    2. Babapulle MN, Joseph L, Belisle P, Brophy JM, Eisenberg MJ. A hierarchicalBayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet2004;364:583–91.
    3. Mitra AK, Agrawal DK. In stent restenosis: bane of the stent era. J Clin Pathol2006;59:232–9.
    4. Wolf G. New insights into the pathophysiology of diabetic nephropathy: fromhaemodynamics to molecular pathology. Eur J Clin Invest2004;34:785–96.
    5.Bataller R, Brenner DA. Liver fibrosis. J Clin Invest2005;115:209–18.
    6.Khan R, Sheppard R. Fibrosis in heart disease: understanding the role oftransforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia.Immunology2006;118:10–24.
    7.Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN. Enhancedextracellular matrix accumulation in restenosis of coronary arteries after stentdeployment. J Am Coll Cardiol2002;40:2072–81.
    8.SchulickAH, TaylorAJ, ZuoW,QiuCB, DongG,WoodwardRN, et al. Overexpressionof transforming growth factor beta1in arterial endothelium causes hyperplasia,apoptosis, and cartilaginous metaplasia. Proc Natl Acad Sci U S A1998;95:6983–8.
    9.Nabel EG, Shum L, Pompili VJ, Yang ZY, San H, Shu HB, et al. Direct transfer oftransforming growth factor beta1gene into arteries stimulates fibrocellularhyperplasia. Proc Natl Acad Sci U S A1993;90:10759–63.
    10.Majack RA. Beta-type transforming growth factor specifies organizationalbehavior in vascular smooth muscle cell cultures. J Cell Biol1987;105:465–71.
    11.Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positivelyand negatively regulate interstitial collagen gene expression in human vascularsmooth muscle cells. Arterioscler Thromb1991;11:1223–30.
    12.Smith JD,Bryant SR, Couper LL,VaryCP,Gotwals PJ,KotelianskyVE, et al.Soluble transforming growth factor-beta type II receptor inhibits negative remodeling,fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth.Circ Res1999;84:1212–22.
    13. Ward MR, Agrotis A, Kanellakis P, Hall J, Jennings G, Bobik A. Tranilastprevents activation of transforming growth factor-beta system, leukocyteaccumulation, and neointimal growth in porcine coronary arteries after stenting.Arterioscler Thromb Vasc Biol2002;22:940–8.
    14.Tamai H, Katoh O, Suzuki S, Fujii K, Aizawa T, Takase S, et al. Impact oftranilast on restenosis after coronary angioplasty: tranilast restenosis followingangioplasty trial (TREAT). Am Heart J1999;138:968–75.
    15. Ghosh J, Baguneid M, Khwaja N, Murphy MO, Turner N, Halka A, et al.Reduction of myointimal hyperplasia after arterial anastomosis by local injection oftransforming growth factor beta3. J Vasc Surg2006;43:142–9.
    16. Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol2000;190:300–9.
    17. Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograftvasculopathy: a review. Can J Surg2005;48:319–27.
    18. Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation2001;103:1718–20.
    19. Welt FG, Tso C, Edelman ER, KjelsbergMA, Paolini JF, Seifert P, et al.Leukocyte recruitment and expression of chemokines following different forms ofvascular injury. Vasc Med2003;8:1–7.
    20. Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet2003;361:247–9.
    21. Pickering JG, Ford CM, Chow LH. Evidence for rapid accumulation andpersistently disordered architecture of fibrillar collagen in human coronary restenosislesions. Am J Cardiol1996;78:633–7.
    22.Pels K, Labinaz M, Hoffert C, O'Brien ERM. Adventitial angiogenesis early aftercoronary angioplasty: correlation with arterial remodeling. Arterioscler Thromb VascBiol1999;19:229–38.
    23. Shi Y, Pieniek M, Farb A, O'Brien JE, Mannion JD, Zalewski A. Adventitialremodeling after coronary arterial injury. Circulation1996;93:340–8.
    24. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett2006;580:2811–20.
    25. Ghosh J, MurphyMO, Turner N, Khwaja N, Halka A, KieltyCM, et al. The role oftransforming growth factor beta1in the vascular system. Cardiovasc Pathol2005;14:28–36.
    26. Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforminggrowth factor-beta: role in cancer cell growth and invasion. Adv Cancer Res1998;75:87–134.
    27. Lawrence DA. Latent-TGF-beta: an overview. Mol Cell Biochem2001;219:163–70.
    28. Maeda S, Dean DD, Gomez R, Schwartz Z, Boyan BD. The first stage oftransforming growth factor beta1activation is release of the large R. Khan et al./Cardiovascular Research74(2007)223–234231Downloaded fromcardiovascres.oxfordjournals.org by guest on January18,2011latent complex fromthe extracellular matrix of growth plate chondrocytes by matrix vesicle stromelysin-1(MMP-3). Calcif Tissue Int2002;70:54–65.
    29. Bobik A. Transforming growth factor-betas and vascular disorders. ArteriosclerThromb Vasc Biol2006;26:1712–20.
    30. Sluijter JPG, Verloop RE, Pulskens WPC, Velema E, Grimbergen JM, Quax PH,et al. Involvement of furin-like proprotein convertases in the arterial response toinjury. Cardiovasc Res2005;68:136–43.
    31.] Peterson M, Porter KE, Loftus IM, Thompson MM, London NJ. Marimastatinhibits neointimal thickening in a model of human arterial intimal hyperplasia. Eur JVasc Endovasc Surg2000;19:461–7.
    32. WangM, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al.Matrixmetalloproteinase2activation of transforming growth factor-beta1(TGF-beta1) andTGF-beta1-type II receptor signaling within the aged arterial wall. ArteriosclerThromb Vasc Biol2006;26:1503–9.
    33.Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis.Genes Dev2000;14:163–76.
    34. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to thenucleus. Cell2003;113:685–700.
    35. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci2005;118:3573–84.
    36. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signalingand cardiovascular disorders. Curr Vasc Pharmacol2005;3:55–61.
    37. Madri JA, Reidy MA, Kocher O, Bell L. Endothelial cell behavior afterdenudation injury is modulated by transforming growth factorbeta1and fibronectin.Lab Invest1989;60:755–65.
    38. Majesky MW, Lindner V, Twardzik DR. Production of transforming growthfactor-β1during repair of arterial injury. J Clin Invest1991;88:904–10.
    39. Chamberlain J, Gunn J, Francis SE, Holt CM, Arnold ND, Cumberland DC, et al.TGFbeta is active, and correlates with activators of TGFbeta, following porcinecoronary angioplasty.CardiovascRes2001;50:125–36.
    40. Kanzaki T, Tamura K, Takahashi K, Saito Y, Akikusa B, Oohashi H, et al. In vivoeffect of TGF-beta1. Enhanced intimal thickening by administration of TGF-beta1inrabbit arteries injured with a balloon catheter. Arterioscler Thromb Vasc Biol1995;15:1951–7.
    41. Nikol S, Isner JM, Pickering G. Expression of transforming growth factor-β1isincreased in human vascular restenosis lesions. J Clin Invest1992;90:1582–92.
    42.Yutani C, Ishibashi-Ueda H, Suzuki T, Kojima A. Histologic evidence of foreignbody granulation tissue and de novo lesions in patients with coronary stent restenosis.Cardiology1999;92:171–7.
    43. Hwang DL, Latus LJ, Lev-Ran A. Effects of platelet-contained growth factors(PDGF,EGF, IGF-I, andTGF-beta) onDNAsynthesis in porcine aortic smooth musclecells in culture. Exp Cell Res1992;200:358–60.
    44. Majack RA, Majesky MW, Goodman LV. Role of PDGF-A expression in thecontrol of vascular smooth muscle cell growth by transforming growth factor-a. J CellBiol1990;11:239–47.
    45. Sajid M, Lele M, Stouffer GA. Autocrine thrombospondin partially mediatesTGF-beta1-induced proliferation of vascular smooth muscle cells. Am J Physiol HeartCirc Physiol2000;279:H2159–65.
    46.Little PJ, Allen TJ, Hashimura K, Nigro J, Farrelly CA, Dilley RJ. High glucosepotentiates mitogenic responses of cultured ovine coronary smooth muscle cells toplatelet derived growth factor and transforming growth factor-beta1. Diabetes ResClin Pract2003;59:93–101.
    47. Ko Y, Stiebler H, Nickenig G, Wieczorek AJ, Vetter H, Sachinidis A. Synergisticaction of angiotensin II, insulin-like growth factor-I, and transforming growthfactor-beta on platelet-derived growth factor-BB, basic fibroblastic growth factor, andepidermal growth factor-induced DNA synthesis in vascular smooth muscle cells. AmJ Hypertens1993;6:496–9.
    48. Kanda S, Kuzuya M, Ramos MA, Koike T, Yoshino K, Ikeda S, et al. Matrixmetalloproteinase and α5β3integrin-dependent vascular smooth muscle cell invasionthrough a type I collagen lattice. Arterioscler Thromb Vasc Biol2000;20:998–1005.
    49. Chico TJ,Chamberlain J,Gunn J,ArnoldN,Bullens SL,Gadek TR, et al. Effect ofselective or combined inhibition of integrins alpha(IIb)beta(3) and alpha(v)beta(3) onthrombosis and neointima after oversized porcine coronary angioplasty. Circulation2001;103:1135–41.
    50. Kim LT, Yamada KM. The regulation of expression of integrin receptors. ProcSoc Exp Biol Med1997;214:123–31.
    51. JanatMF, ArgravesWS, Liau G. Regulation of vascular smooth muscle cellintegrin expression by transforming growth factor-b1and by platelet-derived growthfactor-BB. J Cell Physiol1992;151:588–95.
    52. Brown SL, Lundgren CH, Nordt T, Fujii S. Stimulation of migration of humanaortic smooth muscle cells by vitronectin: implications for atherosclerosis. CardiovascRes1994;28:1815–20.
    53. Ward MR, Agrotis A, Kanellakis P, Dilley R, Jennings G, Bobik A. Inhibition ofprotein tyrosine kinases attenuates increases in expression of transforming growthfactor-beta isoforms and their receptors following arterial injury. Arterioscler ThrombVasc Biol1997;17:2461–70.
    54. Ryer EJ, Hom RP, Sakakibara K, Nakayama KI, Nakayama K, Faries PL, et al.PKCdelta is necessary for Smad3expression and transforming growth factorbeta-induced fibronectin synthesis in vascular smooth muscle cells. ArteriosclerThromb Vasc Biol2006;26:780–6.
    55. Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough.Cardiovasc Res1999;41:376–84.
    56. Kubota K, Okazaki J, Louie O, Kent KC, Liu B. TGF-beta stimulates collagen (I)in vascular smooth muscle cells via a short element in the proximal collagen promoter.J Surg Res2003;109:43–50.
    57.Rasmussen LM, Wolf YG, Ruoslahti E. Vascular smooth muscle cells frominjured rat aortas display elevated matrix production associated with transforminggrowth factor-beta activity. Am J Pathol1995;147:1041–8.
    58. Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelialgene expression: a common theme in vascular injury. Science1996;271:1427–31.
    59. McCaffrey TA, Fu C, Du C, Eskinar S, Kent KC, Bush Jr H, et al. High-levelexpression of Egr-1and Egr-1-inducible genes in mouse and human atherosclerosis. JClin Invest2000;105:653–62.
    60.Santiago FS, Lowe HC, Kavurma MM, Chesterman CN, Baker A, Atkins DG, et al.New DNA enzyme targeting Egr-1mRNA inhibits vascular smooth muscleproliferation and regrowth after injury. Nat Med1999;5:1438.
    61. Lowe HC, Fahmy RG, Kavurma MM, Baker A, Chesterman CN, Khachigian LM.Catalytic oligonucleotides define a key regulatoryrole for early growth response factor-1in the porcine model of instent restenosis. CircRes2001;89:670–7.
    62.Ohtani K, Egashira K, Usui M, Ishibashi M, Hiasa KI, Zhao Q, et al. Inhibition ofneointimal hyperplasia after balloon injury by ciselement‘decoy’ of early growthresponse gene-1in hypercholesterolemic rabbits. Gene Ther2004;11:126–32.
    63. Kim S-J, Glick A, Sporn MB, Roberts AB. Characterization of the promoterregion of the transforming growth factor-beta1gene. J Biol Chem1989;264:402–8.
    64. Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW, et al. Early growthresponse gene1-mediated apoptosis is essential for transforming growthfactor1-induced pulmonary fibrosis. J Exp Med2004;200:377–89.
    65. Ikedo H, Tamaki K, Ueda S, Kato S, Fujii M, Ten Dijke P, et al. Smad protein andTGF-beta signaling in vascular smooth muscle cells. Int J Mol Med2003;11:645–50.
    66. Saura M, Zaragoza C, Herranz B, Griera M, Diez-Marques L, Rodriguez-Puyol D,et al. Nitric oxide regulates transforming growth factor-beta signaling in endothelialcells. Circ Res2005;97:1115–23.
    67. Mallawaarachchi CM, Weissberg PL, Siow RC. Smad7gene transfer attenuatesadventitial cell migration and vascular remodeling after balloon injury. ArteriosclerThromb Vasc Biol2005;25:1383–7.
    68. Ohashi N, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, et al. Role ofp38mitogen-activated protein kinase in neointimal hyperplasia after vascular injury.Arterioscler Thromb Vasc Biol2000;20:2521–6.
    69. Zhan Y, Kim S, Izumi Y, Izumiya Y, Nakao T, Miyazaki H, et al. Role of JNK,p38, and ERK in platelet-derived growth factor-induced vascular proliferation,migration, and gene expression. Arterioscler Thromb Vasc Biol2003;23:795–801.
    70. Ju H, Nerurkar S, Sauermelch CF, Olzinski AR, Mirabile R, Zimmerman D, et al.Sustained activation of p38mitogen-activated protein kinase contributes to thevascular response to injury. J Pharmacol Exp Ther2002;301:15–20.
    71. Dong G, Schulick AH, DeYoung MB, Dichek DA. Identification of a cis-actingsequence in the human plasminogen activator inhibitor type-1gene that mediatestransforming growth factor-beta1responsiveness in endothelium in vivo. J Biol Chem1996;271:29969–77.
    72. Hua X, Liu X, Ansari DO, Lodish HF. Synergistic cooperation of TFE3and smadproteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1gene. Genes Dev1998;12:3084–95.
    73.Woodward RN, Finn AV, Dichek DA. Identification of intracellular pathwaysthrough which TGF-beta1upregulates PAI-1expression in endothelial cells.Atherosclerosis2006;186:92–100.
    74. Otsuka G, Agah R, Frutkin AD, Wight TN, Dichek DA. Transforming growthfactor beta1induces neointima formation through plasminogen activatorinhibitor-1-dependent pathways. Arterioscler Thromb Vasc Biol2006;26:737–43.
    75. DeYoung MB, Tom C, Dichek DA. Plasminogen activator inhibitor type1increases neointima formation in balloon-injured rat carotid arteries. Circulation2001;104:1972–7.
    76. Peng L, Bhatia N, Parker AC, Zhu Y, Fay WP. Endogenous vitronectin andplasminogen activator inhibitor-1promote neointima formation in murine carotidarteries. Arterioscler Thromb Vasc Biol2002;22:934–9.
    77. Ando H, Fukuda N, KotaniM, Yokoyama S, Kunimoto S,Matsumoto K, etal.ChimericDNA–RNAhammerhead ribozyme targeting transforming growthfactor-beta1mRNA inhibits neointima formation in rat carotid artery after ballooninjury. Eur J Pharmacol2004;483:207–14.
    78. Geary RL, Wong JM, Rossini A, Schwartz SM, Adams LD. Expression profilingidentifies147genes contributing to a unique primate neointimal smooth muscle cellphenotype. Arterioscler Thromb Vasc Biol2002;22:2010–6.
    79. Fu M, Zhang J, Zhu X, Myles DE, Willson TM, Liu X, et al. Peroxisomeproliferator-activated receptor gamma inhibits transforming growth factorbeta-induced connective tissue growth factor expression in human aortic smoothmuscle cells by interfering with Smad3. J Biol Chem2001;276:45888–94.
    80. Jackson CL, Raines EW, Ross R, Reidy MA. Role of endogenous platelet-derivedgrowth factor in arterial smooth muscle cell migration after balloon catheter injury.Arterioscler Thromb1993;13:1218–26.
    81. Halloran BG, So BJ, Baxter BT. Platelet-derived growth factor is a cofactor in theinduction of1alpha(I) procollagen expression by transforming growth factor-beta1in smooth muscle cells. J Vasc Surg1996;23:767–73[discussion774].
    82. Daniel TO, Gibbs VC, Milfay DF, Williams LT. Agents that increase cAMPaccumulation block endothelial c-sis induction by thrombin and transforming growthfactor-beta. J Biol Chem1987;262:11893–6.
    83. Nishio E, Watanabe Y. Transforming growth factor beta is a modulator ofplatelet-derived growth factor action in vascular smooth muscle cells: a possible rolefor catalase activity and glutathione peroxidase activity. Biochem Biophys ResCommun1997;232:1–4.
    84. Hu WY, Fukuda N, Kishioka H, Nakayama M, Satoh C, Kanmatsuse K.Hammerhead ribozyme targeting human platelet-derived growth factor A-chainmRNA inhibited the proliferation of human vascular smooth muscle cells.Atherosclerosis2001;158:321–9.
    85. Ryan ST, Koteliansky VE, Gotwals PJ, Lindner V. Transforming growthfactor-beta-dependent events in vascular remodeling following arterial injury. J VascRes2003;40:37–46.
    86. Kingston PA, Sinha S, David A, Castro MG, Lowenstein PR, Heagerty AM.Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta typeII receptor inhibits luminal loss and constrictive remodeling after coronaryangioplasty and enhances adventitial collagen deposition. Circulation2001;104:2595–601.
    87. Teng J, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K.DNA–RNA chimeric hammerhead ribozyme to transforming growth factor-beta(1)mRNA inhibits the exaggerated growth of vascular smooth muscle cells fromspontaneously hypertensive rats. Cardiovasc Res2000;48:138–47.
    88. Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A, etal. Ribozyme oligonucleotides against transforming growth factor-beta inhibitedneointimal formation after vascular injury in rat model: potential application ofribozyme strategy to treat cardiovascular disease. Circulation2000;102:1308–14.
    89. Merrilees M, Beaumont B, Scott L, Hermanutz V, Fennessy P. Effect ofTGF-beta(1) antisense S-oligonucleotide on synthesis and accumulation of matrixproteoglycans in balloon catheter-injured neointima of rabbit carotid arteries. J VascRes2000;37:50–60.
    90. Suzawa H, Kikuchi S, Arai N, Koda A. The mechanism involved in the inhibitoryaction of tranilast on collagen biosynthesis of keloid fibroblasts. Jpn J Pharmacol1992;60:91–6.
    91. Miyazawa K, Kikuchi S, Fukuyama J, Hamano S, Ujiie A. Inhibition of PDGF-and TGF-beta1-induced collagen synthesis, migration and proliferation by tranilast invascular smooth muscle cells from spontaneously hypertensive rats. Atherosclerosis1995;118:213–21.
    92. Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A. Inhibitoryeffects of tranilast on expression of transforming growth factor-beta isoforms andreceptors in injured arteries. Atherosclerosis1998;137:267–75.
    93. Ishiwata S, Verheye S, Robinson KA, Salame MY, de Leon H, King III SB, et al.Inhibition of neointima formation by tranilast in pig coronary arteries after balloonangioplasty and stent implantation. J Am Coll Cardiol2000;35:1331–7.
    94. Ueda K, Tamai H, Hsu Y. Effect of tranilast on prevention of chronic restenosisafter PTCA. Jpn J Interv Cardiol1993;8:104.
    95. TamaiH,Katoh K,Yamaguchi T,HayakawaH, KanmatsuseK,HazeK, et al. Theimpact of tranilast on restenosis after coronary angioplasty: the Second TranilastRestenosis Following Angioplasty Trial (TREAT-2). Am Heart J2002;143:506–13.
    96. Holmes Jr DR, Savage M, LaBlancheJM, Grip L, Serruys PW, Fitzgerald P, et al.Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial.Circulation2002;106:1243–50.
    97. Waksman R, Ajani AE, Pichard AD, Torguson R, Pinnow E, Canos D, et al. OralRapamune to Inhibit Restenosis study. Oral rapamycin to inhibit restenosis afterstenting of de novo coronary lesions: the Oral Rapamune to Inhibit Restenosis(ORBIT) study. J Am Coll Cardiol2004;44:1386–92.
    98. Guarda E,Marchant E, FajuriA, MartinezA,Moran S,Mendez M, et al. Oralrapamycin to prevent human coronary stent restenosis: a pilot study. Am Heart J2004;148:e9.
    99. MurataH, Zhou L,Ochoa S,HasanA,BadiavasE, FalangaV. TGF-beta3stimulatesand regulates collagen synthesis through TGF-beta1-dependent and independentmechanisms. J Invest Dermatol1997;108:258–62.
    100. Shah M, Foreman DM, Ferguson MWJ. Neutralisation of TGF-β1and TGF-β2or exogenous addition of TGF-β3to cutaneous rat wounds reduces scarring. J Cell Sci1995;108:985–1002.
    101. Kingston PA, Sinha S, Appleby CE, David A, Verakis T, Castro MG, et al.Adenovirus-mediated gene transfer of transforming growth factor-beta3, but nottransforming growth factor-beta1, inhibits constrictive remodeling and reducesluminal loss after coronary angioplasty. Circulation2003;108:2819–25.
    102. Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, et al. TheALK-5inhibitor A-83-01inhibits Smad signaling and epithelial-to-mesenchymaltransition by transforming growth factorbeta. Cancer Sci2005;96:791–800.
    103. Mori Y, Ishida W, Bhattacharyya S, Li Y, Platanias LC, Varga J. Selectiveinhibition of activin receptor-like kinase5signaling blocks profibrotic transforminggrowth factor beta responses in skin fibroblasts. Arthritis Rheum2004;50:4008–21.
    104. Bonniaud P, Margetts PJ, Kolb M, Schroeder JA, Kapoun AM, Damm D, et al.Progressive transforming growth factor beta1-induced lung fibrosis is blocked by anorally active ALK5kinase inhibitor. Am J Respir Crit Care Med2005;171:889–98.
    105. Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK. IN-1130, a novel transforminggrowth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosisin obstructive nephropathy. Kidney Int2006;70:1234–43.
    106. Ebisui O, Dilley RJ, Li H, Funder JW, Liu JP. Growth factors and extracellularsignal-regulated kinase in vascular smooth muscle cells of normotensive andspontaneously hypertensive rats. J Hypertens1999;17:1535–41.
    107. Yoshida K, NishidaW, Hayashi K, Ohkawa Y, Ogawa A, Aoki J, et al. Vascularremodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo.Circulation2003;108:1746–52.
    108. Francis DJ, Parish CR, McGarry M, Santiago FS, Lowe HC, Brown KJ, et al.Blockade of vascular smooth muscle cell proliferation and intimal thickening afterballoon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfatedirectly binds FGF-2, blocks cellular signaling, and inhibits proliferation. Circ Res2003;92:e70–7.
    109. Colombatti A, Doliana R, Bot S, Canton A, Mongiat M, Mungiguerra G, et al.The EMILIN protein family. Matrix Biol2000;19:289–301.
    110. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, et al.Emilin1links TGF-beta maturation to blood pressure homeostasis. Cell2006;124:929–42.
    111. van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW,Holmes Jr DR, et al. Marked inflammatory sequelae to implantation of biodegradableand nonbiodegradable polymers in porcine coronary arteries. Circulation1996;94:1690–7.
    112. Drachman DE, Edelman ER, Seifert P, Groothuis AR, Bornstein DA, KamathKR, et al. Neointimal thickening after stent delivery of paclitaxel: change incomposition and arrest of growth over six months. J Am Coll Cardiol2000;36:2325–32.
    113. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW.Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol2007:1–7[advance online publication,22January].
    114. Cohen-Sela E, Dangoor D, Epstein H, Gati I, Danenburg HD, Golomb G, et al.Nanospheres of a bisphosphonate attenuate intimal hyperplasia. J NanosciNanotechnol2006;6:3226–34.
    115. Banai S, Chorny M, Gertz SD, Fishbein I, Gao J, Perez L, et al. Locallydelivered nanoencapsulated tyrphosyin (AGL-2043) reduces neointima formation inballoon-injured rat carotid and stented porcine coronary arteries. Biomaterials2005;26:451–61.
    116. Gulati R, Jevremovic D, Peterson TE, Witt TA, Kleppe LS, Mueske CS, et al.Autologous culture-modified mononuclear cells confer vascular protection afterarterial injury. Circulation2003;108:1520–6.
    117. Tahlil O, Brami M, Feldman LJ, Branellec D, Steg PG. The Dispatch catheteras a delivery tool for arterial gene transfer. Cardiovasc Res1997;33:181–7.
    118. Panetta CJ, Miyauchi K, Berry D, Simari RD, Holmes DR, Schwartz RS, et al. Atissue-engineered stent for cell-based vascular gene transfer. Hum Gene Ther2002;13:433–41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700