用户名: 密码: 验证码:
豇豆(Vigna unguiculata L.)铝毒害及耐性机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是地壳中含量最丰富的金属元素,通常以难溶性硅酸盐或氧化铝的形式存在,对植物没有毒害,但在酸性条件下(pH<5),可溶性的铝(主要是Al3+)对大多数植物都会产生毒害。酸性上壤中的铝毒害抑制植物生长,降低作物品质和产量。因此对植物耐铝胁迫机理研究具有重要的理论价值和实际意义。本文以不同耐铝性豇豆品种‘T6’(耐铝型)和‘S3’(铝敏感型)为试验材料,对两份品种耐铝差异进行了比较研究。通过研究不同浓度铝胁迫下两份豇豆品种种子萌发、幼苗生长、营养元素吸收、光合荧光特性、抗氧化系统、细胞壁特性和有机酸分泌等方面的变化,来探讨豇豆铝毒害及耐铝机理。全文研究结果如下:
     1.铝敏感品种‘S3’种子的发芽率、发芽势、淀粉酶活性和可溶性糖含量在50μmol·L-1以下的低浓度铝(10、50μmol·L-1)处理下与对照相比差异不显著;而在100μmol·L-1以上的高浓度铝(100、500、1000μmol·L-1)胁迫下显著下降。耐铝品种‘T6’种子的相关指标在低浓度铝处理下显著提高;在500、1000μmol·L-1铝胁迫下显著下降。
     低浓度铝处理时,两份豇豆品种幼苗的株高、地上部干重与对照相比差异不显著,500μmol·L-1的铝胁迫显著降低了两份豇豆品种的株高和地上部干重。耐铝品种‘T6’在10μmol·L-1铝处理时,根长和根系干重与对照相比差异不显著,在高浓度铝胁迫时显著下降;铝敏感品种‘S3’随着铝处理浓度的提高,根长、根系干重一直呈下降趋势。
     2.铝胁迫增加了两份豇豆品种植株体内的铝含量,且铝主要集中在根系,铝敏感品种‘S3’的增加量大于耐性品种‘T6’;两份品种的根系和地上部分的大量元素N、P、Mg、Ca、K的含量在高浓度的铝胁迫时有不同程度下降,除K含量外,对铝敏感品种'S3'N、P、Mg、Ca的含量影响大于耐性品种‘T6’。铝胁迫对豇豆微量元素的吸收也有不同程度的抑制作用,以Cu和Fe受到的抑制作用最大,Zn次之,Mn吸收受到的抑制作用最小。
     铝胁迫后,铝主要集中在豇豆根尖的0~10mm处,铝敏感品种‘S3’铝积累量大于耐铝品种‘T6’;苏木精染色后发现铝敏感品种‘S3’根尖染色较深,而耐铝品种‘T6’根尖染色较浅;X-射线能谱分析发现,铝胁迫后,两份豇豆品种的铝主要分布在表皮和皮层组织,而中柱分布较少。
     3.10μmol·L-1的铝处理提高了耐性品种‘T6’的叶绿素a、叶绿素a/b、净光合速率(Pn)和非光化学淬灭系数(NPQ),降低了胞间CO2浓度(Ci),增强了其光合能力;而高浓度的铝胁迫破坏了两品种的叶绿体、线粒体和细胞核结构,降低了叶绿素a、叶绿素a/b、Pn,气孔导度(Gs)、植物水分利用效率(WUE)、PSⅡ光合电子传递量子效率(ΦPSⅡ)、光化学淬灭系数(qP)和NPQ,提高了Ci,抑制了其光合作用,且对敏感品种‘S3’的影响大于耐铝品种‘T6’。
     4.随着铝处理浓度的增加,豇豆根尖细胞壁果胶和纤维素中的糖醛酸含量和总糖含量显著增加,半纤维素中的总糖含量显著增加,且铝敏感品种‘S3’增加幅度大于耐铝品种‘T6’;豇豆根尖细胞壁果胶、半纤维素和纤维素中的铝含量在高浓度铝胁迫时显著增加,铝敏感品种‘S3’增加量显著高于耐铝品种‘T6’。高浓度铝胁迫下,两品种根尖细胞壁的果胶甲酯酶(PME)活性显著提高,‘S3’的升高幅度大于‘T6’,根尖细胞壁果胶甲酯化程度显著降低,‘S3’的降低幅度大于‘T6’。
     随着铝处理浓度的升高,两份豇豆品种的根尖O2.-产生速率、H202含量、MDA含量及质膜透性都逐渐增加,且铝敏感品种‘S3’的增加幅度大于耐铝品种‘T6’。抗氧化系统的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、抗坏血酸(AsA)、还原型谷胱甘肽(GSH)含量都有所上升,其中铝敏感品种‘S3’的SOD活性上升幅度比耐性品种‘T6’高,而POD、CAT、APX、ASA的上升幅度相对较低,从而引起H2O2过量积累而导致氧化胁迫,使细胞的脂质过氧化程度加剧,最终严重影响根系的生长。
     5.铝胁迫可诱导豇豆根系分泌柠檬酸和苹果酸,柠檬酸的分泌量在不同铝处理浓度和不同品种间没有显著变化。苹果酸的分泌量随着铝处理浓度的增加而升高,耐铝品种苹果酸的分泌量高于铝敏感品种,两份品种根系有机酸的分泌均存在一个6小时的滞后期,属于分泌模式Ⅱ型。缺P处理可以诱导豇豆根系分泌有机酸,但分泌量不随处理时间的增加而增加,缺P处理加铝24小时后苹果酸分泌量增加了约10倍,镧处理不能诱导豇豆根系分泌有机酸,铝诱导豇豆有机酸的分泌主要发生在根尖0~10mm。
     随着铝处理浓度的增加,根系苹果酸分泌量显著增加,根尖苹果酸含量显著减少,但与其代谢相关酶的活性没有显著变化;阴离子通道抑制剂A-9-C和蛋白合成抑制剂CHM可以完全抑制铝诱导的豇豆根系有机酸的分泌,但根尖有机酸的含量没有显著变化。因此推测铝诱导的豇豆根系有机酸的分泌与其代谢无关,可能与新蛋白的合成和通道的开启有关。
     外源水杨酸(SA)、脱落酸(ABA)对铝诱导的豇豆根系有机酸的分泌影响不显著,而外源生长素(IAA)可显著提高铝诱导的豇豆根系苹果酸的分泌,Ca2+通道抑制剂和螯合剂则显著抑制铝诱导的豇豆根系苹果酸的分泌,同时豇豆根尖有机酸的含量和其代谢相关酶的活性均没有显著变化。因此推测IAA和Ca2+可能参与调控铝诱导的豇豆根系苹果酸的分泌,但这个调控过程可能与其代谢无关。
Aluminum (Al) is the most abundant metal element in the earth's curst, usually in the form of insoluble silicate or alumina which was not toxic to plants. But in the acidic soil (pH<5), soluble A1(mainly Al3+) was of toxic to most of plant. In the acidic soil, Al toxicity inhibited the growth of plant, decrease the quality and output of crops. So the researches on Al resistant mechanism are of important theoretical and practical significance. In this research., the seed germinate, seedling growth, nutrient uptake, photosynthetic characteristics, reactive oxygen system, cell wall characteristic and the secretion of organic acid of two cowpea (Vigna unguiculata L.) cultivars 'T6'(Al-toleranct) and 'S3'(Al-sensitive) were studied, to reveal the Al resistance mechanism of cowpea. The results were reported as follows:
     1. There were no significant change on the germination energy, germination percentage, amylase activity and soluble sugar content of 'S3' after exposure to10and50μmol·L-1Al, but significantly decreased after exposure to100、500、1000μmol·L-1Al. These indexes of 'T6' significantly increased after exposure to10and50μmol·L-1Al, and significantly decreased after exposure to500、1000μmol·L-1.
     There was no significant change on the plant height and shoot dry weight of'T6'and 'S3' after exposure to10and50μmol·L-1Al, and significant decrease after exposure to500μmol·L-1Al. Compared with control, there was no significant change on the root length and root dry weight of 'T6' after exposure to10μmol·L-1Al, significantly decreased after exposure to50,100and500μmol·L-1Al. The root length and root dry weight of'S3' decreased significantly by Al increase from10to500μmol·L-1.
     2. The Al content in 'T6' and 'S3' increased after Al stress, and Al mainly accumulated in roots, the increase of 'T6' was lower than 'S3'; The content of N, P, K, Ca, Mg in'T6' and'S3'decreased after exposure to500μmol·L-1Al. Besides K, the decrease of N, P, Ca, Mg in'T6'was lower than'S3'. The uptake of trace elements was inhibited in cowpea, the decrease of Cu and Fe was highest, Zn next, the decrease of Mn was lowest.
     Al mainly accumulated in root apex (0~10mm) after A1stress, the content of A1in 'S3'was higher than 'T6'.The root apex of'S3'was stained more deep than 'T6' by hematoxylin after Al treatment. The results of X-ray analysis indicated that A1mainly distributed in epidermal cells and subepidermal cortical cells.
     3. The chlorophylla a, chlorophyll a/b, net photosynthetic rate (Pn) and non-photochemical quenching coefficient (NPQ) of 'T6' increased and the intercellular CO2concentration (Ci) of 'T6' decreased after exposure to10umol·L-1Al, so the photosynthetic capacity was strengthened. The structure of chloroplast, mitochondria and cell nucleus of 'T6' and 'S3' was destroyed; the chlorophylla a, chlorophyll a/b, Pn, stomatal conductance (Gs), plant water use efficiency (WUE), PSⅡ photosynthetic electron transport quantum efficiency (ΦPSⅡ), photochemical quenching (qP) and NPQ of 'T6' and 'S3' decreased; the Ci of 'T6' and 'S3' increased after exposure to100and500μmol·L-1Al, so the photosynthetic capacity was inhibited, and the inhibition in'S3'was larger than'T6'.
     4. The uronic acid and sugar of pectin and cellulose in cell wall of 'T6' and 'S3' root apex increased significantly with the increase of Al, and the sugar in hemicellulose (HC) increased significantly with the increase of Al, and increase of'S3'was significantly higher than 'T6'. The A1content of pectin, HC, and cellulose increase significantly after exposure to100and500μmol·L-1Al, and the increase of'S3'was significantly higher than'T6'.The cell wall PME activity of 'T6' and 'S3' root apex increased significantly after exposure to100,500μmol·L-1Al, the increase of 'S3' was significantly higher than 'T6'.The degree of cell wall pectin methyl of 'T6' and 'S3' root apex decrease significantly after exposure to100and500μmol·L-1Al, the decrease of'S3'was significantly higher than'T6'.
     The superoxide anion radical, H2O2content, MDA content and plasma-membrane permeability of'T6' and 'S3' root tip increase significantly by A1increase from0to500μmol·L-1, and the increase range of 'S3' was higher than 'T6'.The SOD, POD, CAT, APX, GR, AsA, GSH of 'T6' and 'S3' root tip increased after exposure to0to500μmol·L-1Al. The increase range of SOD in'S3'root tip was higher than 'T6', but increase range of POD、CAT、APX in 'S3' root tip were significant lower than 'T6'.We presume that 'S3' root tip accumulated more H2O2and increased the oxidative stress then result in the inhibited of root growth.
     5. After exposure to Al, both malate and citrate were secreted from 'T6' and 'S3' roots. There was no significant change of citrate between'T6'and'S3'. The amount of malate secreted from 'T6' and 'S3' increase significantly by Al increase, the secretion of malate from 'T6' root was higher than'S3'. The secretion type of malate and citrate from 'T6' and 'S3'roots was similar, and both of them have a6h lag-phase. Potassium (P) starvation also induced the secretion of malate and citrate, but the secretion amount did not increase by P starvation time increase, and Al stimulate10times secretion than P starvation. Exposure to La (Lanthanum)did not induce organic acid secretion from cowpea root. The secretion site was mainly located in the0~10mm segment from root tip.
     The secretion of malate increase from cowpea root, and the malate content of cowpea tips decrease by Al increase, there was no significant change in enzyme activity relate to malate metabolism. The anion-channel inhibitor (A-9-C) and protein-synthesis inhibitor (CHM) completely inhibited the organic acid secretion of cowpea root under Al treatment, but the organic acid content in root tip did not changed. So we presume that there was no relative between the organic secretion and organic metabolism under A1treatment, and maybe related to the new protein synthesis.
     Exogenous SA and ABA did not changed the organic acid secretion in cowpea root induced by A1treatment, exogenous IAA significantly increased the malate secretion, and exogenous Ca2+channel inhibitors and chelator significantly inhibited the malate secretion. Meanwhile the organic acid content and enzyme activity relate to organic acid metabolism did not changed. So we presume that IAA and Ca2+may involved in the regulation of malate secretion induced by Al, but the regulation may be not related to malate metabolism.
引文
1.艾希珍,王秀峰,郭延奎,邢禹贤.弱光亚适温和低温对黄瓜气孔特性及叶绿体超微结构的影响.中国农业科学,2006,39(10):2063-2068
    2.蔡妙珍,刘鹏,徐根娣,吕庭君.钙、硅对铝胁迫下荞麦光合生理的影响.水土保持学报,2008,22(2):206-208
    3.蔡妙珍,刘鹏,徐根娣,沈丽萍.蓼科、禾本科植物细胞膜对铝胁迫反应的比较研究.水土保持学报,2005,19(6):122-125
    4.蔡妙珍,王宁,王志颖,王芳妹,朱美红,黄文方.边缘细胞对荞麦根尖铝毒的防护效应和对细胞壁多糖的影响.生态学报,2012,32(3):915-922
    5.陈佳.硼、铝对豌豆根边缘细胞及根细胞壁果胶多糖特性的研究.四川农业大学:硕士论文,2008:40-45
    6.陈文荣,刘鹏,黄朝表,徐根娣,章赛君,李朝苏.铝对荞麦铝和其它营养元素运输的影响.水土保持学报,2006,20(3):173-176
    7.陈由强,叶冰莹,高一平,陈文列.低温胁迫下批把幼叶细胞内Ca2+水平及细胞超微结构变化的研究.武汉植物学研究,2000,18(2):138-142
    8.董爱华,童微星,潘伟槐,潘建伟,赵章杏,朱睦元.大麦耐A13+性与诱导培养液pH改变的相关性研究.上海农业学报,1999,15:38-41
    9.董晓英,沈仁芳.高铝低磷胁迫对胡枝子生长及矿质元素吸收的影响.土壤,2009,41(4):562-565
    10.杜幸,刘鹏,徐根娣,蔡妙珍.红豇豆根缘细胞对铝胁迫的响应.植物营养与肥料学报,2006,12(5):722-726
    11.方金梅,应朝阳,黄毅斌,陈恩,李春燕.铝胁迫对决明属水土保持牧草幼苗根系的影响.中国水土保持,2003,7:30-32
    12.冯晓英,韩凌,陈庆富.A13+对铝敏感和铝抗性荞麦品系种子萌发和淀粉酶活力的影响.种子,2007,26(7):79-80
    13.付东亚,洪健,陈集双,吴建祥.芜菁花叶病毒外壳蛋白在寄主植物叶绿体中的积累及其对光系统Ⅱ活性的影响.植物生理与分子生物学学报,2004,30(1):34-40
    14.高吉喜,曹洪法.马尾松苗体内铝离子存在方式、形态和分布.环境科学,1992,13(6):69-72
    15.郭天荣.大麦耐酸性土壤种质资源的筛选方法和耐性机理研究.浙江大学:博士论文,2003.
    16.郭天荣,张国平,卢王印,吴汉平,陈锦新,邬飞波,周美学.铝胁迫对不同耐铝大麦基因型干物质积累与铝和养分含量的影响.植物营养与肥料学报,2003,9(3):324-330
    17.郝鲁宁,刘厚田.铝对水稻幼苗的生理影响.植物学报,1989,31(11):847-853
    18.何虎翼,何龙飞,黎晓峰,顾明华.铝胁迫对黑麦幼苗活性氧系统的影响.麦类作物学报,2005,25(6):91-95
    19.何礼.我国栽培豇豆的遗传多样性研究及其育种策略探讨.四川农业大学:博士论文,2002
    20.何龙飞,刘友良,沈振国,王爱勤.铝对小麦根细胞质膜ATPase酶活性和膜脂组成的影响.中国农业科学.2001,34(5):526-531
    21.何龙飞,刘友良沈振国,王爱勤,李扬瑞.铝对小麦幼苗营养元素吸收和分布的影响.电子显微镜学报,2000,19:685-694
    22.何龙飞,黄咏梅,莫长明,李创珍,卢升安.铝对花生根系膜脂过氧化和保护酶活性的影响.广西农业生物科学,2005,24(3):220-224
    23.何龙飞,沈振国,刘友良,王爱勤.植物铝毒害机理的研究.广西农业生物科学,2002,21(3):188-194
    24.胡红青,黄巧云,李学垣.不同铝浓度对小麦根系分泌氨基酸和糖类的影响.土壤通报,1995,26(1):15-17
    25.胡清泉.提高紫花苜蓿耐铝毒能力的遗传操作.中国重庆:西南大学,2006
    26.蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144-150
    27.孔繁翔,桑伟莲,蒋新,王连生.铝对植物毒害及植物抗铝作用机理.生态学报,2000,20(5):856-858
    28.李朝苏,刘鹏,徐根娣,张文君,陈微微,王保义.铝浸种对荞麦种子萌发和幼苗生理的影响.生态学报,2006,26(6):2041-2047
    29.李德华.不同耐铝性玉米自交系根系特性的研究.华中农业大学:博士论文,2003
    30.李德华,贺立源,刘武定.不同耐铝性玉米基因型根际营养元素吸收的差异.中国农学通报,2004,20(4):191-197
    31.李刚,徐芳杰,蒋思丝,章永松,林咸永.铝对小麦根尖细胞壁过氧化物酶活性和过氧化氢含量的影响.植物营养与肥料学报,2010,16(4):887-892
    32.李海生,张志权.不同铝水平下茶对铝及矿质养分的吸收与累积.生态环境,2007,16(1):186-190
    33.黎晓峰,马建锋,松本英明.玉米根冠粘胶和铝的结合及有机酸累积.植物生理与分子生物学学报,2002,28(2):121-126
    34.凌桂芝.铝诱导柱花草和黑麦根系分泌有机酸及其调控机理的研究.广西大学:博士论文,2004
    35.林咸永,唐剑锋,李刚,章永松.铝胁迫下小麦根细胞壁多糖组分含量的变化与其耐铝性的关系.浙江大学学报:农业与生命科学版,2005,31(6):724-730
    36.林咸永,章永松,罗安程,陶勤南.铝胁迫下不同小麦基因型根际pH的变化、NH+4和NO-3吸收及还原与其耐铝性的关系.植物营养与肥料学报,2001,7:64
    37.林咸永,朱炳良,章永松,罗安程,陶勤南.地上部分生长性状指标在小麦耐铝性筛选中的应用.浙江大学学报(农业与生命科学版),2002,28(3):860-866
    38.刘家友,喻敏,刘丽屏,萧洪东.铝胁迫下豌豆根边缘细胞和根细胞壁多糖组分含量的变化.中国农业科学,2009,42(6):1963-1971
    39.刘鹏,徐根娣,姜雪梅,应小芳.铝对大豆幼苗膜脂过氧化和体内保护系统的影响.农业环境科学学报,2004,23(1):51-54
    40.刘强,尹丽,龙婉婉,肖宜安.铝胁迫对蓼科植物生长和光合、蒸腾特性的影响.广西植物,2011,31(2):227-232
    41.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,200045(14):1465-1474
    42.刘腾腾,郜红建,宛晓春,张正竹.铝对茶树根细胞膜透性和根系分泌有机酸的影响.茶叶科学2011,31(5):458-462
    43.刘应迪,李和平,肖冬林.高温胁迫下藓类植物游离脯氨酸含量的变化.吉首大学学报(自然科学版).2001,22(1):1-3
    44.罗献宝.酸、铝胁迫对苜蓿初生根伸长的影响.广西大学:博士论文,2003
    45.罗小英,崔衍波,邓伟,李德谋裴炎.超量表达苹果酸脱氢酶基因提高苜蓿的耐受性.分子植物育种,2004,(5):621-626
    46.毛传澡.热带旱稻抗铝的遗传及分子机理研究.浙江大学:博士论文,2003
    47.潘小东.紫花曹蓿耐铝毒突变体筛选.西南大学:博士论文,2005
    48.彭嘉桂,陈成榕,卢和顶.铝胁迫对大豆遗传基因型形态和生理特性的影响.福建省农科院学报,1994,9(2):34-39
    49.彭嘉桂,陈成榕,卢和顶.玉米铝胁迫研究初报.热带亚热带土壤科学,1995,4(2):97-101
    50.钱庆,毕玉芬,朱栋斌.利用野生苜蓿资源进行耐酸铝研究的前景.中国农学通报,2006,22(04):248-251
    51.任立民,刘鹏,谢忠雷.植物对铝毒害的抗逆性研究进展.土壤通报,2008,39(1):177-181
    52.沈仁芳.铝在土壤-植物中的行为及植物的适应机制.北京,科学出版社,2008
    53.石贵玉.铝对水稻幼苗生长和生理的影响.广西植物,2004,24(1):77-80
    54.孙大业,郭艳林.细胞信号系统.北京,科学出版社.1993
    55.孙冬花,田秋英,张文浩.铝对秋葵、小麦种子萌发和幼苗生长的影响.云南植物研究.2006,28(5):523-528
    56.唐剑锋,罗湖旭,林咸永,章永松,李刚.铝胁迫下小麦根细胞壁果胶甲酯酶活性的变化及其与耐铝性的关系.浙江大学学报(农业与生命科学版),2006,32(2):145-151
    57.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    58.王建林.土壤中铝的胁迫与水稻生长.土壤,1991,23(6):302-306
    59.王文兴.中国酸雨成因研究.中国环境科学,1994,14:323-329
    60.王志颖,刘鹏,李锦山,吴惠芳,刘莹,芦伯鑫.铝胁迫下外源有机酸对油菜根系形态及叶绿素荧光特性的影响.江苏农业学报,2011,27(4):756-762
    61.王忠.植物生理学.北京,中国农业出版社,2000:192-193
    62.韦冬萍.铝诱导油菜有机酸分泌和代谢的调控及铝毒特性研究.广西大学:硕士论文,2008
    63.肖祥希,杨宗武,肖晖,谢一青,刘星辉.铝胁迫对不同耐铝性小麦基因型根尖抗氧化酶活性 的影响.浙江大学学报(农业与生命科学版),2009,35(6):619-625
    64.肖祥希,杨宗武,郑蓉,陈立松,刘星辉.铝胁迫对龙眼叶和根细胞超微结构的影响.林业科学,2003,12(1):58-641
    65.熊毅,李庆逵.中国土壤.北京:科学出版社,1987:39
    66.许桂芳.PEG胁迫对2种过路黄抗性生理生化指标的影响.草业学报,2008,17(1):66-70
    67.许玉凤,曹敏建,王文元,邵美妮.植物耐铝毒的研究进展.沈阳农业大学学报,2002,33(6):452-455
    68.许玉凤,曹敏建,王文和,杨延杰,闫洪奎,冯延平.铝胁迫对耐性不同的玉米基因型幼苗光合特性的影响.玉米科学,2005,13(1):79-82
    69.宣家祥,张自立.根际土壤溶液中铝离子的形态分布及其对大麦的毒性.土壤学报,1995,32(增刊):27-35
    70.阎华,沈秀荣.植物铝毒害机理及耐铝机制.安徽农业科学,2006,34(20):5201-5204
    71.阎君.假俭草种质资源耐铝性评价及耐铝机理研究.南京农业大学,博士论文,2010
    72.杨建立.植物耐铝基因型差异及荞麦耐铝机理研究.浙江大学:博士论文,2004
    73.杨建立,俞雪辉,刘强,郑绍建.铝胁迫对小麦根尖细胞蛋白质及苹果酸分泌的影响.植物营养与肥料学报,2005,11(3):390-393
    74.杨梅,曹雪宁,吴幼媚,黄晓露.酸铝处理对不同耐铝性桉树无性系吸收Al及N、P、K的影响.西南农业学报,2012,25(3):1061-1064
    75.杨敏,黎晓峰,玉永雄,顾明华,凌桂芝,陈佩琼,卿冬进.铝对苜蓿生长,结瘤及根毛变形的影响.农业环境科学学报,2007,26(1):202-206
    76.杨庆,金华斌.铝胁迫对花生氮、磷、钙的影响.中国油料作物学报,2000,22:68-73
    77.杨野.不同耐铝型小麦品种耐铝差异机理的研究.华中农业大学:博士论文,2010
    78.杨野,郭再华,耿明建,王巧兰,赵竹青.不同耐铝型小麦品种苹果酸分泌差异与有机酸代谢关系.研究生态环境学报,2010,19(10):2280-2284
    79.应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响.应用生态学报,2005,16(1):166-170
    80.应燕玲,竺玉文,章红芳,傅绍光,应小芳,刘鹏.不同铝浓度处理对大豆种子萌发的影响.河南农业科学,2005,11:46-48
    81.尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理.植物生理与分子生物学学报,2005,31(2):111-118
    82.余国泰,秦遂初.有机肥缓解小麦铝毒效果的研究.植物营养与肥料学报,1998,4(1):57-62
    83.俞慧娜,刘鹏,徐根娣.大豆生长及叶绿素荧光特性对铝胁迫的反应.中国油料作物学报,2007,29(3):257-265
    84.张芬琴,于金兰.铝处理对苜蓿种子萌发及其幼苗生理生化特性的影响.草业学报,1999,8(3):61-65
    85.张远兵,刘爱荣,方蓉.外源一氧化氮对镉胁迫下黑麦草生长和抗氧化酶活性的影响.草业学报,2008,17(4):57-64
    86.张振贤,周绪元,陈利平.主要蔬菜作物光合与蒸腾特性研究.园艺学报,1997,24(2):155-160
    87.赵志刚,丁贵杰,唐敏.酸、铝胁迫对马尾松种子萌发与芽苗生长的影响.林业科学研究,2007,20(1):111-115
    88.张志良.植物生理学实验指导.北京:高等教育出版社,2001
    89.周建华,潘建伟,朱睦元.铝胁迫下大麦根过氧化酶同工酶及根中Al,Ca和P含量的变化.浙江农业学报,2001,13:190-196
    90.周楠,韦冬萍,刘鹏,蔡妙珍,徐根娣,李志刚,梁和.铝毒胁迫对两种基因型油菜苗期根系形态及生理特性的影响.中国油料作物学报,2008,30(4):443-449
    91.朱雪竹,黄耀,宗良纲,孔繁翔.活性铝对小麦根生长及酶活性的影响.应用生态学报,2005,16(6):1043-1046
    92.邹奇.植物生理生化实验指导.北京:中国出版社,1995
    93.左方华,凌桂芝,唐新莲,玉永雄,李耀燕,黎晓峰.铝胁迫诱导柱花草根系分泌柠檬酸.中国农业科学,2010,43(1):59-64
    94. Achary V M M, Jena S, Panda K K, Panda B B. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety,2008,70:300-310
    95. Adams M D, Kelly J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F, Kerlavage A R, McCombie W R, Venter J C. DNA sequencing:Expressed sequence tags and human genome project. Science,1991,252:1651-1656
    96. Ai X Z, Guo YK, Chen L P, Xing Y X. Photosynthetic characteristics and ultrastructure of chloroplast of cucumber under low light density in solar-greenhouse. Agricultural Sciences in China,2004,3:129-135
    97. Aniol A. Genetics of acid tolerant plant, In:RJ Wright eds, Plant-soil Interactions at Low pH. Kluwer Academic, Dordrecht, The Netherlands,1991:1007-1017
    98. Anoop V M, Basu U, McCammon M T, McAlister-Henn L, Taylor G J. Modulation of citrate metanolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiology,2003,132:2205-2217
    99. Antonio A C P, Vera M C A, Sidney N P, Christiane L B, Leandro L L. Aluminum effect on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to toxicity. Journal of Plant Nutrition,2003,26 (1):31-61
    100. Arakawa N, Tsutsumi, Sanceda N G, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agricultural and Biological Chemistry,1981,45 (5):1289-1290
    101. Basu U, Basu A, Taylor G J. Differential exudation polypeptides by roots of aluminum-tolerance and sensitive cultivars Triticum aestivum L. in response to aluminum stress. Plant Physiology,1994, 106:151-158
    102. Basu U, Good A G, Taylor G J. Transgnic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. Plant Cell Environ,2001,24:1269-1278
    103. Bennet R J, Breen C M, Fey M V. The aluminum signal:new dimensions of aluminum tolerance. Plant and Soil,1991,134:153-166
    104. Berzonsky W A. The genomic inheritance of aluminium tolerance in Arlas66 wheat. Genome,1992, 35:689-693
    105. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Journal entry for Annals of botany,2003,91:179-194
    106. Bolwell G P, Butt V S, Davies D R, Zimmerlin A. The origin of the oxidative burst in plants. Free Radical Research,1995,23 (6):517-532
    107. Borsani O, Valpuesta V, Botellla M A. Evidence for a role of salicylic acid in the oxidative damage generate by NaCl and osmjotic stress in Arabidopsis seedlings. Plant Physiology,2001,126: 1024-1030
    108. Boscolo P R S, Menossi M, Jorge R A. Aluminum induced oxidative stress in maize. Phytochemisrty,2003,62:181-189
    109. Cackilika I, Horst W J. Effect of Aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Plant Physiology,1991,83: 463-468
    110. Cai Q M, Chen J, Zhang Z X, Gu Y H, Liu P. Influence of copper stress on physiological and biochemical characteristics of bryophytes. Journal of Zhejiang Forestry Science and Technology, 2008,28 (6):24-27
    111. Campbell T A, Jackson P R, Xia Z L. Effect of aluminum stress on alfalfa root proteins. Journal of. Plant Nutrition,1994,17 (23):461-471
    112. Carpita N C, McCann M. The cell wall. In Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists,2000:52-108
    113. Carver B F, Ownby J D. Acid soil tolerance in wheat. Advances in Agronomy,1995,54:117-173
    114. Cervilla L M, Blasco B, Rios J J, Romero L, Ruiz J M. Oxidative stress and antioxidants in tomato (Solanrrna lycopersicrrm) plants subjected to boron toxicity. Annals ofBotanyt,2007,100: 747-756
    115. Chang Y C, Yamamoto Y, Matsumoto H. Accumulation of aluminum in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with acombination of aluminum and iron. Plant Cell and Environment,1999,22:1009-1017
    116. Chen L S, Qi Y P, Smith B R, Liu X H. Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiololgy,2005,25:317-324
    117. Chen R F, Shen R F, Gu P, Dong X Y, Du C W, Ma J F. Response of Rice (Oryza sativa) with Root Surface Iron Plaque under Aluminum Stress.Annals of B5otany,2006,98 (2):389-395
    18. Chen W R, Liu P, Xu G D. Effects of Al3+ on the biological characteristics of cowpea root border cells. Acta Physiology Plant,2008,30:303-308
    119. Christian M B, Liu H, McCarty L B, Bauerle W L, Toler J E. Aluminum tolerances of ten warm-season turfgrasses. International Turfgrass Society Research Journal Volume,2005,10: 881-817
    120. Ciamporova M. Morphological and structural responses of plant root to aluminum at organ, tissue, and cellular levels. Biologia Plantarum,2002,45:161-171
    121. Clarkson D T, Sanderson J. Inhibition of the uptake and long-distance transport of calcium by aluminum and other polyvalent canons. Journal of Experimental Botany,1971,22:837-851
    122. Cosgrove D J. Growth of the plant cell wall. Nature,2005,6:850-861
    123. Cosgrove D J, Kornak J M, Samuelson G. Expression of basement membrane type IV collagen chains during postnatal development in the marine cochlea. Hearing Research,1996,100 (12): 21-32
    124. Darko E, Ambrus H, Stefanovits-Banyai E. Aluminum toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Science,2004,166:583-591
    125. Dat J F, Christinge H, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induced themotolerance in mustard seedlings. Plant Physiology,1998,118:1455-1461
    126. David B, Tom S. Early Developmental Response of White Clover root hair lengths to Calcium Protons and Aluminum in solution and soil cultures. Crop Science,2005,45:1216-1222
    127. De L, Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science,1997,276:1566-1568
    128. Delhaize E, Craig S, Beaton C D, Bennet R J, Jagadish V C, Randall P J. Aluminum Tolerance in Wheat (Triticum aestivum L.) I.Uptake and distribution of Aluminum in root Apices. Plant Physiology,1993,103:685-693
    129. Delhaize E, Hebb D M, Richards K D, Lin J M, Ryan P R, Gardner R C.Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. The Journa of Bioogical Chemisty,1999,274:7082-7088
    130. Delhaize E, Hebb D M, Ryan P R. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiology, 2001,125:2059-2067
    131. Delhaize E, Gruber B D., Ryan P R. The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Letters,2007,581:2255-2262
    132. Delhaize E, Ryan P R. Update on environmental stress:aluminum toxicity and tolerance in plants. Plant Physiology,1995,107:315-321
    133. Delhaize E, Ryan P R, Hebb D M. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceeding of the National Academy Sciences USA,2004,101:15249-15254
    134. Delhaize E, Ryan P R, Hocking P J, Richardson A E. Effects of altered citrate synthase and isocitrate dehydrogenase expression on internal citrate concentrations and citrate efflux from tobacco (Nicotiana tabacum L.) roots. Plan tand Soil,2003,248:137-144
    135. Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in wheat (.Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiology,1993,103: 695-702
    136. Dinkelaker B., RSheld V., Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (.Lupinus albus L.). Plant Cell Environment,1989,12,285-292
    137. Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. Journal of Plant Physiology, 2005,162 (5):529-537
    138. Dong D, Peng X, Yan X. Organic acid exudation induced by phosphorus deficiency and/or aluminum toxicity in two contrasting soybean genotypes. Plant Physiology,2004,122,190-199
    139. Driscoll C T, Schecher W D. Aluminum in the environment. In:Sigel, H. (Ed.), Metal Ions in Biological Systems. Aluminum and its Role in Biology. Marcel Dekker, New York,1988,24:59-122
    140. Drummond R D, Guimaraes C T, Felix J, Ninamango-Cardenas F E., Carneiro N P, Paiva E, Menossi M. Prospecting sugarcane genes involved in aluminum tolerance. Genetics and Molecular Biology,2001,24:221-230
    141. Eduardo D M, Willem G K. Long-term Effects of aluminum exposure on nutrient uptake by maize genotypes differing in aluminum resistance. Journal of plant nutrient,2005,28 (2):323-333.
    142. Elison B L, David L J, Simon C. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiology,1998, 118:159-172
    143. Eticha D, Stap A, Horst W J. Localization of aluminium in the maize root apex:can morin detect cell wall-bound aluminium? The Journal of Experimental Botany,2005a,56:1351-1357
    144. Eticha D, Stass A, Horst W J. Cell-wall pectin and its degree of methylation in the maize root-apexaignificance for genotypic differences in aluminum resistance. Plant Cell and Environment,2005b,28:1410-1420
    145. Ezaki B, Gardner R C, Ezaki Y. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiology,2000,122: 657-665
    146. Ezaki B, Katsuhara M, Kawamura M, Matsumoto H. Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiology,2001,127:918-927
    147. Ezaki B, Sivaguru M, Ezaki Y, Matsumoto H, Gardner R C. Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI 1 gene derived from plants. FEMS Microbiology Letters,1999,171:81-87
    148. Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells:Possible involement of peroxidase enzymes in aluminum ion stress. Plant Physiology,1996,96:21-28
    149. Ezaki B, YamamotoY, Matsumoto H. Cloning and sequencing of the cDNAs induced by aluminum treatment and Pi starvation in cultured tobacco cells. Plant Physiology,1995,93:11-18
    150. Fincher G B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiology,2009,149:27-37
    151. Foy C D. Plant adaptation to acid, aluminum-toxic soils. Commun in Soil Science and Plant Analysis,1988,19:959-987
    152. Foy C D. Tolerance of Barley cultivars to an acid, Al-toxic subsoil related to mineral element concentration in their shoots. Journal of Plant Nutrition,1996,19:1361-1380
    153. Foy C D, Burns G R, Brown J C. Differential aluminum tolerance of two wheat varieties associated with plant induced pH changes around their roots. Soil Science Society America Process,1965,29: 64-67
    154. Foy C D, Chaney R L, White M S. The physiology of metal of toxicity in plants. Plant Physiology, 1978,29:511-566
    155. Foy C D, Duke J A, Devine T E. Tolerance of soybean germplasm in acid subsoil. Journal of plant Nutrition.1992,15:527-547
    156. Foy C D, Murray J J. Responses of Kentucky bluegrass cultivars to excess aluminum in nutrient solutions. Journal of Plant Nutrition,1998a,21 (9):1967-1983
    157. Foy C D, Murray J J. Developing aluminum-tolerant strains of tall fescue for acid soils. Journal of Plant Nutrition,1998b,21 (6):1301-1325
    158. Fry S C, Smith R C, Renwick K F, Martin D J, Hodge S K, Matthews K J. Xyloglucan endotrans glycosylase, a new wall-loosening en2yme activity fromplants. Biochemitry Journal,1992,282: 821-828
    159. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma J F. A aluminum activated citrate transporter in barley. Plant Cell Physiology,2007,48:1081-1091
    160. Gallego F J, Benito C. Genetic control of aluminium tolerance in rye (Secale cereale L.).Theoretical and Applied Genetics,1997,95:393-399
    161. Gassmann W, Schroeder J L. Inward-rectifying K+ channels in root hair of wheat. A mechanism for aluminum sensitive low-affinity K+ uptake and membrane potential control. Plant Physioloy,1994, 105:1399-1408
    162. Gelli A, Higgins V J, Blumwald E. Activation of plant plasma menbrane Ca-permeable channels by race-specific fugal elicition. Plant Physiology,1997,113:269-279
    163. Gerke J, Roer, W, Jungk, A. The excretion of citric and malic acid by proteoids roots of Lupinus albus L:effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernaehr Bodenkd,1994,157:289-294
    164. Griffith O W. Determination of glutathione and glutathione disulphide using glutathione reductase and vinylpyridine. Analytical Biochemistry,1980,106:207-212
    165. Guo T R, Zhang G P, Zhou M X, Wu F B, Chen J X. Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil,2004,258:241-248
    166. Gyaneshwar P, James E K, Reddy P M, Ladha J K. Herbaspirillum colonization increases growth and nitrogen accumulation in aluminum-tolerant rice varieties. New Phytologist,2002,154 (1): 131-145
    167. Hamilton C A, Good A G, Taylor G Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiology,2001,125:2068-2077
    168. Hayes J E, Ma J F. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. Journal of Experimental Botany,2003,54 (388): 1753-1759
    169. Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics,1986,125:189-198
    170. Heckman J R, Murphy J A. Screening fine fescues for aluminum tolerance. Journal of Plant Nutrition,1996,19 (5):677-688
    171. Henning S J. Aluminum toxicity in the primary meristem of wheat roots. Oregon State University, Corvallis, Oregon.1975, USA.
    172. Hoekenga O, Vision T J, Shaff J E, Monforte A J, Lee G P, Howell S H, Kochian L V. Identification and characterization of aluminum tolerance loci in Arabidopsis (.Landsberg erecta X Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiology,2003,132:936-948
    173. Hornung E, Walther M, Kuhn H. Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis.Proceeding of the National Academy of Sciences,1999,96:4192-4197
    174. Horst W J. The role of the apoplast in aluminium toxicity and resistance of higher plants:a review. Z Pflanzenernahr. Bodenkd,1995,158:419-428
    175. Horst W J, Schmohl N, Kollmeier M, Baluska F, Sivaguru M. Does aluminum affect root growth of maize through interaction with cell wall-plasma membrane-cytoskeleton continuum? Plant and Soil, 1999,215:163-174
    176. Horst W J, Wagner A, Marschner H. Mucilage protects root meristems from aluminum injury. Z Pflanzenphysiol,1982,105:435-444
    177. Hossain Z M, Koyama H, Hara T. Sugar composition and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply. Asian Journal of Plant Sciences,2005,4 (1):11-16
    178.Huang J W, Grunes D L, Kochisn L V. Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. Quantification of calcium fluxes using a calcium selective vibrating microelectrode. Planta,1992a,188:414-421
    179. Huang J W, Pellet D M, Papernik L A, Kochian L V. Aluminum interaction with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and resistant wheat cultivars. Plant Physiology,1996,110:561-569
    180. Huang J W, Shaff J E, Grunes D L, Kochian L V. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars.Plant Physiology,1992b,98: 230-237
    181. Ikegawa T, Mayama S, Nakayashiki H. Accumulation of diferulic acid during the hypersensitive response of oat leave to Pucciniacoronataf.sp.avenae and its role in the resistance of oat tissues to cell wall degrading enzymes. Physiological and Molecular Plant Pathology,1996a,48 (4): 245-256
    182. Ikegawa S, Takaaki G, Nariyasu M, Junichi G. Substrate specificity of THCA-CoA oxidases from rat liver light mitochondrial fractions on dehydrogenation of 3a,7a,12a-trihydroxy-5β-cholestanoic acid CoA thioester. Steroids,1998,63 (11):603-607
    183. Ishikawa S, Wagatsuma T, Ikarashi T. Comparative toxicity of Al3+,Yb3+ and La3+ to root-tip cells differing in tolerance to high Al3+ in terms of ionic potentials of dehydrated trivalent cations. Soil Science and Plant Nutrition,1996b,42:613-625
    184. Ishikawa S, Wagatsuma T, Sasaki R, Ofei M P. Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Science and Plant Nutrition,2000,46:751-758
    185. Janda T, Szalai G, Tari I, Paldi E. Hydroponic treatment with salicylic acid decreased the effects of chilling injury in maize (Zeamay L.) plants. Planta,1999,208:175-180
    186. Jones D L, Coehni L V. Aluminum inhibition of the 1,4,5-trisphosphate signal transduction pathway in wheat roots:a role in aluminum toxicity. Plant Cell,1995,7:1913-1922
    187. Jones D L, Prabowo A M, Kochian L V. Aluminum-organic acid interactions in acid soil. Plant and Soil,1996,82:229-237
    188. Juan B, Charlotte P. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance:a review. Environmental and Experimental Botany,2002,48:75-92
    189. Kasail M, Sasaski M, Tanakamaru S, Yamamoto Y, Matsumoto H. Possible involvement of abscisic acid in increases in activities of two vacuolar H+-Pumps in barley roots under aluminum stress. Plant Cell Physiol,1993,34:1335-1338
    190. Kidd P S, Proctor J. Effect of aluminum on the growth and mineral composition of Betula Pendula Roth. Journal of Experimental Botany,2000,51:1057-1066
    191. Kihara T, Ohono T, Sawafuji T, Hara T. Characterization of NADP-isocitrate dehydrogenase expression in a carrot mutant cell line with enhanced citrate excretion. Plant and Soil,2003,248: 145-153
    192. Kochian L V. Cellular mechanism of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:237-260
    193. Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorus efficiency. Annual Review Plant Biology,2004,55:549-593
    194. Kochian LV, Pineros M A, Hoekenga O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil,2005,274:175-195
    195. Kochian L V, Shaff J E, Ryan P R. Microelectrode-based, investigations into the relationship between Al toxicity and root-cell membrane transport processes. Current Topics Plant Biochemistry and Physiology,1991,10:117-133
    196. Kollmeier M, Kietrich P, Bauer C S, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A compari son between an aluminum sensitive and an al uminum resistant cultivar.Plant Physiology,2001,126:397-410
    197. Kuo M.C., Kao C.H. Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologic Plantarum,2003,46:149-152
    198. Kuo S. Calcium and phosphorus influence creeping bentgrass and annual bluegrass growth in acid soils. HortScience,1993a,28:713-716
    199. Kuo S. Effect of lime and phosphate on the growth of creeping bentgrass and annual bluegrass in two acid soils. Soil Science,1993b,156:95-100
    200. Ladislav T, Marta S, Jana H, Mistrik I. Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environmental and Experimental Botany,2004,51 (3):281-288
    201. Larson P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant Arabidopsis mutants that exhibit altered of aluminum accumulation and organic acid release from roots. Plant Physiology,1998,117:9-18
    202. Larsen P B, Geisler M J B., Jone C A, Williams KM, Cancel J D. A1S3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant Journal, 2005,41:353-363
    203. Larsen P B, Tai C Y, Kochian L V, Howell S H. A rabidopsis mutant with increased sensitivity to aluminum. Plant Physiology,1996,110:743-751
    204. Lazof D B, Goldsmith J C, Rufty T W. The insitu analysis of intracellular aluminum in plants. Progress in Botany,1997,58:112-149
    205. Li X F, Ma J F, Matsumoto H. Pattern of Al-induced secretion of organic acid differs between rye and wheat. Plant physiology,2000a,123:1537-1543
    206. Li, X F, Ma J F, Matsumoto H. Aluminum-induced secretion of both citrate and malate in rye. Plant and Soil,2002,242:235-243
    207. Li X F, Ma J F, Hiradate S, Matsumato H. Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiologia Plantarum,2000,108:152-160
    208. Li Y Y, Yang J L, Zhang Y J, Zheng S J. Disorganized distribution of homogalacturonan epitopes in cell walls as one possible mechanism for aluminium-induced root growth inhibition in maize. Annals of Botany,2009,104:235-241
    209. Liang Y, Yang C, Shi H. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Journal of Plant Nutrition,2001,24:229-243
    210. Lichtenthaler H K. ChlorophyIIs and carotenoids:pigment s of photosynthetic biomembranes. Methods Enzymology,1987,148:351-383
    211. Lidon FC, Azinheira H G, Barreiro M G. Aluminum toxicity in maize:Biomass production and nutrition uptake and translocation. Journal of Plant Nutrition,2000,23:151-160
    212. Ligaba A, Shen H, Shibata K, Yamamoto, Y.Tanakamaru S, Matsumoto H. The role of phosphorus in aluminum-induced citrate and malate exudation from rape (Brassica napus). Physiologia. Plantarum,2004,120:575-584
    213. Lima M, Miranda F J B, Furlani P R. Diallel cross among inbred lines of maize differing in aluminum tolerance. Brazil Journal of Genetics,1995,4:579-584
    214. Lindberg S. Aluminum interactionswith K+(86Rb+)and 45Ca2+ fluxed in three cultivars of sugar beet (Beta vulgarise. Physiologia Plantarum,1990,79:275-282
    215. Lindberg S, Strid H. Aluminum induces rapid changes in cytosolic pH and free cacium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiologia Plantarum, 1997,99:405-444
    216. Liu H. Aluminum resistance among seeded bermudagrasses. HortScience,2005,40 (1):221-223
    217. Llugany M, Poschenrieder C, Barcel J. Monitoring the aluminum-induced inhibition of root elongation in fourmaize cultivars differing in tolerance to aluminum and proton toxicity. Physiologia Plantarum,1995,93 (2):265-271
    218. Ma J F. Role of organic acids in detoxification of aluminum in higher plants. Plant and Cell Physiology,2000,41:383-390
    219. Ma J.F Plant root responses to three abundant soil minerals:silicon, aluminum and iron. Critical Reviews in Plant Science,2005,24:267-281
    220. Ma J F, Furukawa J. Recent progress in the research of external Al detoxification in higher plants:a minireview. Journal of Inorganic Biochemistry,2003,97:46-51
    221. Ma J F, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta,2000,211:355-360
    222. Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat:Ⅱ.Oxalic acid detoxifies aluminum internally. Plant Physiology,1998,117:753-759
    223. Ma J F, Hiradate S, Matsumoto H. Internal detoxification mechanism of aluminum in Hydrangea. Identification of A1 form in the leaves. Plant Physiology,1997a,113:1033-1039
    224. Ma J F, Nagao S, Huang C F, Nishimura M. Isolation and characterization of a rice mutant hypersensitive to Al. Plant and Cell Physiology,2005,46:1054-1061
    225. Ma J.F, Nagao S, Sato K, Ito H, Furukawa J, Takeda K. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. The Journal of Experimental Botany,2004a,55: 1335-1341
    226. Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Science,2001,6:273-278
    227. Ma J F, Shen R F, Nagao S, Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant and Cell Physiology,2004b,45:583-589
    228. Ma J F, Shen R R Zhao Z Q, Wissuwa M, Takeuchi Y, Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant and Cell physiology,2002, 43:652-659.
    229. Ma J F, Taketa S, Yang Z M. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology,2000,122:687-694
    230. Ma J F, Yamamoto R, Nevins D J, Matsumoto H, Brown P H. Al binding in the epidermis cell wall inhibits cell elongation of okra hypocltyl. Plant and Cell Physiology,1999,40:549-556
    231. Ma J F, Zheng S J, Matsumoto H. Specific induced secretion of Citric acid by Al stress in Cassia torah. Plant and Cell Physiology,1997b,38:1019-1025
    232. Ma J F, Zheng S J, Matsumeto H. Detoxifying aluminum with buckwheat. Nature,1997c,390: 569-570
    233. Ma J F, Zheng S J, Li X F, Takeda K, Matsumoto H. A rapid hydroponic screening for aluminum tolerance in barley. Plant and soil,1997,191:133-137
    234. Ma Z, Miyasaka S C. Oxalate exudation by taro in response to Al. Plant Physiology,1998,118: 861-865
    235. Maltais K, Houde M. A new biochemical marker for aluminium tolerance in piants. Physiologia. Plantarum,2002,115:81-86
    236. Marcus S E, Verhertbruggen Y, Herve C, Ordaz-Ortiz J J, Farkas V, Pedersen H, Willats W G, Konx J P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology,2008,8:60-71
    237. Marten I, Lohse Q, Hedrich R. Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature,1991,353:758-762
    238. Martin J, Robert C A, Christian N, Horst W J. Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. Journal of Plant Physiology,2007,164:442-451
    239. Marschner H. Mechanisms of adaptations of plants to acid soils. Plant and soil,1991a,134:1-20
    240. Marschner H. Mineral nutrition in higher plants. Second Edition.Academic Press. New Yort.1995: 889
    241. Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International. Review of Cytology,2000,200:1-46
    242. Matsumoto H. In Wright RT (eds.), Plant-soil Interactions at low pH. Kluwer Academic Publishers, Netherlands.1991b:825-838
    243. Matsumoto H, Hirasawa E, Morimura S, Takahashi E. Localization of Al in tea leaves. Plant of Cell Physiology,1976,17:627-631
    244. Matsumoto H, SenooY, Kasai M, Maeshima M. Response of the plant root to aluminum stress: analysis of the inhibition of the root elongation and changes in membrane function. Journal of Plant Research,1996,109:99-105
    245. Meriga B, Reddy B K, Rao K R. Aluminum-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). Journal of Plant Physiology, 2004,161:63-68
    246. Mesfin T, Stephen J T, Deborah L A. Overexpression of Malate Dehydrogenase in Transgenic Alfalfa Enhances Organic Acid Synthesis and Confers Tolerance to Aluminum. Plant Physiology, 2001,127 (4):1836-1844
    247. Minella E, Dorrells M E. Aluminium tolerance in barely:Genetic relationship among genotypes of diverse origin. Crop Science,1992,32:593-598
    248. Miyasaka S C, Buta J G, Howell R K, Foy C D. Mechanism of aluminum tolerance in snapbeans Root exudation of citric acid. Plant Physiology,1991,96:737-743
    249. Miyasaka S C, Hawes M C. Possible Role of Root Border Cells in Detection and Avoidance of Aluminum Toxicity. Plant Physiology,2001,125:1978-1987
    250. Mohnen D. Pectin structure and biosynthesis. Current Opinion in PlantBiology,2008,11:266-277.
    251. Moller IM. Plant mitochondria and oxidatives stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:561-591
    252. Mookherji S, Floyd M. The effect of aluminum on growth of and nitrogen fixation in vegetable soybean germplasm. Plant and Soil,1991,136:25-29
    253. Nguyen B D, Brar D S, Bui B C, Nquyen T V, Pham L N, Nquyen H T. Identification and mapping of the QTL for aluminumtolerance introgressed from the new source, Oryza Rufipogon Griff, into indicarice (Oryza sativa L.).Theoretical andApplied Genetics,2003,106:583-593
    254. Nguyen V T, Nguyen B D, Sarkarung S, Martinez C, Paterson A H, Nguyen H T. Mapping of genes controlling aluminum tolerance in rice:comparison of different genetic backgrounds. Molecular Genetics Genomics,2002,267:772-780
    255. Nichol B E, Oleveria L A, Glass A D M, Siddiqi M Y. The effect of aluminum on the influx of calcium, potassium, ammonium, nitrate and phosphate in an aluminum-sensitive cultivar of barley (.Hordeum vulgare L.). Plant Physiology,1993,101:1263-1266
    256. Nwoke O C, Diels J, Abaidoo R, Nziguheba G, Merckx R. Organic acids in the rhizophere and root characteristics of soybean (.Glycine max) and cowpea in relation to phosphorus uptake in poor savanna soils. Afican Journal of Biotechnology,2008,7:3620-3627
    257. Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology,1980,65:407-408
    258. Osawa H, Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiology,2001,126:411-420
    259. Oskai M, Watanabe T, Tadnoa T. Beneficial effect of aluminum on growth of plnats dapated to low pH soils. Soil Science and plant Nutrition.1997,43:551-563
    260. Ouzounidou G, Ilias I. Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biology of Plant,2005,49 (2):223-228
    261. Pan G S, Masaki T, Shigeki K. Isolation of cell organelles from the tip-root cells of tea and their distribution of aluminum. Acta Agriculturae Universitatis zhejiangensis,1991:255-258
    262. Pan W J, Hopkins A G, Jackson W A. Aluminum inhibition of shoot lateral branches of Glycine max and reversal by exogenous cytokinin. Plant and Siol,1989:120:1-9
    263. Parker D R, Pedler J F. Probing the "malate hypothesis" of differential aluminum tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta,1998,205:389-396
    264. Patricia R S, Menossi M, Jorge R A. Aluminum-induced oxidative stress in maize. Phytochemistry, 2003,62:181-189
    265. Pellet D M, Grunes D L, Kochian L V. Organic acid exudation as an aluminum tolerance mechamism in maize (Zea mays L). Planta,1995,196:788-795
    266. Pellet D M, Papernik L A, Kochian L V. Multiple aluminum resistance mechanism in wheat:The roles of root apical phosphate and malate exudation. Plant physiology,1996, (112):591-597
    267. Pellet D M, Papernik L A, John D J, Darrah P R, Grunes D L, Kochian L V. Involvement of multiple aluminum exclusion mechanism in aluminum tolerance in wheat. Plant and Soil,1997, 192:63-68
    268. Pettersson S, Strid H. Initial uptake of aluminum in relation on temperature and phosphorus status of wheat (Triticu maestivum L.) roots. Journal of Plant Physiol,1989,134:672-677
    269. Pfeffer P E, Tu S I, Gerasimowicz W V, Cavanaugh J R. In Vivo 32P NMR studies of corn root tissue and its uptake of toxic metal. Plant Physioloy,1986,80:77-84
    270. Pineros M A, Kochian L V A. patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize, identification and characterization of Al3+-induced anion channels. Plant Physiology,2001,125:292-305
    271. Pineros M A, Magalhaes J V, Alves V M C, Kochian L V. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiology,2002, 129:1194-1206
    272. Pineros M A, Shaff J E, Manslank H S, Alves V M C, Kochian L V. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiology,2005,137:231-241
    273. Polle E, Konzac C F, Kittrick J A. Visual detection of aluminum tolerance levels in wheat by hemjatoxylin staining of seedling root. Crop Science,1978,18:823-827
    274. Puthota V, Cruz-Ortega R, Jonson J. An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminum. In:Wright, R. J., Baligar V C, Murrmann, R P (Eds),Plant Soil Interactions at Low pH. Kluwer Academic Publ, Dordrecht,1991:779-789
    275. Rangel A F, Rao I M, Braun H, Horsta W J. Aluminum resistance in common bean (Phaseolus viilgaris) involves induction and maintenance of citrate exudation from root apices. Physiologia. Plantarum,2010,138:176-190
    276. Rao I M, Borrero V, Ricaurte J, Garcia R, Ayarza M A. Adaptive attributes of tropical forage species to acid soils Ⅲ. Differences in phosphorus acquisition and utilization as influenced by varying phosphorus supply and soil type. Journal of Plant Nutrition,1997a,20:155-180
    277. Rao I M, Kerridge P C, Macedo M. Nutritional requirements of Brachiaria and adaptation to acid soils.In:Miles J W, Maass B, Valle C B (Eds.). Brachiaria:Biology, Agronomy and Improvement. Colombia Cali:Ciat and Embrapa Cnpgc,1996a:53-71
    278. Rao M V, Paliyath G S, Onnrod D P. Ultraviolet-B and zone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology,1996b,110:125-136
    279. Rao M V, Paliyath G S, Onnrod D P, Murr D P. Influence of salicylic acid on H2O2 production, oxidative stress, and H202-metabolizing enzymes. Plant Physiology,1997b,115:137-149
    280. Renat A J, Marcelo M, Paulo A. Probing the rote of calmodutin in aluminum toxicity in maize. Phytochemistry,2001,58:415-422
    281. Rengel Z. Uptake of aluminum by plant cells. New Phytologist,1996,134:389-406
    282. Rengel Z. Competitive Al3+inhibition of net Mg2+ uptake by intact Lolium multiflorum roots.II. Plant age effects. Plant Physiology,1990,93:1261-1267
    283. Rengel Z D, Elliott D C. Mechanism of aluminum inhibition of net 45Ca2+uptake by Amaranthus protoplasts. Plant Physiology,1992,98:632-638
    284. Rengel Z, Reid R J. Uptake of Al across the plasma membrane of plant cells. Plant and Soil,1997, 192:31-35
    285. Rengel Z, Robinson D L. Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots Kinetics. Plant Physiology,1989a,91:1407-1413
    286. Rengel Z, Robinson D L. Aluminum and plant age effects on adsorption of actions in Donnan free space of ryegrass roots. Plant and Soil,1989b,116:223-227
    287. Rengel Z, Robinson D L. Aluminum effects on growth and macronutrient uptake by annual ryegrass. Agronomy Journal,1989c,81:208-215
    288. Rengel Z, Robinson D L. Determination of cation exchange capacity of ryegrass root by summing exchangeable cations. Plant and Cell Physiology,1995,36:1493-1502
    289. Richter C, Schweizer M. Oxidative stress in mitochondria. Scandalios J G (eds). Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Gold Spring Harbor,1997,34:169-200
    290. Rincon MRA, Gonzales. Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (.Triticum aestivum L.) cultivars. Plant Physiology,1992,99:1021-1028
    291. Rodriguez M A R, Butler E, Huete A R. Expressed sequenced tag-based gene expression analysis under aluminum stress in rye. Plant physiology,2002,130:1706-1716
    292. Roy A K, Sharma A, Talukder C. A time-course study on effects of aluminum on mitotic cell division in Aluminum sativum. Mutation Research,1989,227:221-226
    293. Ryan R P, Delhaize E R, Randall P J. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta,1995a,196:103-110
    294. Ryan P R, Delhaize E, Randall P J. Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Australian Journal of Plant Pyhsiology,1995b,22:531-536
    295. Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany,1993,44:437-446
    296. Ryan P R, Dong B, Watt M, Kataoka T, Delhaize E. Strategies to isolate transporters that facilitate organic anion efflux from plant roots. Plant and Soil,2003,248:61-69
    297. Ryan P R, Skerrett M, Findlay G P, Delhaize E, Tyerman S D. Aluminum activates an anion channel in the apical cells of wheat roots. Proceeding of the National Academy Sciences. USA,1997, 94:6547-6552
    298. Ryan P R, Tyerman S D, Sasaki T, Furuichi T, Yamamoto Y, Zhang W H, Delhaize E. The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid aoils. Journal of Experimental Botany,2011,62 (1):9-20
    299. Samac D A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soils-a review. Plant Cell, Tissue and Organ Culture,2003,75:189-207
    300. Samuels T D, Kucukakyuz K, Magaly R Z. Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant physiology,1997,113:527-534
    301. Sasaki T, Ezaki B, Matsumoto H. A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant and Cell Physiology,2002,43: 177-185
    302. Sasaki T, Ryan P R, Delhaize E, Hebb D M, Oqihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant and Cell Physiology,2006,47 (10):1343-1354
    303. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding a aluminum activated malate transporter. The Plant Journal,2004,37: 645-653
    304. Schmohl N, Horst W J. Cell wall pectin content modulates aluminum sensitivity of Zea mays cells grown in suspension culture. Plant Cell and Environment,2000,23:735-742
    305. Schmohl N, Pilling J, Fisahn J, Horst W J. Pectin methylesterase modulates aluminium sensitivity in zea mays and solanum tuberosum. Physiologia Plantarum,2000,109:419-427
    306. Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D. Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:627-658
    307. Sehottelnderier M, Norddhal M, Strom L, Falkengern-greup U. Organic acid exudation by wild herbs in response to elevated Al concentrations. Annals.Botany,2001,87:769-775
    308. Shen H, Yan X L., Cai K Z, Matsumoto H. Differential Al resistance and citrate secretion in the tap and basal roots of common bean seedlings. Physiologia lantarum,2004,12:595-603
    309. Shen R F, Ma J F, Kyo M. Compartmentation of aluminum in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta,2002,15:394-398
    310. Silva I R, Smyth T J. Differential aluminum tolerance in soybean:an evaluation of the role of organic acids. Physiologia Plantarum,2001,112 (2):200-210
    311. Simicon L, Smalley T J, Benton J J. Aluminum toxicity in tomato. Part I. Growth and mineral nutrition. Journal of Plant Nutrition,1994,17:293-306
    312. Singh D, Chauhan S K. Organic acids of crop plants in aluminum detoxification. Current Science, 2011,100:1509-1515
    313. Sivaguru M, Ezaki B, He Z H, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiology,2003,132:2256-2266
    314. Sivaguru M, Horst W. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiology,1998,116:155-163
    315. Spehar C R. Field screening of aluminum tolerance by the use of soybean (Glycine max (L) Men.) germplasm for augmented design. Euphytica,1994,76 (3):203-213
    316. Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat{Triticum aestivum) roots during aluminum-induced growth inhibition. Physiologia Plantarum,2001,112:353-358
    317. Taylor G J. Current views of the aluminum stress response:The physiological basis of tolerance. Current Topics in Plant Biochemistry and Physiology,1991,10:57-59
    318. Taylor G J. The physiology of aluminum tolerance in higher plants. Communication in Soil Science and Plant Analysis,1995:1179-1194
    319. Taylor G J, Basu A, Basu U, Slaski J J, Zhang G, Good A. Al induced 51KDa, membrane bound proteins are associated with the resistance to Al in a segregating population of wheat. Plant Physiology,1997,114:363-372
    320. Taylor G J, McDonald S J L, Hunter D B, Bertsch P M, Elmore D, Rengel Z, Reid R J. Direct measurement of aluminum uptake and distribution in single cells of Chara coralline. Plant Physiology,2000,123:987-996
    321. Tesfaye M, Temple S J, Allan D L, Vance C P, Samac D A. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiology,2001,127:1836-1844
    322. Thomine S, Lelievre E, Boufflet M, Guern J, BarbierBrygoo H. Anion-channel Mockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls. Plant Physiology,1997,115:533-542
    323. Timmy D S, Koksal K, Magaly R Z. Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant Physiology,1997,113:527-534
    324. Tolra R P, Poschenrieder C, Luppi B, Barceld J. Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumen acetosa L. Environmental and Experimental Botany,2005,54:231-238
    325. Uexkull H R, Mutert E. Golbal extent development and economic impact of acid soils. Plant and soil,1995,171 (1):1-15
    326. Van Le H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiology,1994,106:971-976
    327. Wagatsuma T, Akiba R. Low surface negativity of root protoplasts from aluminum-tolerant plant species. Soil Science and Plant Nutrition,1989,35:443-452
    328. Wagatsuma T, Yamasaka K. Relationship between differential aluminum tolerance and plant induced pH change of medium among barely cultivars. Soil Science and Plant Nutrition,1985,31: 521-535
    329. Wang B L, Shen J B, Zhang W H, Zhang F S, Neumann G. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytologist,2007a, 176:581-589
    330. Wang J P, Raman H, Zhou M X, Ryan P R, Delhaize E, Hebb D M, Coombes N, Mendham N. High-resolution mapping of the Al locus and identification of a candidate gene HvMATE controling aluminum tolerance in barley (Hordeum vulgare L.). Theoretical and. Applie Genetics, 2007b,115:265-276
    331. Watanabe T, Osaki M, Yoshihara T, Tadano T. Distribution and chemical spexiation aluminum in the Al accumulator plant, Melasloma mlabathricum L. Plant and Soil,1998,201:165-173
    332. Wenzl P, Arango A, Chaves A L, Buitrago M E, Patino G M, Miles J, Rao I M.A greenhouse method to screen Brachiariagrass genotypes for Aluminum resistance and root vigor. Crop Science, 2006,46:968-973
    333. Wenzl P, Chaves A L, Patino G M, Mayer J E, Rao I M.Aluminum stress stimulates the accumulation of organic acids in root apices of Brachiaria species. Plant Nutrition and Soil Science, 2002,165:582-588
    334. Wenzl P, Gaitan E, Rao I M. Isolating genes from root apices of Brachiaria decumbens that enhance Al resistance of yeast. Ammia; Report of Biotechnology Research Project. CIAT, Cali, Colombia, 2003a:258-259
    335. Wenzl P, Mancilla L I, Mayer J E, Albert R, Rao I M.Simulating infertile acid soils with nutrient solutions. The effects on Brachiaria species. Soil Science Society of America Journal,2003b,67: 1457-1469
    336. Wenzl P, Patino G M, Chaves A L, Mayer J E, Rao I M. The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiology,2001,125:1473-1484
    337. Willats W G T, McCartney L, Mackie W, Knox J P. Pectin:cell biology and prospects for functional analysis. Plant Molecular Biology,2001:47:9-27
    338. Wissemeier A H, Diening A, Hergenroder A, Horst W J, Mix-Wangner GCallose formation as parameter for assessing genotypical plant tolerance of aluminum and managanese. Plant and Soil, 1992,146:67-75
    339. Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in Pea roots. Plant Physiology,2001, 125:199-208
    340. Yan J, Chen J B, Zhang T T, Liu J X, Liu H B. Evaluation of Aluminum Tolerance and Nutrient Uptake of 50 Centipedegrass Accessions and Cultivars. HortScience,2009,44 (3):857-861
    341. Yang Y J, Cheng L M, Liu Z H. Rapid effect of cadmium on lignin biosynthesis in soybean root. Plant Science,2007,172:632-639
    342. Yang J L, Li Y Y, Zhang Y J, Zhang S S, Wu Y R, Wu P, Zheng S J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology,2008, 146:602-611
    343 Yang Z M, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H. Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean(Glycinemwax)plants. Physiologia Plantarum,2001,113:64-71
    344. Yang Z M, Sivaguru M, Horst W J, Matsumoto H.Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (.Glycine max L Merr). Physiologia Plantarum,2000,110:72-77
    345. Yang Z M, Wang J, Wang S H, Xu L L.Salicylic acid-induced aluminum tolerance by modulation of efflux from roots of Cassia tora L. Planta,2003,217:168-174
    346. Yang Z M, Yang H, Wang J, Wang Y S. Aluminum regulation of citrate metabolism for Al induced citrate efflux in the roots of Cassia tora L.Plant Science,2004,166:1589-1594.
    347. Yang J L, Zheng S J, He Y F. Matsumoto H.Aluminum resistance requires resistance to acid stress:a case study with spinach that exudes oxlate rapidly when exposed to Al stress. Journal of Experimental Botany,2005,56:1197-1203.
    348. Yang J L, Zheng S J, He Y F, Zhang L, Yu X H.Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L.roots. Plant Cell Environment,2006,29:240-246.
    349. Ying Xiao-fang, Liu Peng, Xu Gen-di. Effect of aluminum on the isozymes of the seedlings of two soybeans (Glycine max (L.) MerriⅡ).varieties. Plant Soil Environment,2006,52 (6):262-270.
    350. Yu L, Yan J, Guo S R, Zhu W M. Aluminum-induced secretion of organic acid by cowpea (Vigna unguiculata L.) roots. Scientia Horticulturae,2012,135 (24):52-58.
    351. Zaurov D E, Bonos S, Murphy J A. Endophyte infection can contribute to aluminum tolerance in fine fescues. Crop Science,2001,41:1981-1984.
    352. Zhang W H, Rengel Z. Aluminum induces an increase in cytoplasmic calcium in intact wheat root apical cells. Australian Journal of Plant Physiology,1999,26:01-409.
    353. Zhang W N, Ryan P R, Tyerman S D. Malate-permeable channels and canon channels activated by aluminum in the apical cells of wheat roots. Plant Physiology,2001,125:1459-1472.
    354. Zhao F J, McGrath S P, Croslan A R. Comparison of three wet digestion methods for the determination of plant sulfur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Communications in Soil Science and Plant Analysis.1994,25:407-418.
    355. Zhao X J. Al3+ and Ca2+ alteration of membrane permeability of Quereus rubra root cortex cells. Plant Physiology,1987,83:159-162.
    356. Zhao Z Q, Ma J F, Sato K, Takeda K.Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta,2003,217:794-800.
    357. Zheng S J, Lin XY, Yang JL, Liu Q, Tang CX. The kinetics of aluminum adsorption and adsorptions by root cell wall of an aluminum resistant wheat (Triticum aestivum L) cultivar. Plant and Soil,2004,261 (1):85-90.
    358. Zheng S J, Ma J F, Matsumoto H. High aluminum resistance in buckwheat. Ⅰ. Al-induced special secretion of oxalic acid from root tips. Plant Physiology,1998,1:745-751.
    359. Zheng S J, Yang J L, He Y F, Yu X H, Zhang L, You J F, Shen R F, Matsumoto H.Immobilization of aluminum with phosphorous in roots is associated with high aluminum resistance in buckwheat. Plant Physiology.2005,138:297-303.
    360. Zhong, Lauchli. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. The Journal of Experimental Botany,1993,44 (261):773-778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700