用户名: 密码: 验证码:
长江流域小麦地方品种农艺品质性状的遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国长江流域地域辽阔,地势复杂,气候多样,各生态区形成有种类丰富的小麦地方品种,存在着巨大的遗传变异。但截至目前,对整个长江流域小麦地方品种农艺、品质性状的遗传变异还缺乏较为系统的分析,只有对某些局部地区或部分小麦品种农艺、品质性状遗传多样性的研究报道,而对湖北小麦地方品种主要性状的报道较少,对长江流域小麦地方品种HMW-GS的MALDI-TOF-MS和对湖北小麦地方品种HMW-GS的SDS-PAGE分析未见报道。因此,为发掘适合湖北小麦的有利性状和可供小麦育种利用的优异遗传资源,也为小麦遗传多样性研究、种质资源研究、小麦遗传育种研究和优质小麦生产以及优良种质的开发利用打下基础和提供依据,以长江流域的485份小麦地方品种为材料,通过田间试验和实验室分析,对长江流域的小麦地方品种种质资源进行了农艺、品质性状多样性分析,在此基础上,对供试材料进行了HMW-GS的SDS-PAGE分析和MALDI-TOF-MS分析,结果如下:
     1.研究中长江流域小麦地方品种供试材料农艺性状表现参差不齐,总体表现为高秆,早熟型,短穗型,小穗数、穗粒数偏少,千粒重较高,多数材料茎秆较细弱,穗部性状较差,籽粒偏小,易倒伏,为直接利用带来一定困难。各性状中穗粒重的变异程度最大,最不稳定,可选择范围大,其次是穗粒数和主穗穗颈至旗叶枕距,株高、抽穗期和小穗数的差异相对较小,表明其稳定性较好。虽然长江流域小麦地方品种农艺性状表现变异丰富,没有综合性状特别优异的材料,但仍然可以筛选到一些单一性状优良的材料。通过品种间的杂交,这些优良材料可直接应用于小麦的遗传改良。
     在湖北种植的8个地区地方品种的农艺性状表现表明,除了主穗长、主穗小穗数、穗粒数外在其他性状上各个生态区间存在显著或极显著差异。每个生态区内都普遍存在丰富的变异,湖北省地方品种株高平均值均高于青藏高原和澳大利亚材料,都在120cm以上;青藏高原材料穗粒数、穗粒重、千粒重较大,澳大利亚材料穗粒数、穗粒重变异系数最小,穗粒重、千粒重最大。这些结果表明青藏高原和澳大利亚材料在湖北种植的农艺性状表现较好,可作为湖北小麦选育材料;湖北省各个生态区材料都有一定缺陷,需要合理利用,即可为育种提供优异资源。
     通过简单相关分析,表明长江流域小麦地方品种各性状间存在着许多有利和不利的相关性。穗粒重、穗粒数和千粒重之间的显著相关说明穗粒数、千粒重的增加均有利于穗粒重的提高,但穗粒数和千粒重之间存在矛盾,穗粒数的增加会导致千粒重的降低,这与波兰小麦、西藏小麦、东方小麦、马卡小麦的研究结果相似。同时株高、主穗长与千粒重的负相关表明在长江流域小麦地方品种中株高和穗长的增加并不能引起千粒重的增加,反而使千粒重降低,这与王亚娟等261份来自全国各地优质小麦的农艺性状的相关分析结果相似,但与波兰小麦、波斯小麦、密穗小麦、东方小麦的研究结果不一致。长江流域小麦地方品种各性状间复杂的相关性表明在选择利用这些地方品种时中关注目标性状的同时也要兼顾其他性状。
     2.长江流域小麦地方品种有丰富的中筋小麦种质资源,兼有强筋、弱筋小麦地方种质资源,与《专用小麦优势区域发展规划(2003-2007)》中的要求一致。长江流域小麦地方品种蛋白质含量达到强筋小麦品质指标(≥14.00%)占14.14%,达到中筋小麦品质指标(14.00%-11.50%)占77.85%,达到弱筋小麦品质指标(≤11.50%)占8.01%。长江流域小麦地方品种湿面筋达到强筋小麦品质指标(≥32%)占0.21%,达到弱筋小麦品质指标(32.00%-22.00%)占99.58%,达到弱筋小麦品质指标(≤22.00%)占0.21%。长江流域小麦地方品种沉降值达到强筋小麦指标(≥45.00mL)占10.97%,达到中筋小麦品质指标(45.00-30.OmL)占88.82%,达到弱筋小麦品质指标(≤30.OmL)占0.21%。因此,长江流域小麦地方品种是该区域小麦品质育种不可多得的种质资源,有极大的利用和开发价值。
     对长江流域小麦地方品种品质性状相关性分析可知,淀粉含量与蛋白质含量、湿面筋、沉降值之间呈极显著负相关,表明淀粉含量对小麦品质有极大的影响,所以淀粉含量可以作为小麦品质的一个重要的品质指标,淀粉品质与蛋白质品质、湿面筋、沉降值之间存在密切联系,其共同影响着小麦的加工品质,在全面评价小麦品质或判断某一性状改变对加工品质的影响时,或根据不同的育种目标改良小麦的品质时,应综合考虑。湿面筋和蛋白质含量的相关系数为0.93**,相关系数高,说明湿面筋和蛋白质指标间协调一致,可作为小麦品质考察指标。
     青藏高原地区小麦地方品种蛋白质含量、湿面筋含量、沉降值最高,与其他生态区差异达到极显著,鄂东南、鄂东、江汉平原、鄂西、鄂北、鄂西北生态区小麦地方品种之间蛋白质含量差异不显著。青藏高原地区小麦地方品种淀粉含量最低,与其他生态区差异达到极显著,鄂东南、鄂东、江汉平原、鄂西、鄂北、鄂西北生态区小麦地方品种之间淀粉含量差异不显著。表明青藏高原地区小麦地方品种在蛋白质含量、湿面筋含量、沉降值上优于湖北地区地方品种,且在湖北作冬小麦种植绝大部分品种均能正常成熟结实,因此可作为改良品质的种质资源加以利用。
     3.供试材料中,亚基的分布范围较广,大部分材料含有7+8和2+12亚基,含5+10亚基的材料也较多,有27个,占32.14%。这些材料高分子量麦谷蛋白亚基组合有多种类型,主要亚基组合可分为三个大类,第一类是含7+8和2+12亚基的,第二类是含7+8和5+10亚基的,第三类是含未知亚基的。其中含第一类亚基的小麦材料有286个,占60.47%;含第二类亚基的材料有26个,占5.50%;含第三类亚基的材料有50个,占10.57%。
     供试材料在编码高分子量麦谷蛋白亚基的Glu-A1、Glu-B1和Glu-D1这3个基因位点上表现出丰富的多态性,共有22种HMW-GS等位变异。其中,Glu-A1位点上有3种等位变异类型;Glu-B1位点检测到的等位变异类型最多,为16种;Glu-D1位点有3种。从各个亚基的出现频率看,在Glu-A1位点上的3种变异类型0、1、2*中,0亚基频率最高,为89.22%,1亚基次之,为9.73%,2*亚基最少,为1.05%。Glu-B1位点上的亚基类型最为丰富,检测到的16种亚基类型中,7+8亚基出现频率最高,为65.96%;其次为?+8亚基,为9.51%;13+16、17+18、7、20亚基为稀有亚基类型,频率在1.69%~3.59%。在Glu-D1位点上,2+12亚基类型最多,频率为89.64%,其次是优质亚基5+10,占9.30%。
     通过对供试材料的HMW-GS组合形式和频率研究,可以发现供试材料的HMW-GS有44种组合形式。每种形式的亚基组合一般包含3至6个亚基。供试的473份材料各亚基组合形式较为分散,其中(0,7+8,2+12)组合频率最高,为54.97%。其次为(0,?+8,2+12)、(1,7±8,2+12)、(0,7+8,5+10)、(0,7+9,2+12)4种组合形式,频率依次为8.46%、5.07%、4.23%、4.23%。其它为稀有亚基组合形式,频率在0.21%~2.96%。供试材料中,Glu-A1位点的优质亚基为51个,占18.68%;Glu-B1位点优质亚基为73个,占15.43%;Glu-D1位点优质亚基为44个,占16.12%。Glu-1的3个位点均具有优质亚基的材料8个,占1.69%;仅2个位点均具有优质亚基的材料51个,占10.78%;只有1个位点具有优质亚基的材料351个,占74.21%。
     在供试的材料中,虽然优质亚基组合所占比例不高,但优质亚基占有较高的比例,尤其是出现了50个未知亚基类型。这些材料将是小麦品质遗传育种的宝贵资源。对这些未知亚基开展进一步研究,对他们予以命名和弄清其对小麦品质的贡献,将对小麦品质育种具有极其重要的意义。
     4.MALDI-TOF-MS分析发现,大量的高分子量谷蛋白亚基等位基因变异在所研究的地方品种中。其中453份材料的高分子量麦谷蛋白亚基组成是同质的,32份异质的,37份含有异常亚基。共有22个正常的Glu-1位点等位基因被检测出来,3个属于Glu-A1,13个属于Glu-B1,6个属于GIu-D1,分布于63种不同的等位基因组合中。
     在研究中,除了正常的22个等位基因外,12个等位基因编码了分子量69100,69900,73000,73100,75140,75600,76800,79000,79100,79800,83200,84300的异常亚基也被检测到。这代表了异常的等位基因比以前的报告有一个更高的速率。研究还发现,大量的品种中有一个或两个HMWGS基因沉默,特别是16个品种中1Bx的基因沉默。这些沉默的等位基因是解析小麦品质中特定等位基因效应的宝贵资源。
     总体来说,这项研究研究了485份中国的长江中上游地区小麦地方品种的高分子量谷蛋白亚基组成。在这项研究中获得的信息可用于小麦育种,培育新的品种来满足特定的最终产品的需求。在一般情况下,22个高分子量麦谷蛋白亚基等位基因和16个异常亚基在485份中国长江中上游地区收集到的地方品种中被鉴定出来。这些新的等位基因的进一步研究,目前正在获得其编码序列,将它们与先前报道的新的等位基因相比较。
Yangtze River basin is complex terrain with diversitifed climates. Abundant local wheat varieties have been developed in this area. The research on agronomic and quality characteristics has always been the key of crop improvement in agricultural production. Even when the molecular markers are developing fast these days, fully understanding and scientific assessment of the representing reality of the agronomic and quality characteristic of germplasm materials is still of great importance for rational use of germplasm resources and parent selection. Unfortunately, systematic analysis on the genetic variation of agronomic and quality characteristics of local wheat varieties in the Yangtze River basin is still lacking. The previous researches mainly focused on the genetic diversity of agronomic and quality characteristics of regional or partial varieties. No study was conducted on the analysis of High-molecular-weight glutenin subunits(HMW-GS) of local varieties in Hubei province. We characterized genetic diversity and HMW-GS in477wheat varieties from the Yangzi River basin. using agronomic and quality characteristics. The major findings of SDS-PAGE analysis and MALDI-TOF-MS analysis on the HMW-GS are reported as follows.
     1. Generally speaking, the wheat varieties in Yangzi River basin studied showed high stalk, precocity, short head, small spikelet number and grain number per spike, high kernel weight. The majority of them have weak stem, poor ear characters, small grain, and are susceptible to lodging. Among the characters studied, spike grain weigh showed wide range of variation followed by the grain number per spike, and the distance from main spike neck to flag leaf pulvinus. No significantly differences were found for plant height, heading date and the number of spikelet number among the varieties.
     The agronomic traits studied showed significantly difference among different ecological zones and within each zone except for main panicle length, spike numbers of main spike, grain number per spike The averaged plant height of Hubei varieties, which is above120cm, is higher than that of materials from Tibetan Plateau and Australia. The grain number per spike, spike grain weight and kernel weigh in Tibetan varieties are than those in the varieties from Yangtz river region. For the varieties from Australia, The grain number per spike and spike grain weight showed the lowest variation, and the spike grain weight and kernel weigh showed the highest variation among the varieties studied. The results indicated that the agronomic characters of wheat materials from Tibetan Plateau and Australia perform well in Hubei, thus they could be used for wheat breeding. The varieties from the ecological zones in Hubei displyed some undisrable chatacters,it needs better strategy to eccifcetly use the germplasm from Hubei for breeding program.
     Correlation analysis found significant correlation between grain number per spike, spike grain weight and kernel weigh, indicating that the increase of grain number per spike and kernel weight could redult in the increase of spike grain weight. However, the grain number per spike was nagetively correlated with kernel weigh, increase of grain number per spike could cause the decrease of kernel weight, which is similar to the reports on Polish wheat, Tibet wheat, orient wheat and macha wheat. The negative correlation between plant height, main panicle length and kernel weight indicated that the increase of plant height and panicle length would decrease the kernel weight, which is consistent with the correlation analysis on the261wheat materials collected from all over the country; but is inconsistent with the study on Polish wheat, Tibet wheat, orient wheat and macha wheat.
     2. The results indicated that the wheat landraces from Yangtze River valley were rich in medium-gluten, few with strong gluten and weak gluten, which was consistent with proposal made in the 《Special-purpose Wheat Regional Development Plan (2003-2007)》.14.14%,77.85%and8.01%of wheat landraces are with protein content reaching high strength gluten index (≥14.00%), middle strength gluten index(14.00%-11.50%), low strength gluten index (≤11.50%) p, respectively. Wheat landraces of wet gluten content reaching high-strength-gluten index (≥32%), middle-strength-gluten index (32.00%~22.00%),low-strength-gluten index (≤22.00%) accouted for0.21%,99.58%,0.21%, respectively. The percentage of local varieties with zeleny reaching high-strength-gluten index (≥45.00mL), middle-strength-gluten index (45.00-30.0mL), low-strength-gluten index (≤30.0mL) were10.97%,88.82%,0.21%, respectively. Therefore, landraces in Yangtze River region of China are valuable resources in wheat breeding.
     The correlation analysis indicated that starch content was significantly negatively correlated with protein content, wet gluten content, zeleny Starch quality was closely associated with protein quality, wet gluten content, zeleny. These four components determine wheat processing quality. The wet gluten content showed a highly positive correlation with the protein content, with correlation coefficient of0.93.. The wet gluten content can be used as a quality index to evaluate wheat quality.
     The protein content, wet gluten content, zeleny in the Tibetan local varieties of wheat were significantly higher than those invarieties from other ecological areas. Both protein and starch content did not showed significantly difference among landraces from South-eastern Hubei, East of Hubei, Jianghan plain, West of Hubei, North of Hubei, North-west of Hubei.The starch content of Tibetan local varieties was significantly lower than that in samples from other ecological areas. The results demonstrated that protein content, wet gluten content, zeleny of landraces from Qingzang plateau were superior to those in the local varieties from Hubei Province. Most of the landraces from Qingzang plateau planted in winter in Hubei could normally mature and yield. Therefore they are useful germplasm to improve the wheat quality.
     3. Among the varieties tested,7+8and2+12subunits are detected in most varieties; and5+10subunit is also very common, and32.14%varieties possessed this subunit. The combinations of high molecular weight glutenin subunits in these varieties tested were mainly divided into3types.286(60.4%) varities contained7+8and2+12subunits,26(5.50%) varieties contained7+8and5+10subunits, and50(10.57%) varieties contained undefined subunits.A total of22alleles are found among the varieties tested, with3alleles for Glu-Al;16alleles for Glu-Bl; and3alleles for Glu-D1locus. Of the3alleles on Glu-A1,0,1,2*, the frequency of0subunit is the highest (89.22%), followed by1subunit (9.73%); and the frequency of2*subunit(1.05%) is the lowest one. Of the16detected subunit types (alleles) at Glu B1,65.96%are7+8subunit followed by?+8subunit (9.51%); the13+16,17+18,7, and20subunits are rare types, with their frequency ranking from1.69%to3.59%. At Glu-Dl site,2+12subunit type is the most common (89.64%), followed by high quality subunit5+10(9.30%).
     A total of44HMW-GS combination forms are revealed in the varieties. Generally, each combination is consist of3-6subunits. The frequency of subunit combination forms detected in473varieties are quite difference from each other, among which combination form (0,7+8,2+12) is the most frequent(54.97%), followed by (0,?+8,2+12)(8.46%),(1,7+8,2+12)(5.07%),(0,7+8,5+10)(4.23%) and (0,7+9,2+12)(4.23%); the rest are rare subunit combinations, with frequency of0.21%~2.96%. The high quality subunits at Glu-A1site were detected in51varieties (18.68%); at Glu-B1site were detected in73varieties (15.43%); and at Glu-D1site in44varieties (16.12%). Eight varieties have high quality subunits at all the3Glu-1sites, accounting for1.69%of the total;518materials have high quality subunits at2of the3Glu-1sites, accounting for10.78%of the total;351materials have high quality subunits at1of the3Glu-1sites, accounting for74.21%of the total.
     Although the proportion of high quality subunit combinations is not high among the studied materials, the ratio of high quality subunits is relatively high; especially50unidentified subunit materials are found. They are precious resource for genetic breeding of wheat. Future study on these materials to reveal their contribution to the wheat quality, is of very importance to wheat quality breeding.
     4. Extensive allelic variation in HMW glutenin subunits was detected among the studied landraces. A total of453of the accessions were homogeneous for HMW-GS composition,32were heterogeneous and37accessions contained abnormal subunits. A total of22normal alleles for the Glu-1loci were detected,3belonged to Glu-A1,13at Glu-B1and6at Glu-D1, resulting in63different allele combinations.
     In our study, apart from the22normal alleles, twelve alleles encoding abnormal subunits with molecular weights of69,100,69,900,73,000,73,100,75,140,75,600,76,800,79,000,79,100,79,800,83,200,84,300were also detected. This represented a higher rate of abnormal alleles than previous reports, which is likely due to the enhanced resolution in determining the molecular mass of the MALDI-TOF technology. In this study, a large numer of lines had one or two HMWGS genes silenced, especially16lines with the1Bx gene silenced, of which the silencing mechanism is still unclear. These null alleles are valuable resources for dissecting specific allele effects in wheat quality.
     To conclude, this study characterized the HMW glutenin subunit compositions of485wheat landraces in the Yangtze-River region of China. The information obtained in this study may be used by wheat breeders for breeding new cultivars to meet specific end-product needs. In general,22HMW-GS alleles with16abnormal subunits were identified in a collection of485landraces from the Yangtze-River region of China. Further studies of these novel alleles are currently undergoing to obtain their coding sequences in order to match them with previously reported novel alleles.
引文
1.曹广才,王绍中.小麦品质生态.北京:中国科学技术出版社,1993.
    2.陈华萍,邓婷,苟璐璐,等.四川小麦地方品种农艺性状与品质性状的多样性分析.麦类作物学报,2008,28(6):960-964.
    3.陈华萍,魏育明,王照丽,等.四川小麦地方品种农艺性状分析.西南农业学报,2006,19(5):791-795.
    4.陈华萍,魏育明,郑有良.四川小麦地方品种营养品质分析.中国粮油学报,2006,21(5):36-40
    5.陈晓杰,王亚娟,申磊,等.西北春麦区小麦地方品种高分子量麦谷蛋白亚基组成分析.植物遗传资源学报,2009,10(1):42-45.
    6.陈新民,何中虎,史建荣,夏兰芹,Ward R,周阳,蒋国梁.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究.作物学报,2003,29(1):13-19.
    7.陈雪燕,王亚娟,雒景吾,等.陕西省小麦地方品种主要性状的遗传多样性研究.麦类作物学报,2007,27(3):456-460.
    8.丛花,池田达哉,王宏飞,等.新疆小麦地方品种资源高分子量麦谷蛋白亚基(HMW-GS)的遗传多样性组成分析.农业生物技术学报,2009,17(6):1070-1074.
    9.代寿芬,颜泽红,魏育明,等.西藏小麦资源在都江堰试种的表现及评价.植物遗传资源学报,2003,4(2):166-170.
    10.董玉琛,曹永生,张学勇,等.中国普通小麦初选核心种质的产生.作物品种资源学报,2003,4(1):1-8.
    11.董玉琛,曹永生,张学勇,等.中国普通小麦初选核心种质的产生.植物遗传资源学报,2003,4(1):1-8.
    12.董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社,2000.58—98.
    13.杜巍,魏益民,张国权.拉伸特性与面条品质关系的研究.西部粮油科技,2001,26(2):21-23.
    14.傅宾孝,赵又梅,秦礼谦.小麦高分子谷蛋白亚基与面粉品质.郑州粮食学院学报,1989,(1):1-12.
    15.高安礼,何华纲,陈佩度,等.分子标记辅助选择小麦抗白粉病基因Pm2,Pm4a和Pm21的聚合体[J].作物学报,2005,31(11):1400-1405.
    16.高睦枪,刘冬城,郭小丽.我国冬小麦新品种(系)SSR遗传差异研究.农业生物技术学报,2001,9(1):49-54.
    17.关荣霞,郭小丽,刘冬成,曹双河,张爱民.小麦T型细胞质雄性不育恢复基因Rf6的ISSR标记分析.中国农业科学,2002,11:
    18.郭刚,李远新,李络,等.小麦等级与出粉率关系研究初报.中国粮油学报,1994,9(2):19-22.
    19.郭波莉.小麦品种籽粒品质与食品品质关系的研究[硕士研究生学位论文].杨凌:西北农林科技大学,2001.
    20.郭世华.分子标记与小麦品质改良.北京:中国农业出版社,2006,6.
    21.郝晨阳,王兰芬,贾继增,等.SSR荧光标记和银染技术的比较分析.作物学报,2005,31(2):144-149.
    22.侯永翠郑有良魏育明,等.抗赤霉病小麦地方品种的贮藏蛋白分析.麦类作物学报,2002,22(4):23-27.
    23.胡卫国王亚娟王长有,等.陕西小麦地方品种白粉病抗性的遗传分析.麦类作物学报,2007,27(2):341-344.
    24.黄东印,林作楫.冬小麦品种性状关系的初步研究.华北农学报,1990,5(1):40-45.
    25.贾继增.应用植物基因组学的理论与方法开发我国丰富的作物种质资源.中国农业科技导报,1999,2:41-45.
    26.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    27.孔凡娜,曹张军,井金学.DNA分子标记在小麦抗条锈性遗传研究中的应用.西北植物学报,2002,22(5):1263-1267
    28.兰静.不同沉降值测定方法与小麦品质特性间相关性的研究.麦类作物学报,1998,18(1):27-29.
    29.兰海燕.中国小麦地方品种的遗传多样性研究[硕士学位论文].北京:中国农业科学院,2002.
    30.李伟,陈国跃,魏育明,等.圆锥小麦地方品种的农艺性状分析.麦类作物学 报,2008,28(4):649-654.
    31.李爱宏,戴正元,舒庆尧,左示敏,刘广青,沈圣泉,孔样斗,张洪熙.转CrylAb基因水稻种质杂交后代的标记辅助选择及抗虫性评价.分子植物育种,2004,2(4):481-488.
    32.李鸿恩,张玉良,吴秀琴,等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995,28(5):29-37.
    33.李利民,侯业茂,朱永义,等.谷物戊聚糖国内外研究进展.粮油加工与食品机械,2002,(5):36-38.
    34.李硕碧,单明珠,王怡,等.鲜面条专用小麦品种品质的评价.作物学报,2001,27(3):334-338.
    35.李望鸿,李玉芳,张环,等.甘肃育成小麦品种与地方品种品质性状的比较分析[J].麦类作物学报,2008,28(6):977-982.
    36.李兴林,王光瑞,徐风,等.面包质地同品质性状的相关性分析.中国粮油学报,1999,(8):4-6.
    37.李志西,魏益民,张国权,等.小麦蛋白质组分与加工品质的相关研究.中国农学会.中国青年农业科学学术年报(B卷).北京:中国农业出版社,1997.823-827.
    38.李志西,魏益民,张建国,等.小麦蛋白质组分与面团特性和烘烤品质关系的研究.中国粮油学报,1998,13(3):1-5.
    39.李宗智,卢少源.小麦遗传资源籽粒硬度和面粉沉降值的研究.中国农业科学,1993,26(4):15-20.
    40.李宗智,孙馥亭,张彩英,等.不同小麦品种品质特性及其相关性的初步研究.中国农业科学,1990,23(6):35-41.
    41.李宗智.小麦制面包性状的遗传.河北农业大学学报,1982,4(2):175-183.
    42.林作楫,雷振生.中国挂面对小麦粉品质的要求.作物学报,1996,22(2):152-155.
    43.刘保申,孙其信,高庆荣,孙兰珍,解超杰,李传友,倪中福,窦秉德,魏艳玲.K型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析.中国农业科学,2002,4
    44.刘后利.农作物品质育种.武汉:湖北科学技术出版社,2001.
    45.刘金元,刘大钧,陈佩度,等.分子标记辅助育种新尝试—与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学学报,1997,20(2):1-5.
    46.刘立科,侯宁,刘建成,刘根齐,刘春光.小麦D2型细胞质雄性不育恢复基因近等基因系筛选和遗传背景的分子检测.麦类作物学报,2006,5:
    47.刘三才,郑殿升,曹永生,等.中国小麦选育品种与地方品种的遗传多样性.中国农业科学,2000,33(4):20-24.
    48.刘淑芬,吴自强,胡建平.蒸制优质馒头与小麦品质的关系.作物杂志,1986,(4):27-28.
    49.刘志勇,孙其信,李洪杰,等.小麦抗白粉基因Pm21的分子标记鉴定和标记辅助选择[J].遗传学报,1999,26(6):673-682.
    50.马传喜,吴兆苏.小麦胚乳蛋白质组分及高分子量麦谷蛋白亚基与烘烤品质的关系.作物学报,1993,19(6):562-566.
    51.马传喜,徐凤,谭蕴之.在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对烘烤品质的影响.作物学报,1995,21(1):90-94.
    52.马传喜,徐风.用溶涨试验法检测小麦面筋品质的研究.中国粮油学报,1998,13(1):45-48.
    53.马渐新,董玉琛.用微卫星标记定位一个未知的小麦抗条锈病基因.科学通报,1999,44(14):1513-1517.
    54.马艳明,范玉顶,李斯深,等.黄淮麦区小麦品种(系)品质性状多样性分析[J].植物遗传资源学报,2004,5(2):133-138.
    55.马艳明,刘志勇,热依拉木,等.新疆冬小麦地方品种与选育品种遗传性状比较分析.新疆农业科学,2011,48(4):634-638.
    56.毛沛,李宗智,卢少源.小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品关系的研究.中国农业科学,1995,(S1):22-27.
    57.孟庆红.面包专用粉的几项特殊指标.西部粮油科技,1998,23(1):36-38.
    58.潘幸来,潘前颖,史引红,等.小麦形态性状的变频及基因.麦类作物学报,1999,19(3):3-7.
    59.桑大军,许为钢,胡琳,等.河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种[J].华北农学报,2006,21(1):86-91.
    60.沈金雄,傅廷栋,杨光圣.甘蓝型油菜ISSR标记的遗传多样性及其与杂种表现的关系.中国农业科学,2004,37(4):477-483.
    61.石运庆,牟秋焕,李鹏,刘保申.V型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析.山东农业科学,2005,3
    62.孙辉,姚大年,李宝云,等.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,13(6):13-16.
    63.孙晓丽.小麦抗白粉病基因的分子标记及白粉菌引发的细胞程序性死亡[博士学位论文].中国农业科学院,2006.23-29.
    64.孙致良,吴兆苏.近代小麦品种籽粒品质的演变及改良方向.莱阳农学院学报,1989,6(2):1-7.
    65.索广力,何聪芬.利用RAPD--BSA技术筛选小麦耐盐突变位点的分子标记.植物学报,2001,43:599-602.
    66.佟汉文,万正煌,刘易科,等.湖北省小麦种质资源的分布及农艺性状和抗病性评价.麦类作物学报,2011,31(1):153-158.
    67.王放,王显伦,张国治,等.发酵与无发酵工艺生产馒头的技术研究.中国粮油学报,1999,(8):8-12.
    68.王恕,赵仁勇.用法国面粉制作中国传统食品馒头的尝试.郑州粮食学院学报,1999,20(1):25-27.
    69.王涛,李竹林,曾秀英,等.具有高分子量麦谷蛋白亚基5+12小麦新种质的创造及其特性研究.四川大学学报(自然科学版),2000,37(S1):49-54.
    70.王光瑞,周桂英,王瑞.烘烤品质与面团形成和稳定时间相关分析.中国粮油学报,1997,12(3):1-6.
    71.王俊美,柴春月,刘红彦,等.小麦抗白粉病基因Pm4的三个STS标记的实用性分析[J],河南农业科学,2005,4:38-41.
    72.王立新,苏爱莲,贾继增,等.小麦品种复壮30抗白粉病基因RAPD标记的研究[J].农业生物技术学报.2000,8(4):373-376.
    73.王明伟,王艮远,潘从道.快速预测小麦烘焙品质的研究.粮食与饲料工业,1993, (2):8-10.
    74.王贤勇.小麦淀粉在面包生产中的变化及其对面包品质的影响.郑州粮食学院学报,1988,(3):74-82.
    75.王宪泽,李菡,郭恒俊,等小麦加工品质性状与馒头质量性状的相关性.中国粮油学报,1998,13(6):6-8.
    76.王宪泽,张玲,李菡.小麦品质性状与面条煮熟品质的关系.麦类作物,1997,17(4):17-19.
    77.王晓曦,曹维让,李丰荣.SRC法测定面粉品质与其它方法的比较.粮食与饲料工业,2003,(9):6-8.
    78.王心宇,陈佩度,张守忠,等.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646.
    79.王子宁,郭北海,张艳敏,等.小麦地方品种Wx基因构成分析.华北农学报,1999,14(3):5-9.
    80.魏益民,李志西.关中主要小麦品种加工品质性状的研究.西北农业学报,1992,1(2):19-24.
    81.魏益民,张国权,欧阳韶晖,等.小麦粉品质和制面工艺对面条品质的影响.中国粮油学报,1998,13(5):42-45.
    82.魏益民,张国权,欧阳韶晖,等.杂种小麦品质性状研究.西北农业大学学报(自然科学版),1995,23(1):26-29.
    83.徐风,马传喜,谭蕴之.面包小麦品质及其预测指标的研究.中国粮油学报,1994,9(2):30-36.
    84.徐金泉.面粉吸水率与面粉蛋白质、损伤淀粉等的关系研究.郑州粮食学院学报,1990,(3):70-80.
    85.许占友.小麦分子遗传差异与杂种优势关系及育性恢复基因分子标记的研究.北京:中国农业大学,1997.
    86.薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6),631-638.
    87.杨子贤,姜恭好,徐才国,何予卿.利用分子标记辅助选择改良93-11对白叶枯病和螟虫抗性.分子植物育种,2004,2(4):473-478.
    88.尹应哲,蒋文录,王光瑞.优质面包粉品质分析研究报告.中国粮油学报,1990,5(1):9-12.
    89.袁秀萍.春小麦地方品种主要农艺性状及抗病性的鉴定和评价.安徽农业科学,2009,36(1):28-30.
    90.曾浙荣,李英婵,孙芳华,等.37个小麦品种烘烤品质的评价和聚类分析.作物学报,1994,(11):641-651.
    91.张玲,王宪泽,岳永生.用TOM值评价中国面条品质的新方法及研究小麦品质对它的影响.中国粮油学报,1998,13(1):49-53.
    92.张爱民,罗铮,刘冬成,郭小丽.我国部分优质小麦品种遗传差异的SSR标记分析.麦类作物学报2004,24(1):1-5.
    93.张彩英,李宗智.建国以来我国冬小麦主要育成品种加工品质的演变及评价.中国粮油学报,1994,9(3):9-13.
    94.张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究.中国农业科学,1993,26(2):39-46.
    95.张立平,何中虎,陆美芹,庞斌双,张学勇,夏兰芹,Frank Ellison.用Glu-B3、 Gli-B1和SEC-lb复合引物PCR检测普通小麦1BL/1RS易位系.中国农业科学,2003,36(12):1566-1570.
    96.张守文,富校轶.高筋面粉的质量指标与面包烘焙品质关系的探讨.粮食与饲料工业,1999(5):20-25.
    97.张先和,任云丽,高巍.正确评价小麦品质.粮油食品科技,2000,8(1):22-23.
    98.张学勇,庞斌双,游光霞,等.中国小麦品种资源Glu-1位点组成概况及遗传多样性分析.中国农业科学,2002,35(11):1302-1310.
    99.赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1):67-75.
    100.赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质性状和农艺性状关系的研究.作物学报,1994,20(1):67-75.
    101.赵乃新,顾小红,兰静,等.小麦品质性状与蛋白组份含量关系的研究.麦类作物学报,1998,18(4):44-47.
    102.赵寅槐,马正强,刘大钧.小伞山羊草(Aegilops umbellullata)恢复基因向小麦的转 移.遗传学报,1991,18(6):529-536.
    103.赵友梅,王淑俭.HMW麦谷蛋白亚基的SDS-PAGE图谱在小麦品质研究中的应用.作物学报,1990,16(3):208-218.
    104.郑威,洪美艳,孙东发.长江流域小麦地方品种农艺性状多样性分析.麦类作物学报,2009,29(6):987-991.
    105.郑殿升,刘三才,宋春华,等.中国小麦遗传资源农艺性状鉴定、编目和繁种入库概况.植物遗传资源科学,2000,1(1):1-13.
    106.朱克庆.传统主食馒头的工艺生产技术.粮食与油脂,1997(4):2-5.
    107.朱龙付张献龙聂以春.利用RAPD和SSR标记分析陆地棉种质资源的遗传多样性.农业生物技术学报,2003,11(5):450-455.
    108.朱炎辉,吉万全,王亚娟,等.西南冬麦区地方品种HMW-GS组成遗传多样性研究.植物遗传资源学报,2007,8(4):401-405.
    109.朱展才.小麦质量标准中定等基础项目的探讨.郑州粮食学院学报,1988(4):48-53.
    110.Addo K, Pomeranz Y, Huang M L, et al. Steamed bread. II. Role of protein content and strength. Cereal Chem,1991,68:39-42.
    111.Ahmad M. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet,2000,101: 892-896.
    112.Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA,1996,93:15503-15507.
    113.Annicchiarico P, Pecetti L. Yield vs. morphophysiological trait-based criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria).Field Crop Res,1998,59:163-173.
    114. Atkins Z M. Evaluation of the sedimentation test in a wheat breeding program. Crop Sci,1965,5:381-385.
    115.Autio K, Flander L.Bread quality relationship with rheological measurements of wheat flour dough. Cereal Chemistry,2001,78(6):654-657.
    116.Baik B K, Czuchajowska Z, Pomeranz Y. Role and contribution of starch and protein contents and quality to texture profile analysis of oriental noodles. Cereal Chemistry, 1994,71(4):315-320.
    117.Bakhella M, Hoseney R C, Lookhart L. Hardness of Moroccan wheats[J]. Cereal Chem,1990,67(3):246-250.
    118.Bassett L M, Allan R E, Rubenthaler G L. Genotypexenvironment interaction on soft white winter wheat quality. Agron J,1989,1:955-960.
    119.Bedo, Z., Karpati, M, Kramaarik-Kissimon, J., et al.. Good breadmaking quality wheat genotypes with 2+12 subunit composition at the Glu-D1 locus. Cereal Chem, 1995,23(3):283-289.
    120.Bietz J A. Analysis of wheat gluten proteins by high-performance liquid chromatography. I. Baker's Dig.1984,58:15-32.
    121.Bietz J A. Separation of cereal proteins by reversed-phase high-performance liquid chromatography. Journal of Chromatography,1983,255:219-238.
    122.Blanco A, Bellom M P, Cenci A, De Giovanni C. A genic linkage map of durum wheat. Theor Appl Genet.1998,97:721-728.
    123.Boyko E V, Gill K S, Mickelson-Yong L., Nasuda S, Raupp W J, Ziegle J N, Singh S, et al. A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat.Theor Appl Genet,1999,99:16-26.
    124.Brancourt H M, Doussinault G, Lecomte C, et al. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992.Crop Sci,2003, 43:37-45.
    125.Branland G, Dardertt M. Diversity of grain protein and bread wheat quality: correlation between high molecular weight subunits of gluten and flour quality characterics. Cereal science,1985,3:345-349.
    126.Branlard G, Dardevet R, Saccomano F, Lagoutte F, Gourdon J. Genetics diversity of wheat Storage proteins and bread wheat quality. Euphytica,2001,119:59-67.
    127.Bronneke V, Zimmermann G, Killermann B. Effect of high molecular weight glutenins and D-zone gliadins on bread-making quality in German wheat varieties. Cereal Research Communications,2000,28 (1-2):187—194
    128.Brown A H D. Core collections:A practical approach to genetic resources management. Genome,1989,31:818-824.
    129.Bryan G J, Stephenson P, Stephenson P. Isolation and charcterization of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics,1997,94:557-563.
    130.Cadalen T, Charmet G, Charmet GMolecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theoretical and Applied Genetics,1998,96:933-940.
    131.Ceapoiu N. Citogenetica aplicata in ameliorarea graului. Bucuresti:Editura Academiei Romane,1972.
    132.Chai J F, Jia J Z. Homoeologous cloning of co-secalin gene family in a wheat 1BL/1RS translocation. Cell Research,2005,8:659-665.
    133.Chen S, Lin X H, Xu C G, et al. Improvement of bacterial blight resistance of Minghui 63, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci,2000,40:239-244.
    134.D'Egidio M G., Mariani B M, Nardi S, et al. Chemical and technology variables and their relationship equation for pasta cooking quality. Cereal Chem,1990, 67(3):275-281.
    135.De Bustos A, Rubio P, Jouve N. Molecular characterization of the inactive allele of the gene Glu-Al and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor Appl Genet,2000,100,189-194.
    136.De Froidmont D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science,1998,27:229-232.
    137.Delacy IH, Skovmand B, Huerta J. Characterization of Mexican wheat landraces using agronomically useful attributes. Genetic Resources and Crop Evolution,2000, 47(6):591-602.
    138.Delaney D, Nasuda S, Gill B S, Hulbert S H. Cytogenetically based physical maps of the group 2 chromosomes of wheat. Thero Appl Genet,1995, 91:568-578.
    139.Dong H, Sears R G, Cox T S, et al. Relationships between protein composition and mixograph and loaf characteristics in wheat.Cereal chem,1992,69(2):132-136.
    140.Dotlaci L, H ermuth J, Stehno Z, et al. Diversity in European winter wheat landraces and obsolete cultivars. Czech Jounral of Genetics& Plant Breeding,2000,36 (2):29-36.
    141.D'Ovidio R, Poraddu E, Lafiandra D. PCR analysis of genes encoding allelic variants of at the Glu-Dl locus. Theor Appl Genet,1994,88:175-180.
    142.Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 1987,116:113-125.
    143.Fahima T, ROder M S, Grama A, et al. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theo Appl Genet,1998,96:187-195.
    144.Finney P L, Gaines C S, Andrews L C. Wheat quality: A quality assessor's view. Cereal Foods World,1987,32(4):313-319.
    145.Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome band and structural aberrations in wheat(Triticum aestivum). Genome,1991,34:830-839.
    146.Gill K S, Gill B S, Endo T R, Taylor T Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics,1996,144:1883-1891.
    147.Gill K S, Lubbers E L, Gill B S, Raupp W J, Coc T S. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome,1991,34:362-374.
    148.Gupta P K, Varshney, Sharma P C, Ramesh B. Molecular markers and their applications in wheat breeding. Plant breeding,1999,118:369-390.
    149.Gupta R B,Singh N K, Shepherd K W. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theoretical and Applied Genetics,1988,77:57-64.
    150.Gupta P B, Batey I L, Macrichie F. Relationships between protein composition and functional properties of wheat. Cereal Chem,1992,69(2):125-131
    151.Guttieri M J, Ahmad R, Stark J C, et al. End-use quality of six hard red spring wheat cultivars at different irrigation levels. Crop Science,2000,40:631-635.
    152.Hao C Y, Zhang X Y, Wang L F, Jia J Z. Genetic Diversity and Core Collection Evaluations in Common Wheat Germplasm from the Northwestern Spring Wheat Region in China. Molecular Breeding,2006,17:69-77.
    153.Harberd N P, Flavell R B, Thompson R D. Identification of a transposon like insertion in a Glu-1 allele of wheat. Mol Gen Genet,1987,209:326-332.
    154.Helguera M, Dubcovsky J, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47.Theoretical and Applied Genetics,2000,100:1137-1143.
    155.Hohmann U, Endo T R, Gill K S, Gill B S. Comparision of genetic and physical maps of group-7 chromosome from Triticum aestivum L Mol. Gen Genet,1994,245: 644-653.
    156.Hong B H, Rubenthaler G L, and Allan R E. Wheat Pentosans. I. Cultivar variation and relationship to kernel hardness. Cereal Chem,1989, 66(5):369-373.
    157.Hong B H, Rubenthaler G L, and Allan R E. Wheat pentosans. Ⅱ. Estimating kernel hardness and pentosans in water extracts by near-infrared reflectance. Cereal Chem,1989,66(5):374-377.
    158.Hoseney C R. Wheat hardness.Cereal Foods World,1987,32(4):320-332.
    159.Huang, S. D., Yun, S. H., Quail, K., et al. Establishment of flour quality guidelines for Northern style Chinese steamed bread. Journal of Cereal science,1996,24:179-185.
    160.Huebner F R, Bietz J A. Assessment of the potential bread making quality of hard wheat by reversed-phase high-performance liquid chromatography of gliadins. J Cereal Sci,1986,4:379-388.
    161.Dubcovsky J, Luo M C, Zhong G Y, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J.Genetic Map of Diploid Wheat, Triticum monococcum L., and Its Comparison with Maps of Hordeum vulgare L. Genetics,1996,143(2):983-999.
    162.Johannosh E M A, Grareland A. F2 progeny test for studying agronomic and quality characteristics in hard red winter wheat. Crop Sci,1965,5:129-132.
    163.Johansson E, Sevensson G. Contribution of the molecular weight glutenin subuint 21* to breadmaking quality of Swedish wheat. Cereal Chem,1995,72(3):287-290.
    164.Katrien M D, Mike D G. Genome relationship:the grass modle in current reseach. Plant cell,2002,12:637-646.
    165.Kojima T, Nagaoka T, Noda k, Ogihara Y Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to the of RFLP markers.Theor Appl Genet,1998, 99:16-26.
    166.Kosmolak F G. A relationship between drum wheat quality and gliadin electrophorgrams.Can. J. Plant Sci,1980,60:427-432.
    167.Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685.
    168.Lagudah E S. The influence of high molecular weight glutenin from Tritucum tauschil on flour quality of synthetic hexaploid wheat. Cereal Sci,1987,5:129-138.
    169.Shewry P R, Tatham A S, Larroque O R, et al. Analysis of gluten proteins in grain and flour blends by RP-HPLC. Wheat Gluten. Bristol, UK: RSC Publishing,2000.136-139.
    170.Lawrence G J. The high-molecular-weight glutcnin subunits composition of Australian wheat cultivars. Aust. J. Agric. Res.1986,37:125-133.
    171.Li S J, Penner G A, Devos K M. Characterization of loci containing microsatellite sequences among Canadian wheat cultivars. Genome,1995,38:1037-1040.
    172.Lin Z J, Miskelly D M, Moss H J. Suitability of various Australian wheat for Chinese-stylesteamed bread. Sci Food Agric,1990,53:203-213.
    173.Liu B S, Sun Q X, Sun L Z, et al. RAPD and ISSR Markers of Fertility Restoring Gene for Aegilops kotschyi Cytoplasmic Male Sterility in Wheat. Journal of Integrative Plant Biology,2002,4
    174.Lukow O M, Payne P I, Tkachuk R. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. J Sci Food Agric,1989,46:451-460
    175.Ma Z Q, Sorrells M E. Inheritance and chromosomal locations of fertility restoring gene transferred from Aegilops umbellulata Zhuk.to Triticum aestivum L.Molecular and General Genetics.1995,94:832-840.
    176.Ma Z Q, Wei J h, Chen S I. PCR-based markers for the powdery mildew resistance gene Prn4a in wheat [J].Theor. Appl. Genet,2004,109:140-145.
    177.Ma Z Q.Genetic analysis of fertility restoration in wheat using restoration fragment length polymorphisms.Crop Science,1995,35:1137-1143.
    178.Manifesto M M,Schlatter A R, Hopp H E. Bread wheat fingerprinting using microsatellites. In:Plant Animal Genome 7th conference.1999.371.
    179.McIntosh R A, Hart G E, Devos K M, et al. Catalogue of Gene Symbols for Wheat. Proceedings of the 9th Intl. Wheat Symp. (Vol5). Saskatoon, Saskatchewan, Canada, 1998,28-32.
    180.Mickelson Y L, Endo T R, Gill B S. A cytogenetic ladder-map of wheat homoeologous group 4 chromosomes. Theor Appl Genet,1995,90:1007-1011.
    181.Moghaddam M, Ehdaie B, Waineas J.G. Genetic variation and interretionships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica, 1997,95:361-369.
    182.Negassa M. Estimates of thenotypic diversity and breeding potential of Ethiopian wheats. Hereditus,1986,104:41-48.
    183.Nelson A D, Reco T, Schnltes N P, Atkinson M, et al. Molecular mapping of wheat, Major genes and rearrangements in hameologous 4,5 and 7. Genetics,1995,141: 721-731.
    184.Nemoto Y, Sasakuma T, Sasakuma T.Isolation of novel early salt-responding genes from wheat (Triticum aestivum L.) by differential display.Theoretical and Applied Genetics.1999,98:673-678.
    185.Oh N H, Seib P A, Deyoe C W, Ward A B. Noodle. II. Surface firmness of cooked noodles from soft and hard wheat flours. Cereal Chemistry,1985,62(6):431-436.
    186.Oh N H, Seib P A, Ward A B, et al. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of dry noodles. Cereal Chem,1985,62(6):441-446.
    187.Osborne T B. The proteins of the wheat kernel. Washington, D.C.:Carnegie. Inst.,1907.1-119.
    188.Payne P I, Corfied K G, Blackman J A. Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric,1981,32:51-60.
    189.Payne P I, Holt L M, Lawrence G J. Detection of a novel high molecular weight subunit of glutenin in some Japanese heaaploid wheels. J Cereal Sci,1983,1:3-8.
    190.Payne P I, Law C N, Mudd E E. Control by homologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics,1980,58:113-120.
    191.Payne P I, Nightingale M A, Krattiger AF, Holt L M.The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric,1987,40:51-65.
    192.Payne P I, Hole L, Jarvis M, et al. Two dimensional fractionation of the endosperm porterns of bread wheat::Biochemical and genetic studies..Cereal Chem,1985,62(5):319-326.
    193.Payne P I. Genetics of wheat storage, protein and the effect of allelic variation breadmaking quality. Anr Rev Plant Physiol.,1987,38:141-153.
    194.Payne P I, Corfiled K G, Holt L M, Blackman I A. Correlations between the inheritance of certain high molecular-weight subunits of glutenin and bread making quality in progenies of six crosses of bread wheat. Sci. Food Agric,1981,32:51-56.
    195.Perton H. Rapid measurement of wet gluten quality by the gluten index. Cereal Foods World,1990,35(4):401-402.
    196.Peterson C J, Graybosch R A, Baenziger P S, et al. Genotype and Environment effects on quality characteristics of hard red winter wheat. Crop Science, 1992,32:98-103.
    197.Plaschke J, Ganal M W, Roder M S. Detection of genetic diversity in closely related bread wheat using micro satellite markers. Theor Appl Genet,1995,91:1001-1007.
    198.Poiarkova H, Blum A. Landraces of wheat from the northern region in Israel. Euphytica,1983,32:257-271
    199.Pomeranz Y. Chemical composition of kernel structures. In:Pomeranz Y, ed. Wheat: Chemistry and Technology, Vol 1. St. Paul, MN:AACC,1988.257-271.
    200.Prasad M, Roy J K, Roy J K. The use of microsatellites for detecting DNA polymorphism genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics,2000,100:584-592.
    201.Reddy P, Appels R. Analysis of a genomic DNA segment carrying the wheat high-molecular-weight (HMW) glutenin Bx17 subunit and its use as an RFLP marker. Theor Appl Genet,1993,85:616-624.
    202.Reif J C, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet,2005,110:859-864
    203.Rubenthalter G L, Pomeranz Y, Huang M L. Steamed Bread. IV.Negative steamer-spring of strong flours. Cereal Chem,1992,69(9):334-337.
    204.Russel J R, Macaulay M, Macaulay M. Development of genetic variation among barley accessions detected by RFLP,AFLP,SSR and RAPD. Theoretical and Applied Genetics,1997,95:714-722.
    205.Sears E R.Progress in the nullisomic analysis of wheat. Agronomy Abstracts,1950,10.
    206.Seyfarth R, Schachermayr G, Schachermayr G. Molecular mapping of the adult- plant leaf rust resistance gene Lrl3 in wheat (Triticum aestiyum L). Journal of Genetics and Breeding,2000,54:193-198.
    207.Shewuy P R, Halford N G, Tatharn A S. High molecular weight subunit of wheat glutenin. J Cereal Sci,1992,15:105-120.
    208.Shi Z X, Line R F.Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat striperust. Genome,2001,44:509-516.
    209.Simmond D H, Barlow K K, Wrgley C W, et al. The biochemical basis of grain hardness in wheat[J]. Cereal Chem,1973,50(5):553-562.
    210.Singh N K, Donovan R, Macritche F. Use of sonication and size exclusion high performance liquid chromatography in the study of wheat proteins.Ⅱ. Relation quantity of glutenin as a measure of breadmaking quality. Cereal Chem,1990, 67(2):161-170.
    211.Smith O S, Smith J S,Brown S L. Similarities among a group of elite maize inbred as measured by pedigree Fl grain yield, yield heterosis and lRFLPs, Theor Appl Genet,1990,80:833-840
    212.Smith R L, Barnett R D, Barnett R D. Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Science,1994,34:1373-1378.
    213.Snape J W. Golden calves or white elephants? Biotechnologies for wheat in provement.Euphytica,1998,100:207-217.
    214.Stachel M, GrarsgrubeR H. Application ofmicrosatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and uae. Theoretical and Applied Genetics,2000,100:242-248.
    215.Stuber C W. Mapping and manipulating quantitative traits in maize. Trends in Genetics,1995,11:477-481.
    216.Stuber C W, Edwards M D. Genotypic selection for improvement of quantitative traits in corn using molecular marker loci. Wilkinson D.Proc Annu Corn Sorghum Ind Res Conf, Alexandria VA:Am Seed Trade Assoc,1986.70-83.
    217.Terachi T, Tsunewaki K The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. VIII. Mitochondrial RFLP analyses using cloned genes as probes. Mol Biol Evol,1992,9:917-931.
    218.Terachi T, Ogihara Y, Tsunewaki K. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops.7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species. Theor Appl Genet,1990,80:366-373.
    219.Tian Q.Z., Zhou R.H., Jia J.Z.. Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers. Crop Genetic Resources and Evolution,2005,52:325-333.
    220.Wang C, Kovacs M I P. Swelling index of glutenin test for predication of durum wheat quality. Cereal Chemistry,2002,79(2):190-196.
    221.Wang C, Kovacs M I P. Swelling index of glutenin test I. Method and comparison with sedimentation, gel-protein, and insoluble glutenin tests. Cereal Chemistry,2002, 79(2):183-189.
    222.Wieser H, Antes S, Seilmeier W. Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chemistry,1998,75:644-650.
    223.Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.) Theoretical and Applied Genetics,2006,113(4):753-766.
    224.Yamazak W T, Donelso, J R. Kernel hardness of some U.S. wheat [J]. Cereal Chem, 1983,60(4):344-350.
    225. You G X, Zhang X Y, Wang L F. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties:Information from 96 random samples with maxi-mized genetic diversity. Mol Breed,2004,14:397-406.
    226. Yu Y G RFLP and microsatellites maping of a gene for soybean mosaic virus resistance. Phytopathology,1994,84:60-64.
    227.Zeller F J, Lutz J, Stephan U. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.).1. Mlk and other alleles at the Pm3 locus [J]. Euphytica,1993,68:223-229.
    228.Zhang X Y, Li C W, Wang L F, et al. An estimation of the mini-mum number of SSR alleles needed to reveal genetic relationships in wheat varieties I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theor Appl Genet,2002,106:112-117.
    229.Zhou J P, Gustafson. Genetic variation detected by DNA fingerprinting with a rice minisatellite probe in Otyza sativa L. Theor.Appl.Genet,1995,91:714-722.
    230.Zhou R H, Jia J Z. Development of wheat near-isogenic lines fro powdery mildew resistance. Theor Appl Genet,2005,110:640-648.
    231.Zhu J, Huang S, O'Brien L, Wei X, et al. Effects of protein content and dough properties on Chinese steamed bread quality. In:Tarr A W, Ross A S, and Wrigley C W, eds. Proc.47th Australian Cereal Chemistry Conference. North Melbourne, Australia:RACI,1997.272-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700