用户名: 密码: 验证码:
春大豆种子田间劣变抗性的评价及抗性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
春大豆种子在发育和成熟过程中常会受到高温高湿胁迫,导致种子发生田间劣变,造成活力和发芽率降低、出苗困难等。春大豆种子劣变问题已成为我国南方春大豆生产发展的重大障碍。目前,国内外有关春大豆种子劣变的研究主要集中在收获期和贮藏期间引起大豆种子劣变的内外诱因,劣变过程中细胞学、遗传学和生理生化等方面,而对春大豆种子田间劣变抗性的分子基础缺乏研究。因此,急需利用我国南方野生大豆和春大豆资源中具不同种子田间劣变抗性程度的种质,深入开展其劣变抗性的分子基础方面的研究。本研究通过温箱蚀化模拟田间高温高湿条件对我国南方92份春大豆种质种子田间劣变抗性进行评价,并对鉴定出的种子田间劣变抗性品种湘豆三号和不抗品种宁镇一号处于生理成熟期(R7期)的种子在田间高温高湿胁迫下的形态、生理生化和蛋白质变化进行了研究,以期揭示春大豆种子劣变性和劣变抗性的基础,为我国南方春大豆种子田间劣变抗性品种的选育提供理论基础和实践指导。获得的主要研究结果如下:
     1.对92份我国南方春大豆种质采用温箱蚀化模拟田间高温高湿条件进行胁迫,发现种质间种子田间劣变抗性存在显著差异;鉴定出种子田间劣变抗性种质湘豆三号和不抗种质宁镇一号,并确定了种子发芽率、活力指数和简易活力指数三个指标相结合可以作为种子田间劣变鉴定的标准。
     2.高温高湿胁迫,对发育中的湘豆三号种子细胞的超微结构影响不明显;而对宁镇一号种子细胞的超微结构影响较大,表现为:种子细胞中叶绿体和蛋白体的数量不断减少和体积减小,细胞核和核仁的形状变得不规则,液泡和油体所占的面积更大,细胞壁变薄,淀粉粒数目减少,线粒体和光滑内质网数目增多。
     3.高温高湿胁迫下,湘豆三号处于发育过程中的种子的相对电导率和MDA显著低于宁镇一号种子的;2个品种种子中ROS皆大量积累,打破了原有的氧化还原平衡体系,但湘豆三号种子中CAT活性和ASA含量显著高于宁镇一号种子的;2个品种种子中的化学成分都受到影响,其中:湘豆三号种子中蛋白和油脂的含量降低的幅度小于宁镇一号种子的;宁镇一号种子中内源乙烯含量比湘豆三号种子中内源乙烯的含量增加得更明显;2个品种叶片和种子中叶绿素含量、光化学效率均显著下降,其中宁镇一号下降的幅度更加明显。湘豆三号种子中NH4+、NO2-、NO3含量降低,而宁镇一号种子中的NH4+、NO3-含量升高,NO2-含量降低。
     4.高温高湿胁迫下,采用GC-MS技术对湘豆三号和宁镇一号处于发育过程中的种子进行代谢谱分析,共检测到46种有差异表达的代谢产物,其中从抗性品种湘豆三号种子中检测出差异表达的代谢产物共34种,从不抗品种宁镇一号种子中检测出31种。这些代谢物质共涉及到光合作用、三羧酸循环、氨基酸合成途径、次生代谢产物合成途径、磷酸戊糖途径和光呼吸等6大代谢途径。高温高湿胁迫导致湘豆三号种子中卡尔文循环增强而宁镇一号种子中卡尔文循环减弱;导致宁镇一号种子中磷酸戊糖途径增强,而对湘豆三号种子中磷酸戊糖途径没有明显影响;诱导宁镇一号种子中光呼吸作用增强而对湘豆三号种子中光呼吸作用影响不显著;导致湘豆三号种子中TCA途径减弱,而宁镇一号种子中TCA途径显著增强。此外,高温高湿胁迫会导致湘豆三号和宁镇一号种子处于发育过程中的中氨基酸和次生代谢产物合成增强。
     5.通过对高温高湿胁迫处理的宁镇一号和湘豆三号处于发育过程中的种子进行双向电泳及质谱分析,成功鉴定出87个差异表达蛋白点,这些差异蛋白点共涉及到15个代谢途径和细胞过程。在湘豆三号处于发育过程中的种子中共检测到45个差异表达蛋白点,涉及33个差异表达蛋白;其中21个蛋白点上调表达,24个蛋白点下调表达,涉及13个代谢途径和细胞过程,分别为碳素代谢、信号转导、蛋白合成、光合作用、蛋白折叠和组装、能量代谢、细胞修复和防御、脂代谢、氨基酸代谢、转录调控、次生代谢产物合成途径、蛋白降解及转运蛋白;在宁镇一号处于发育过程中的种子中共检测到42个差异表达蛋白点,涉及30个差异表达蛋白;其中22个蛋白点上调表达,20蛋白点下调表达,涉及13个代谢途径和细胞过程,分别为碳素代谢、信号转导、蛋白合成、光合作用、蛋白折叠和组装、能量代谢、细胞修复和防御、脂代谢、氨基酸代谢、氮素代谢、细胞周期、转录调控以及次生代谢产物合成途径。
     6.综合形态、生理生化和蛋白质组学研究结果,发现:高温高湿胁迫下,湘豆三号处于发育过程中的种子中增强田间劣变抗性的代谢途径和细胞过程有:①光合作用的加强;②蛋白折叠和组装的加强;③蛋白降解的下降;④次生代谢物合成的增强;⑤能量消耗的减少;⑥ASA合成的增加。导致种子田间劣变性的代谢途径和细胞过程有:①CO2固定能力下降,碳素同化减少;②细胞壁合成降低;③蛋白含量降低;④油脂含量的降低;⑤抗氧化酶类的活性减弱。随着胁迫时间的延长,增强种子田间劣变抗性的因素逐渐增强而导致种子田间劣变性的因素不断减弱,最终前者逐渐占优势,结果发育过程中的湘豆三号种子抗种子劣变性增强。
     高温高湿胁迫下,宁镇一号处于发育过程中的种子中增强田间劣变抗性的代谢途径和细胞过程有:①精氨酸含量的增加,②谷氨酰胺合成途径的增强,③CO2吸收的增强,④光呼吸的增强,⑤次生代谢物合成的增强;⑥磷酸戊糖途径的加强;⑦消除ROS能力和DNA修复的水平的提升。导致田间劣变性的代谢途径和细胞过程有:①细胞周期稳定性的降低;②光合作用降低;③蛋白绑定和折叠的降低;④能量的过度消耗;⑤蛋白含量降低;⑥油脂含量的降低;⑦氮素吸收的减弱。随着胁迫时间的延长,导致种子田间劣变性的因素不断增强而增强种子田间劣变抗性的因素不断减弱,最终前者逐渐占优势,结果宁镇一号的大豆种子在发育过程中的发生种子劣变。
High temperature and humidity (HTH) stress during soybean seed development and maturity in the field easily leads seed to pre-harvest deterioration. It often causes reduced vigor and germination rate, et al.This phenomenon has become a major obstacle of spring soybean production.At present, Related with seed deterioration research mainly focuses on the reasons that caused seed deterioration, cytology and genetics in the process of deterioration. The researches on cytological, physiological and molecular basis about seed deterioration and deterioration resistance are lack.
     1.92of Spring soybean landraces and cultivars from South China were used to evaluate seed deterioration resistance by incubating weathering treatment. One germplasm (Xiangdou NO.3) identified to resist to pre-harvest seed deterioration and one (Ningzhen NO.1) identified not to resist pre-harvest seed deteriorations were screened out.
     2. Transmission electron micrograph analysis indicated that HTH stress resulted in some ultrastructure changes in the cells of the developing seed of cv. Ningzhen No.1and the change was not significant in the cells of the developing seed of cv. Xiangdou No.3.In the cells of the developing seed of cv. Ningzhen No.1, the cells of the developing seed tended to exhibit thinner cell wall, smaller chloroplasts and protein bodies, more irregular cell nucleus and nuclear core, and bigger vacuoles and lipid bodies under HTH stress. Additionally, under HTH stress it was found that the decrease of starch grains in number and the increase of mitochondria and smooth endoplasmic reticula in number in the cell of the seed.
     3. It was found that the HTH stress caused heavy accumulated ROS in the cells of the developing seed and breaked the original redox balance system;In the seed of cv. Ningzhen No.1showed higher electrolyte leakage and the content of MDA than cv. Xiangdou No.3.It showed the lower activity of CAT and the content of ASA than cv. Xiangdou No. 3,HTH stress was also caused change of chemical composition of the seed.The content of protein and oil were more decrease of cv. Ningzhen No.1than cv. Xiangdou No.3;the content of Endogenous ethylene of cv. Ningzhen No.1higher than cv. Xiangdou No.3; The chlorophyll content in the leaves and seeds and Fv/Fm were all significantly decreased.; Compared to the control, the content of NO3-and NH4+in HTH-stressed developing seed of cv. Ningzhen No.1were significantly increased while the NO2-content was significantly decreased, the content ofNO3-,NO2-,NH4+in HTH-stressed developing seed of cv. Xiangdou No.3were all decrease.
     4. Metabolic profiling based on GC-MS showed46differentially expressed metabolites. These metabolites were classified into6categories.There were8kinds of sugar,4of sugar alcohol and1kinds of sugar acids,28.3%of the total that related to calvin cycle,With the Calvin cycle related substances significantly upregulated expression in cv. Xiangdou No.3and significantly downregulated expression.in cv. Ningzhen No.1;To detect the5kinds of PPP pathway of sugar phosphate material from cv. Ningzhen No.l, in HTH-stressed,they were upregulated expression;Detection of Phosphoglycolate, Ser and Gly3that they were related to photorespiratory patyway and were upregulated; There were6kinds material of TCA pathway,these material were upregulated in cv. Ningzhen No.1and were downregulated.in cv. Xiangdou No.3;14kinds of amino acids were detected, accounting for30.4%of the total number of detected objects in the two species were significantly or very significantly up-regulated expression; Detected7kinds of substances associated with secondary metabolite biosynthesis pathway, significantly up-regulated expression in the two species.
     5. Compared the proteome composition of developing seed of cv. Xiangdou NO.3and cv. Ningzhen No.1at different HTH stress time points with their corresponding controls by2-DE.87protein spots were found to be differentially expressed and successfully identified by MALDI-TOF MS:45protein spots were found to be differentially expressed and successfully identified in cv. Xiangdou NO.3. there were21spots upregulated and24spots downregulated,These proteins were involved in13of cellular responses and metabolic processes including carbohydrate metabolism, signal transduction, proteinbiosynthesis, photosynthesis, protein folding and assembly, energy pathway, cell rescue and defense, cell cycle, nitrogen metabolism, lipid metabolism,amino acid metabolism, transcription regulation, and secondary metabolite biosynthesis;42protein spots were found to be differentially expressed and successfully identified in cv. Ningzhen No.1. There were22spots upregulated an20spots downregulated.These proteins were involved in13cellular responses and metabolic processes including carbohydrate metabolism, signal transduction, proteinbiosynthesis, photosynthesis, protein folding and assembly, energy pathway, cell rescue and defense, cell cycle, nitrogen metabolism, lipid metabolism,amino acid metabolism, transcription regulation, and secondary metabolite biosynthesis.
     6. According to discussed, the seed deterioration resistant mechanism were found in cv. Ningzhen No.1including:①. Increased synthesis of Arg;②. Glutamine synthesis pathway enhancement;③. CO2absorption enhancement;④. Enhanced photorespiration;⑤. The enhancement of secondary metabolite synthesis;⑥. Enhanced PPP pathy; Ⅶ. Enhanced ROS scavenging and DNA repair. The seed deterioration mechanism in cv. Ningzhen No.1including:①. cell cycle reduced;②. photosynthetic rate down;③. TCA cycle enhanced;④.protein synthesis reduction;⑤. oil synthetic pathy decrease;⑥. protein folding and assembly downregulated;⑦.Nitrogen assimilation.
     The seed deterioration resistant mechanism in cv. Xiangdou NO.3including:①. photosynthetic rate upregulated;②. protein folding and assembly upregulated;③. Protein degradation decline;④. Energy consumption reduction;⑤. The enhancement of secondary metabolite synthesis;⑥. The increase of ASA synthesis. The seed deterioration mechanism in cv Xiangdou NO.3including:①. CO2absorption reduction;②. Cell wall synthesis reduction;③. protein synthesis;④. oil synthetic pathy decrease;⑤. Scavenging of reactive oxygen species antioxidase activity weakened.
引文
1. Adams-Phillips L, Brigg A, Bent A. Disruption of poly(ADP-ribosyl)ation mechanism salters responses of Arabidopsis thalianato biotic stress[J]. Plant Physiol,2010,152:267-280.
    2. Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature,2003,22:198-207.
    3. Agrawal G, Rakwal R. Rice proteomics:a cornerstone for cereal food crop proteomes[J]. Mass Spectrom,2006,25:1-53.
    4. Ahsan N, Lee D, Lee S, et al. Excess copper induced physiological and proteomic changes in germinating rice seeds[J]. Chemosphere,2007,67:1182-1193.
    5. Albertini E, Marconi L,Reale G,et al. Candidate genes for apomixis in Poa pratensis[J]. Plant Physiol,2005,138:2185-2199.
    6. Alkhatib, Paulsen. High-temperature effects on photosynthetic processes in temperate and tropical cereals[J]. Crop Sci,1999,39:119-125.
    7. Anderson J. Metabolic changes in partially dormant wheat seeds during storage[J]. Plant Physiol,1970,46:605-608.
    8. Asano T, Kunieda N, Omura Y,et al. Rice SPK. a calmodulin-like domain protein kinase is required for storage product accumulation during seed development:phosphorylation of sucrose synthase is a possible factor[J]. Plant Cell,2002,14:619-628.
    9. Bartels D, Sunkar R. Drought and salt tolerance in Plants[J]. Critical Reviews in Plant Sciences, 2005,24:23-28.
    10. Bergmeyer N.Method ender enzymatischen analyse[J]. Berlin:Akademie Verlag,1970,32:636-647.
    11. Bewley J, Black M.Seeds Physiology of Development and Germination[M]. Plenum Press, New York,1994.
    12. Bhalerao R, Keskitalo J, Sterky F.et al. Gene expression in autumn leaves[J]. Plant Physiol,2003, 131:430-442.
    13. BhnRoepenack-Lahaye E, Degenkolb T, Zerjeski M,et al. Pro-fiding of Arabidopsis secondary metabolites by capillary liquid chromtography coupled to electmspmy ionization quadrupole time-of-flight mass spectrometry [J]. Plant Physiol,2004,134:54-58.
    14. Blis R, Howell R. Biochemical and cytological changes in developing soybean cotyledons[J]. Crop Sci,1963,3:304-308.
    15. Bradford M. Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye biding[J]. Anal Biochem,1976,72:248-254.
    16. Brindl J, Antti H, Holmes E, et al. Rapid and nonin vasive diagnosis of the presence and severity of coronary heart disease using H-1 -NMR-based metabonomics [J]. Nat Med,2002,8(12):1439-1444.
    17. Brown P, Hu H.Phloem mobility of boron is species dependent:Evidence for phloem mobility in sorbitol-richs Pecies[J]. Annalys of Botany,1996,77:497-500.
    18. Buhl M, Stewart C. Effect of Nacl on prolinesynthesis and utilizationin excised barley leaves[J]. Plant physiol,1983,72:664-667.
    19. Cao J, Li J L, Li D, et al. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in denovo triacylglycerol synthesis[J]. Proc Natl Acad Sci,2006,103: 19695-19700.
    20. Capanoglu E,Beekwilder J, Boyacioglu D, et al. Changes in antioxidant and metabolite profiles during production of tomato paste [J]. Journal of Agriculture and Chemistry.2008,56:964-973.
    21. Casal S, Oliveira B. Fatty acids analysis by gas chromatography (GC) [J]. Encycl Chroma togr 2007,2:1-15.
    22. Chaves M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annalys of Botany,2009,103:551-560.
    23. Chen X, Karnovsky A, Sans M, et al. Molecular characterization of the endoplasmic reticulum: insights from proteomic studies[J]. Proteomics,2010,10:4040-4052.
    24. Chen C, Kao C.Osmotic stress and water stress have opposite effeets on Putreseine and Proline Produetion in excised rice leaves[J]. Plant Growth Regul,1993,13:197-202.
    25. Cheng Z, Targolli J, Huang XQ, et al. Wheat LEA genes, PMA80 and PMA 1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L) [J]. Mol Breed,2002,10:71-82.
    26. Cheng Z, Blackburn K, Lin Y et al, Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses[J]. J Proteome Res 2009,8: 82-93.
    27. Choi H, Choi Y,Verberne M, et al. Metabolic fingerprinting of wild tyPe And transgenic tobacco plants by IH NMR and multivariate analysis technique [J]. Phytochemistry,2004,65(7); 857-864.
    28. Christophe B, Erhard S. Soybean (Glycine max L.) nuclear DNA contains four tufA genes coding for the chloroplast-specific translation elongation factor EF-Tu[J]. Chim Int J Chem,1993,47: 247-249.
    29. Citovsky V, Zaltsman A, Kozlovsky S, et al. Proteasomal degradation in plant-pathogen interactions[J]. Sem Cell Dev Biol,2009,20:1048-1054.
    30. Clarke S, Mur L, Wood J,et al. Salicylic acid dependent signaling promotesbasal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana[J]. Plant J,2004, 38:432-447.
    31. Coe H, Michalak M. ER p57, amultifunctional endoplasmic reticulum resident oxidoreductase[J]. The international journal of biochemistry & cell biology,2010,42:796-799.
    32. Couee I, Sulmon G, Gouesbet A, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. J Expt Bot,2006,57:449-459.
    33. Cramer G, Ergul A, Grimpl A, et al. Water and salinity stress in grapevines:early and late changes in transcript and metabolite profiles[J]. Functional & Integrative Genomics,2007,7:111-134.
    34. Dacosta M, Wang Z, Huang B,et al. Physiological adaptation of Kentucky blue grass tolocalized soil drying[J]. Crop science,2004,44:307-314.
    35. Dai H, Xiao C, Liu H, et al. Combined NMR and LC-MS analysis reveals the metabonomic changes in Snzvia miltiorrhiza Bunge induced by water depletion[J]. Journal of Proteome Research,2010,9:1460-1475.
    36. Dailey P, Bishop G, Russell I, et al. Sychological stress and the fibrositis/fibromyalgia syndrome[J]. J Rheu-matol,1990,17:1380-1385.
    37. Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidasel is acentral component of there active oxygen gene network of Arabidopsis[J]. Plant Cell,2005,17:268-281.
    38. De Azevedo Neto.Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants[J]. journal of plant physiology,2005,14:1114-1122.
    39. Dean J, Harper J. The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean[J]. Plant Physiol,1998,88:389-395.
    40. Desclos M, Etienne P, Coquet L, et al. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation[J]. Proteomics,2009,9:3580-3608.
    41. Desikan R, Cheung M, Bright J, et al. ABA,hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. J Exp Bot,2004,55:205-212.
    42. Devy L, Blacher S, Grignet-Debrus C, et al. The pro-or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent[J]. The FASEB Journal,2002,16:147-154.
    43. Diamant S, Eliahu N, Rosenthal D, et al. Hemical chaperones regulate molecular chaperonesn vitro and in cells under combined salt and heat stresses[J]. J Biol Chem,2001,276:39586-39591.
    44. Dielen A, Badaoui S, Candresse T,et al. The ubiquitin/26S proteasome system in plant-pathogen interactions:a never-ending hide-and-seek game[J]. Mol Plant Pathol,2010, 11:293-308.
    45. Dixon R, Strack D.Phytochemistry meets genome analysis and beyond [J]. Phytochemisty,2003, 62:815-818.
    46. Djanaguiraman M, Prasad P, Boyle D et al. High-temperature Stress and Soybean Leaves:Leaf Anatomy and Photosynthesis [J]. Crop science,2011,51:2125-2131.
    47. Du H, Yu W, Liu Y, et al. Differential metabolic responses of perennial grass Cynodon tranavaalensisxCynodon dactylon(C4) and Poa Pratensis(C3)to heat stress[J]. Physiologia Plantarum, 2011,141(3):251-264.
    48. Dutilleul C, Gamier M, Noctor G, et al. Leaf mitochondria modulate whole cell redox homeostasis,set antioxidant capacity and determine stress resistance through altered signaling and diurnal regulation[J]. Plant Cell,2003,15:1-16.
    49. Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response [J]. Nature,2001,411:848-853.
    50. Egli K, Fanger U, Alvarez P, et al. Enrichment and characterization of an anammox bacterium from a rotating biologic al contactor treating ammoniu mrich leachate[J]. Arch Microbiol,2001,175:198-207.
    51. Fait A, Fromm H, Walter D, et al. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends Plant Sci,2008,13:14-19.
    52. Fiehn, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics [J]. Nat Biotechnol,2000,18(11):1157-11611.
    53. Fiehn O. Metabolic networks of cucurbita maxima phloem [J]. Phytochemistry,2003.62:875-886.
    54. Finnie C, Melchior S, Roepstorff P, et al. Proteome analysis of grain filling and seed maturation in barley[J]. Plant Physiol,2002,129:1308-1319.
    55. Flinn B. Plant extracellular matrix metalloproteinases[J]. Funct Plant Biol,2008,35:1183-1193.
    56. Forkar M,Nguyen H.Blum A, et al. Heat tolerance inspring wheat Estimating cellular thermotolerance and heritability [J]. Euphytica,1998,1041-1045.
    57. Fougere F, Streeter J. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfa (Medicago Sativa L) [J]. Plant Physiol,1991, 96:1228-1236.
    58. Foyer, Noetor. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant, Cell and Environment,2005,8:1056-1071.
    59. Foyer C, Noctor G. Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses[J]. Plant Cell,2005,17:1866-1875.
    60. Foyer, Noetor. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell and Environment,2005,8:1056-1071.
    61. Frederica L Theodou D, Peter J, et al. Seed storage oil catabolism:a story of give and take[J]. Current Opinion in Plant Biology,2012,15:1-7.
    62. Fuesler T, Wong Y, Castelfranco P. Localization of Mg-chelatase and Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts[J]. Plant Physiol,1984,75:662-664.
    63. Fumaga U, Baldoni E, Abbmscato P, et al. NMR techniques coupled[J]. Journal of Agronomy and crop science,2009,195:77-88.
    64. Gibeaut D, Carpita N. Biosynthesis of cell wall polysaccharides[J]. FASEB J,1994,8:904-915.
    65. Gibson L, Mullen R. Soybean seed quality reductions by high day and night temperature[J]. Crop Sci,1996,36:1615-1619.
    66. Gigon A, Matos A, Laffray D, et al. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana[J]. Ann Bot,2004,94:345-351.
    67. Goldraij A, Polacco J.Arginase is inoperative in developing soybean embryo[J]. Plant Physiol,1999, 119:297-304.
    68. Goldraij A, Polacco J. Arginine degradation by arginase in mitochondria of soybean seedling cotyledons[J]. Planta,2000,210:652-658.
    69. Gong Q, Li P, Ma S, et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J]. Plant Journal,2005,44:826-839.
    70. Good A, Zaplachinski S. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus[J]. Physiol Plant,1994,90:9-14.
    71. Gorg A, Weiss W, Dunn M. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics,2004,3665-3685.
    72. Grimplet J, Wheatley M, Jouira H, et al. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions [J]. Proteomics,2009,9:2503-2528.
    73. Guo Y, Cai Z, Gan S, et al. Transcriptome of Arabidopsis leaf senescence[J]. Plant Cell Environ, 2004,27:521-549.
    74. Gygi S, Corthals G, Zhang Y, Rochon Y,et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology[J]. Proc Natl Acad Sci USA,2000,79: 9390-9395.
    75. Hays, Yang Z. The molecular regulation of heat stress avoidance and tolerance strategies in wheat[J]. Amer Soc Plant Biol,2004,121:24-28.
    76. He Y, Huang B. Protein changes during heat stress in three kentucky bluegrass cultivars differing in heat tolerance[J]. Crop Sci,2007,47:2513-2520.
    77. Hernandez G, Ramirez M, Valdes-Lopez O, et al. Phosphorus stress in common bean:root transcript and metabolic responses[J]. Plant Physiology,2007,144:752-767.
    78. Hirayama H, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past,present and future[J]. Plant J,2010,61:1041-1052.
    79. Hoeberichts F, Vaeck E, Kiddle G, et al. A temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death[J]. J Biol Chem,2008,283:5708-5718.
    80. Hollywood K, Brison D, Goodacre R, et al. Metabolomics:Current technologies and future trends[J]. Proteomics,2006,6:4716-4723.
    81. Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Mol Biol,2000,43:103-111.
    82. Houtz R, Poneleit L, Jones S, et al. Post translational modifications in the amino-terminal region of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from several plant species[J]. Plant Physiol,1992,98:1170-1174.
    83. Ibrahim A, Quick J. Heritability of heat tolerance in winter and spring wheat[J]. Crop Sci, 2001,41:1401-1405.
    84. Irsigler A, Costa M, Zhang P, et al. Expression profiling on soybean leaves reveals integration of ER and osmotic-stress pathways[J]. BMC Genomics,2007,8:431-436.
    85. John I, Drake A, Farrell W, et al. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants-molecular and physiological analysis[J]. Plant J,1995,7:483-490.
    86. Johnson H, Broadhurst D, Goodacre R, et al. Metabolic fingerprinting of salt-stressed tomatoes[J]. Phyto-chemistry,2003,62:919-928.
    87. John I, Drake A, Farrell W, et al. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants-molecular and physiological analysis[J]. Plant J,1995,7:483-490.
    88. Jones D, Darrah P. Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow[J]. Plant Soil,1998,173:103-109.
    89. Jorrin J, Maldonado A,Castillejo M, et al. Plant proteome analysis:a 2006 update[J]. Proteomics, 2007,7:1-16.
    90. Ju J, Miller S, Hanson P, et al. Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease[J]. J Biol Chem,2008,283:30289-30299.
    91. Ju J, Weihl C.Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy[J]. Hum Mol Genet,2010,19:38-45.
    92. Kant P, Gordon S, Kant G, et al. Functional- genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses[J]. Plant Cell Environ,2008,31:697-714.
    93. Kaplan F, Kopka J, Haskell D, et al. Exploring the temperature stress metabolome of Arabidopsis[J]. Plant Physiology,2004,136:4159-4167.
    94. Kaplan F, Kopka J,Sung D, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J]. Plant Journal,2007,50:967-981.
    95. Kaplan F, Kopka D, Haskell J,etal. Exploring the temperature-stress metabolome of arabidopsis[J]. Plant Physiol,2004,136:4159-4168.
    96. Keigley P, Mullen R. Changes in soybean seed quality from high temperature during seed fill and maturation[J]. Crop Sci,1986,26:1212-1216.
    97. Kelly A, Froehlich J, Dormann P, et al. DGD2, an Arabidopsis gene encoding a UDP-Galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions[J]. J Biol Chem,2002,277:1166-1173.
    98. Kelly A, Froehlich J, Dormann P, et al. Disruption of the twodigalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis[J]. Plant Cell,2003,15:2694-2706.
    99. Kepes F, Schekman R. The yeast SEC53 gene encodes phosphomannomutase[J]. J Biol Chem, 1988,263:9155-9161.
    100. Kepova K, Holzer L. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/ oxygenase, Rubisco binding protein and rubisco activase in wheat leaves[J]. Biol Plant,2005,49:521-525.
    101. Kim K, Portis A.Temperature dependence of photosynthesis in arabidopsis plants with modifications in rubisco activase and membrane fluidity[J]. Plant Cell Physiol,2005,46:522-530.
    102. Kinnersley A, Turano F.Gamma am inobutyric acid (GABA) and plant responses to stress[J]. Critical Rev Plant Sci,2000,19:479-509.
    103. Koller A, Washburn M, MarkusLange B, et al.Proteomic survey of metabolic pathways in rice[J]. Proc Natl Acad Sci USA,2002,99:11969-11974.
    104. Kostrewa D, Zeller M, Armache K, et al. RNA polymerase Ⅱ-TFIIB structure and mechanism of transcription initiation[J]. Nature,2009,462:323-330.
    105. Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature,1996, 384:557-560.
    106. Krab I, Parmeggiani A. EF-Tu, a GTPase odyssey[J]. Biochim Biophys Acta,1998,1443:1-22.
    107. Kristoffersen H, Flengsrud R. Separation and characterization of basic barley seed proteins[J]. Electrophoresis,2000,21:3693-3700.
    108. Kuroyangi M,Yamada K,Hatsugai N,et al. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana[J]. J Biol Chem,2005,280:32914-32920.
    109. Lambers H, Atkin O, Millenaar F, et al. Repiratory patterns in roots in relation to their functioning. Marcel Dekker, Inc.1999, New York.
    110. Latijnhouwers M, Xu X, Geir Moller S, et al. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta,2010,232:567-578.
    111.Lawlor D, Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant cell environ,2002,25:275-294.
    112. Law R, Crafts-Brander S.High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein Arch[J]. Biochem Biophys,2001, 386:261-267.
    113.Lerouge P, Cabanes-Macheteau M, Rayon C, et al. N-glycoprotein biosynthesis in plants:recent developments and future trends[J]. Plant Mol Biol,1998,38:31-48..
    114. Li J, Liu Y, Lu P, et al. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis[J]. Plant Physiol,2009,150:114-124.
    115. Li Q,Haskell D,Guy C. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol,1999, 39:21-34.
    116. Lictal D,Lix J,Yang M,et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence[J]. Biochim BioPhys Aeta,2010,1804:929-940.
    117. Lindon J, Nicholson J, Holmes E.代谢组学手册[M].北京:科学出版社,2008.
    118. Lisec J, Schauer N, Kopka J.Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nat Protoc,2006,1:387-396.
    119. Lyons E, Pote J,DaCosta M, et al. Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses[J]. Environ Expt Bot,2007,59:307-313.
    120. Ma H, McMullen M, Finer J, et al. Identification of a homeobox-con taining gene with enhanced expression during soybean (Glycine max L.) somatic embryo development[J]. Plant Mol Biol,1994, 24:465-473.
    121. Mactal.Metabolie fingerprinting investigation of Artemisia annua Lin different stages of development by gas ehromatography and gas hromatography-mass spectrometry[J]. J ehlomatogr A,2008,1186:412-419.
    122. Madhava R, Sresty T. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses[J]. Plant Sci,2000,157:113-128.
    123. Mahajan S, Pandey G, Tuteja N, et al. Calcium and salt stress signaling in plants:shedding light on SOS pathway[J]. Archives of Biochemistry and Biophysics,2008,471(2):146-158.
    124. Mak Y, Willows R, Roberts T,et al. Black point is associated with reduced levels of stress, disease-and defence-related proteins in wheat grain[J]. Mol Plant Pathol,2006,7:177-189.
    125. Maor R, Jones A, Nuhse T, et al. MudPIT analysis of ubiquitinated proteins in plants[J]. Molecular & Cellular Proteomics,2007,6(4):601-610.
    126. Metraux J, Signer H, Ryals J. In crease in salicylic acid at the onset of systemic acquired resistance in cucumber[J]. Science,1990,250:1004-1006.
    127. Michaud G, Salcius M, Zhou F, et al. Analyzing antibody specificity with whole proteome microarrays[J]. Nat Biotechnol,2003,21:1509-1512.
    128. Mittler R, Vanderauwera S, Gollery M, et al.Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9:490-498.
    129. Monjardino P, Smith A, Jones R,et al. Heat stress effects on protein accumulation of maize endosperm[J]. Crop Sci,2005,45:1203-1210.
    130. Morelli R, Russo S.Bruno N, et al. Fenton dependent damage to carbohydrates:free radical scavenging activity of some simple sugars[J]. Journal of Agricultureand Food Chemistry,2003,51: 7418-7425.
    131. Mori C, Schroeder J. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiol,2004,135:702-708.
    132. Morsy M, Jouve L, Hausman J,et al. Alteration of oxidative and earbohydrate metabolism under abiotic stress in two rice(Oryza sativa L) genotypes contrasting in chilling tolerance[J]. Plant Phylogy,2007,164:157-167.
    133. Munne S, Penuelas J. Photo- and antioxid ative protection and a role of rsalicylic acid during drought and recovery in field -grown Phillyrea an gustifoliaplants[J]. Planta,2003,217:758-766.
    134. Neves S, Ram P, lyengar R, et al. Protein pathways[J]. Science,2002,296:1636-1639.
    135. Nicholson J, Lindon J, Holmes E. Metabonomics:Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariant Statistical Analysis of Biological NMR Spectroscopic Data [J]. Xenobiotica,1999,29(11):1181-1189.
    136. Nikiforova V,Daub C,Hesse H, et al. Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response [J].Journal of Experimental Botany,2005,56:1887-1896.
    137. Nishizawa A,Ytlkinori Y, Shigeoka S, et al. Galactinol and raffinose as a novel function to protect plants from oxidative damage[J].Plant physiology,2008,147:1251-1260.
    138. Nouri M, Komatsu S. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches[J]. Proteomics,2010,10: 1930-1945.
    139. Novakova L, Saskova L, Pallova P, et al. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates[J]. FEBS J,2005,272:1243-1254.
    140. Ong S, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics[J]. Mol Cell Proteomics,2002, 1:376-386.
    141. Pei Z, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature,2000,406:731-744.
    142. Perez F, Iriondo J, Martmez B, et al. Germination behaviour in seeds of Diplotaxis erucoides and Dvirgata[J].Weed Res,2001,35:495-502.
    143. Qian W, Yu C, Qin H, et al. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana[J]. Plant J,2007,49:399-413.
    144. Rabilloud T. Two-dimensional gel electrophoresis in proteomics:Old, old fashioned, but it still climbs up the mountains[J].Proteomics,2002,2-10.
    145. Rachmilevitch S, Lambers H, Huang B, et al. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species[J]. J Expt Bot, 2006b,57:623-631.
    146. Razavizadeh R, Ehsanpour A, Ahsan N, et al. Proteome analysis of tobacco leaves under salt stress[J].Peptides,2009,30:1651-1665.
    147. Ren C, Bilyeu K, Beuselinck P,et al. Composition, vigor, and proteome of mature soybean seeds developed under high temperature[J]. Crop Sci,2009,49:1010-1022.
    148. Rischer H, Oresic M, Seppanen-Laakso T, et al. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells[J]. Proc Nail Acad Sci,2006,103(14):5614-5621
    149. Rivero R.Cytokinin dependent Photorespiration and the protection of photosynthesis during water deficit[J]. plantphysiology,2009,150:1530-1540.
    150. Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress[J]. Journal of Biological Chemistry,2003,278:38921-38925.
    151. Rodnina M, Savelsbergh A, Katunin V, et al. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome[J]. Nature,1997,385:37-41.
    152. Roessner U, Willmitzer L, Fernie A, High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems Identification of Phenocopies Genome Analysis[J]. Plant Physi,2001,127:749-764.
    153.Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants[J]. Plant Cell,2002, 14:185-205.
    154. Romeis T, Piedras P, Jones J, et al. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response[J]. Plant Cell,2000,12:803-815.
    155. Ross P, Huang Y, Marchese J, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3:1154-1169.
    156. Ruebelt M, Leimgruber N, Lipp M, et al.Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops[J]. Assessing analytical validation J Agric Food Chem,2006,54:2154-2161.
    157. Saijo Y, Hata S, Kyozuka J, et al. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J,2000,23:319-327.
    158. Sahu A,Sahoo S,Sahoo N, et al. NaCl-stress induced alteration in glutamine synthetase activity in excised senescing leaves of a salt-sensitive and a salt-tolerant rice cultivar in light and darkness[J]. Plant Growth Regul,2001,34:287-292.
    159. Salvucci M, Crafts-Brandner S. Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis[J]. Physio Plant,2004b,120:179-186.
    160. Salvucci M,Crafts-Brandner S.Mechanism for deactivation of Rubisco under moderate heat stress[J]. Physiol Plant,2004,122:513-519.
    161. Sato N, Moriyama T. Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae:lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis[J]. Eukaryot Cell,2007,6:1006-1017.
    162. Scarpeci T, Zanor M, Valle E, et al. Investigating the role of plant heat shock proteins during oxidative stress[J]. Plant Signal Behav,2008,3:856-857.
    163. Scheiner D. Determination of ammonia and Kjeldahl nitrogen by indoph enol method[J]. Water Res, 1977,10:31-36.
    164. Schmel E,Engelberth J, Alborn HT, et al. Simultaneous analysis of phyto-hormones, phytotoxins, and volatile organic compounds in plants[J]. ProcNat Acad Sci USA,2003,100:10552-10557.
    165. Schobert B. Is there an osmotic regulatory mechanisminal gaeand higher Plants? [J]. Journal of Ttheoretical Biology,1977,68:17-20.
    166. Scheiber U, Berry J. Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus[J]. Planta,1977,135:233-238.
    167. Seifert G. Nucleotide sugar inter-conversions and cell wall biosynthesis:how to bring the inside to the outside[J]. Curr Opin Plant Biol,2004,7:277-284.
    168. Shimada T, Hiraiwa N, Nishimura M, et al. Vacuolar processing enzyme of soybean that converts proproteins to the corresponding mature forms[J]. Plant Cell Physiol,1994,35:713-718.
    169. Shulaev V, Cortes D, Miller G, et al. Metabolomics for plant stress response[J]. Physiologia Plantarum,2008,132:199-208.
    170. Silveira J,Viegas R, Rocha I, et al. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves[J]. J Plant Physiol,2003,160:115-123.
    171. Simon-Sarkad L, Kocsy G, Varhegyi A, et al. Genetie manipulation of proline aeeumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress[J]. J Agrie Food Chem,2005,53:7512-7517.
    172. Smirnoff N. Role of active oxygen in the response of Plants towater deficitand desiccation[J]. New Phytologist,1993,125:27-58.
    173. Spears J, TeKrony D, Egli D, et al., Temperature during seed filling and soybean seed germination and vigour[J]. Seed Sci Technol,1997,25:233-244.
    174. Spiro R. Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology,2002,12:43-56.
    175. Sung D, Kaplan F, Lee K, et al. Acquired tolerance to temperature extremes[J]. Trends Plant Sci,2003,8:179-187.
    176. Suzuki N, Mittler R. Reactive oxygen species and temperature stresses:A delicate balance between signaling and destruction[J]. Physiol. Plant,2006,126:45-51.
    177. Thebud, Santarius. Effects of High-Temperature Stress on Various Biomembranes of Leaf Cells In Situ and In Vitro[J].Plant Physiology,1982,70:200-205.
    178. Tiessen A, Hendriks J, Stitt M, et al. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase:a novel regulatory mechanism linking starch synthesis to the sucrose supply[J]. Plant Cell,2002,14:2191-2213.
    179. Tolstikov V.Lommen A, Nakanishi K, et al. Monolithic silicaca-based capillary reversed liquid chromatograPhy/electrosPray mass spectrometry for Plant metabolomics[J].Analytical Chemistry, 2003,75:6737-6742.
    180. toth B, Mesterhazy A, Horvath Z, et al. Genetic variability of central European isolates of the Fusarium graminearum species complex [J]. Genetic,2005,113:35-45.
    181. Unlu M, Morgan ME, Minden JS, et al. Difference gel electrophoresis:as single gel method for detecting changes in protein extracts[J]. Electrophoresis,1997,18:2071-2077.
    182. Urano K, Kurihara M, Shinozaki K,et al.'Omics'analyses of regulatory networks in plant abiotic stress responses[J].Curr Opin Plant Biol,2010,13(2):132-136.
    183. Uwah E, Abah J, Ndahi N, et al. Concentration levels of nitrate and nitrite in soils and some leafy vegetables obtained in Maidu guri, Nigeria[J]. J Appl Sci Environ Sanit,2009,4:233-244.
    184. Van D, Bergh G, Clerens S, et al. Reversed-phase high-performance liquid chromatography prefractionation prior to two dimensional difference gel electrophoresis and mass spectrometry identifies new differentially expressed proteins between striate cortex of kitten and adult cat[J]. Electrophoresis,2003,24:1471-1481.
    185. Vazquez-Ramos J, Lopez S, Vazquez E, et al. DNA integrity an dDNA polymerase activity in deteriorated maize embryo axes[J]. Journal of Plant Physiology,1988,133:600-604.
    186. Wahid E, Close T. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves[J]. Biologia plant arum.2007,51:104-109.
    187. Wan X, Liu J. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves[J]. Mol Cell Proteomics,2008,10:1469-1488.
    188. Wang F, Wang L Q, Tian X, et al. Pre-harvest and post-harvest seed deterioration resistance of spring soybean germplasm in south China[J]. Sci Agri Sinica,2007,40:2637-2647.
    189. Wang Y. Abnormal proteins can form aggresome in yeast:aggresome-targeting signals and components of the machinery[J]. FASEB J,2009,23:451-463.
    190. Wang W, Vinocur B, Romanova N, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci,2004,9:244-252.
    191. Waters E, Lee G, Vierling E et al. Evolution, structure and function of the small heat shock proteins in plants[J]. J Exp Bot,1996,47:325-338.
    192. Wei J, Sun J, Yu W, et al. Global proteome discovery using an online three-dimensional LC-MS/MS[J]. J Proteome Res,2005,4:801-808
    193. Weis E, Berry J. Plants and high temperature stress[J]. Symp Soc Expt Biol,1988,42:329-346.
    194. Wien H, Kueneman E. Soybean seed deterioration in the tropics. Ⅱ. Varietal differences and techniques for screening[J]. Field Crops Res,1981,4:123-32.
    195. Wingler A, Lea P, Quick W, et al. Photorespiration:metabolic pathways and their role in stress protection[J]. Philos Trans R Soc Lond B Biol S,2000,355:1517-1529.
    196. Xia J,,Roberts J. Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low oxygen environment[J]. Plant Physiol,1994,105:651-657.
    197. Xie Y, Xu S, Han B, et al. Evidence of Arabidopsis salt acelimation induced by up regulation of RbohD-derived reactive oxygen species synthesis[J]. Plant J,2011,66:280-292.
    198. Xiong L, Schumaker K, Zhu J,et al. Cell signaling during cold, drought, and salt stress[J]. Plant Cell,2002,14:165-183.
    199. Yamaguchi, Shinozaki Y, amaguchi-Shinozaki K, et al. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J].Annu Rev Plant Biol. 2006,57:781-800.
    200. Yamaguchi T, Nakayama K, Hayashi T, et al. Molecular cloning and characterization of a novel beta-1,3-glucanase gene from rice. Biosci[J]. Biotechnol Biochem,2002,66:1403-1406.
    201. Yan S,Tang Z,Su W. Proteomic analysis of salt stress-responsive Proteins in rice root[J]. proteomics,2005,5:235-244.
    202. Yang L, Takahashi Y, Chen F, et al. Proteomican alysis of grapevine stem in response to Xylella fastidiosa inoculation[J]. Physiol Mol Plant Pathol,2011,75:90-99.
    203. Zanakis G, Summerfield R. A comparison of changes in vigour among three genotypes of soybean (Glycine max) during seed development and maturation in three temperature regimes[J]. Exp Agric, 1994,30:157-70.
    204. Zarka C, Gag C, Gleddie S, et al. Assessment of the protein quality of fourte en soybean [Glycine max (L.) Merr.] cultivars using amino acid analysis and two-dimensional electro phoresis[J]. Food Res Int,2007,40:129-146.
    205. Zhan X, Desiderio D. A reference map of a human pituitary adenoma proteome[J]. Proteomics,2003,3:699-713
    206. Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips[J]. Science,2001,293:2101-2105
    207.陈利峰.小麦赤霉病穗中脱氧雪腐镰刀菌烯醇量的变化[J].植物病理学报,1996,26(1):23-27.
    208.陈日远,张祥明,刘晴,等.蔬菜抗热生理研究进展[J].园艺学进展(第五辑),2002:361-370.
    209.陈绍江.大豆紫斑病菌毒素的研究[J].植物病理学报,1996,26(1):45-48.
    210.陈学珍,谢皓,李婷婷,等.我国菜用大豆研究进展与生产利用现状[J].北京农学院学报,2003,4:5-8.
    211.董汉松,姜述君,强胜.马唐生防菌画眉草弯孢霉毒素A,B-dehydrocurvularin对马唐叶绿体功能的影响[J].植物病理学报,2005,35(4):312-316.
    212.董汉松.植物诱导抗病性[M].北京:科学出版社,1995
    213.郝乃斌.大豆高光效育种光合生理研究进展[J].植物学通报,1991,8(2):13-19.
    214.韩天富,盖钧镒.世界菜用大豆生产、贸易和研究的进展[J].大豆科学,2002,21(4):278-284.
    215.黄永红.果蔬贮藏过程中乙烯含量的测定[J].秦安师专学报,1996,6:7-9.
    216.江昌俊.苯丙氨酸解氨酶的研究进展[J].植物生理学通讯,2001,28(4:425-430.
    217.李海燕,肖淑琴,刘惕若.辣椒疫霉菌粗毒素对叶片组织超微结构的影响[J].园艺学报,2005,32(4):713-715.
    218.李灵芝,王丽娜,刘志强等.贮藏时间对大豆种子活力和若干性状的影响[J].中国油料作物学报,2003,25(2):25-28.
    219.刘常富,陈玮.园林生态学[M].北京:科学出版社,2003.
    220.刘友良.植物水分逆境生理[M].北京:农业出版社,1992,108-110
    221.刘裕岭.蔬菜高温高湿条件下易发生的八种病害及防治技术[J].上海蔬菜,2008,4:82-83.
    222.苗琛,利容,王建波.甘蓝热胁迫下叶片细胞的超微结构研究[J].植物学报,1994,36(9):730-732.
    223.苗琛,尚富德.热胁迫下不结球白菜耐热感热品种超微结构的差异[J].河南科学,1996,14(增刊):9-13.
    224.马国荣.国际热带农业研究所(IITA)的大豆育种.大豆科学,1989,8(2):203-205.
    225.孟祥栋.菜用大豆种子劣变与生理生化变化的关系[J].大豆科学,1993,(8):259-264
    226.宋凤鸣.活性氧及膜脂过氧化在植物-病原物互作中的作用[J].植物生理学通讯,1996,32(5):377-385.
    227.寿惠霞,宋文坚,张刚等.栽培与野生大豆资源抗种子劣变性差异的研究[J].大豆科学,1998,(2):59-64.
    228.石雪晖.空气相对湿度对野生葡萄的生理影响研究[J].中国生态农业学报,2005,13:65-67.
    229.唐桂香.不同播期和成熟度对南方菜用大豆种子活力的影响[J].种子,2001,116(4):14-16.
    230.唐善德.大豆种子劣变研究概况[J].种子,1992,59:(3)43-45.
    231.唐善德,成金莲,黄敏珍.春大豆种子劣变的研究[J].大豆科学,1994,(8):230-236.
    232.滕中秋,付卉青,贾少华等.植物应答非生物胁迫的代谢组学研究进展[J].植物生态学报,2011, 35(1):110-118.
    233.王韶唐.植物抗旱的生理机制[J].植物生理生化进展,1983(2):120-133
    234.徐玲,张世珖.烟草野火病毒素对烟草叶片组织超微结构的影响[J].云南农业大学学报,2006,21(1):57-60.
    235.徐艳,吕长平,成明亮等.几个牡丹品种的抗热性比较研究[J].湖南农业科学,2007,(4):180-183.
    236.颜启传.蔬菜种子的贮藏[J].中国蔬菜,1984,2:41-43.
    237.姚洪泉.脱氧雪腐镰刀菌烯醇对K+刺激的小麦根质膜ATP活性,K+吸收、外渗及再分配的影响[J].植物生理学报,1995,21(1):29-34.
    238.叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究[J].福建农业大学学报,1996,25(4):490-493.
    239.喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11.
    240.朱丹华.依靠科技强化服务推进菜用大豆产业化[J].大豆通报,2000,1:3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700