用户名: 密码: 验证码:
大麦白粉菌遗传多样性分析、抗病基因鉴定及致病型鉴别寄主体系建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦白粉病是由布氏白粉菌大麦专化型Blumeria graminis f. sp. hordei(简称Bgh)活体寄生大麦叶片引起的病害,多发生在温带潮湿、半潮湿地区,一般可造成20%以上的产量损失,严重时损失达30%,目前是中国冬大麦区重要的病害之一。近年来,由于作物种植密度提高,氮肥使用量增大,以及种植品种单一化,从而使该病害日益严重。大麦抗白粉病育种是控制该病害最有效的手段,不但能减少产量损失,还能减少化学农药的使用、降低环境污染,Bgh群体遗传结构研究和抗病基因鉴定是合理布局和利用抗白粉病基因的先决条件。本研究利用'Pallas'近等基因系和其它5个大麦品种作为鉴别寄主,鉴定分析了我国大麦白粉菌种群毒性与致病型构成、分布和动态;运用AFLP (amplified fragment length polymorphism, AFLP)分子标记技术,对来源于不同地区、不同致病型菌株基因组DNA进行多态性分析,进一步揭示我国大麦白粉菌种群遗传变异程度和演化规律。通过抗谱分析的方法,鉴定了我国大麦主产区大麦骨干亲本和育成品种的抗病性和抗病基因;选择112个具有广泛代表性的Bgh菌株接种备选大麦品种(系),筛选我国大麦白粉病致病型鉴别品种。
     2006年,从我国7个冬大麦主产区不同栽培品种上采集575个Bgh菌株,利用26个鉴别寄主进行毒性鉴定。所有的菌株共划分为58个不同的致病型,81%的菌株包含于其中13个致病型中,最优势的致病型为0047(18.3%),其次分别为0045(11.8%)和(7.8%);7个不同的Bgh群体中大多数毒性基因频率相似。因此,中国冬大麦区可视为统一的大麦白粉病害流行区,这些地区所种植的大麦品种可能具有相似的遗传背景。KOIND软件分析显示,Bgh不同群体内和群体间遗传多样性指数显著不同,不同地区之间的遗传距离大小和地理距离远近无相关性。由此表明,中国冬大麦区Bgh群体遗传多样性主要源于本地区病原菌的遗传分化和长距离病原菌传播的基因流动。
     分子标记技术可对病原菌基因组的多个变异位点进行遗传分析,已成为研究病原菌群体遗传多样性的重要手段,本研究利用AFLP分子标记,对来源于7个不同地区、12个不同致病型的79个Bgh菌株基因组DNA进行多态性检测,筛选的7对引物组合共扩增出337个多态性位点。UPGMA (unweighted pair group method average,UPGMA)法聚类分析,供试菌株可划分为7个不同的遗传宗谱,遗传宗谱与致病型不存在一一对应关系,但具有一定的相关性,与菌株的地理来源密切关联。通过POPGENE软件分析可见,我国冬大麦区Bgh群体具有丰富的遗传多样性,不同地区Bgh群体遗传多样性与该地区大麦播种面积、主栽品种及白粉病易于发生和越夏的气候条件有关;不同地区间Bgh群体遗传一致度较大,遗传距离大小与地理距离远近呈正相关,Bgh群体基因流动性较大。分子标记与毒性鉴定方法分别对Bghg群体遗传多样性检测的部分结果相互矛盾,但运用分子标记技术得到的研究结果能更为合理地揭示Bgh不同地理群体遗传分化的特点。
     对2005和2006年Bgh群体毒性频率进行监测,通过抗谱分析的方法鉴定了328份大麦品种(系)的白粉病抗性和抗病基因。结果显示:大麦白粉菌群体对抗病基因Mla3、Mla9、Mlp1、Mlal、Mla(A12)、Mla6Mlal4、Mla7Mla (No3)、Mla7Ml (Lg2)、Mla9Mk、Mla13MlaRu3、Mg (Cp)和mlo5的毒性频率为0,对Mla12MlaEm2、Mla7Mlk、Mlat Mla8、Ma10MaDu2和.Mlkl的毒性频率很低,分别为0.1%、0.4%、0.9%、2.8%和4.2%;这些抗病基因可应用于大麦抗病育种中。所鉴定的328份材料绝大多数感病,抗病材料仅37份,能明确推导出抗白粉病基因的品种(品系)很少,这些品种(品系)可能含有的抗白粉病基因为M(Bw)、Ma8、Mg、 Mlra Mla8、Ma9Mlk、Mla1Ma (A12)或mlo5。
     来源于不同地区、不同致病型Bgh菌株112个,接种筛选的112个来源于不同地区的大麦主栽品种(系)和骨干亲本。根据寄主毒性频率的梯度间隔、反应型的稳定性和明确性及寄主不同的遗传背景,选择鉴别品种(系),建立一套适合我国大麦白粉菌致病型鉴别寄主体系。结果显示,供试菌株对寄主的毒性频率在0~60%范围内呈连续的变化,毒性频率在60%-70%范围内的品种无,1个品种的毒性频率在70%-80%范围内,1个品种的毒性频率在80%-90%范围内,1个品种的毒性频率为100%。大多数寄主对菌株的反应症状明确、稳定,中间类型较少。筛选出9个品种作为我国大麦白粉菌致病型分类的鉴别寄主,分别是:单二、肚里黄、云大麦2号、鄂大麦6号、苏啤4号、北青8号、莆大麦7号、浙农大7号和浙皮3号,以萧山立夏黄为感病对照。这套鉴别可将112菌株划分为50个致病型,且致病型优势性明显,具有很强的可行性。
Barley powdery mildew caused by Blumeria graminis. f.sp. hordei (Bgh), which is a windborne and obligate biotrophic fungal pathogen, is one of the most destructive foliar diseases of barley. It is particularly prevalent in cooler and more humid regions of temperate climates, and it is one of more serious barley diseases in the winter barley regions of China. Barley powdery mildew can reduce grain yield by20%to30%. In recent years, barley powdery mildew in China is getting increasingly serious because of densely seeding, using larger amount of nitrogenous fertilizer and planting the same barley cultivars. Breeding for genetic resistance is an economically and environmentally sustainable way to control powdery mildew. Growing resistant cultivars against powdery mildew not only diminishes crop losses and fungicide spraying costs, but also reduces environmental pollution. Knowledge of the genetic structure and evolution of Bgh populations and identification of resistance genes to powdery mildew is prerequisite for an efficient use of available resistance genes. In this study, the frequency, distribution and dynamics of virulence and pathotypes in Bgh populations in the winter barley regions of China were investigated on'Pallas near-isogenic lines' and other five barley varieties as differential hosts. The genetic diversity of79Bgh isolates, selected from different pathotypes in respective region, was detected by AFLP to demonstrate further genetic diversity level in Bgh populations of China. Resistance and resistance genes to powdery mildew in some leading barley cultivars and backbone parents from major barley growing areas in China were identified by analysis of resistance reaction spectra;112widely representative Bgh isolates were selected to inoculate some core barley varieties (lines) for screening differential barley hosts for determining Bgh pathotypes in China。
     575isolates were collected from seven populations of Bgh on different cultivated barley in seven geographically distant locations in2006. Their virulence was determined by inoculation onto26differential host lines. All of the isolates belonged to58pathotypes and13of which included81%of these isolates. The most abundant pathotype was pathotype 0047(18.3%), the second most abundant was pathotype0045(11.8%) and the third most abundant was pathotype0057(7.8%). Most of virulent genes investigated in this study showed similar frequencies in the seven different areas. These indicate that the seven locations may be in a uniform epidemiological region and barley cultivars in these areas may have similar genetic background. Diversities within these populations and distances between these populations measured by KOIND package were different. Correlations were not found between the genetic distances and the geographical distances between different locations. This suggested that long distance spread and local epidemics existed in the major winter barley growing regions in China.
     Molecular markers, which can detect high level of allelic polymorphism, have become a important tool for studying genetic diversity in pathogen populations. In this study, genetic diversity of79Bgh isolates collected from7different locations in the winter barley regions of China, which belong to12different pathotypes, was assessed using AFLP (amplified fragment polymorphism, AFLP) markers. Cluster analysis of UPGMA (unweighted pair group method average, UPGMA) based on a total of337polymorphic AFLP bands detected among the79isolates showed seven different genetic lineages. There was some correlation between pathotypes and AFLP groups, and a close correlation between the genetic lineages and origins of the genotypes. The diversity parameter obtained with POPGENE program showed the Bgh population in the winter barley regions of China possessed relatively high levels of genetic diversity, and the level of genetic diversity detected in some Bgh population was different. These results were related with some factors causing evolution of Bgh such as the size of barley area planted every year, the environmental conditions which impaired life cycle of Bgh on barley host. The higher genetic similarity between different Bgh populations was found, and the positive correlations between the geographical distances and the genetic distances amongst these locations were found. These results indicated that the main allelic variation existed within Bgh populations, and there is an extensive gene flow and migration of pathogen among the different regions. Some results of genetic variation of Bgh populations obtained with AFLP analysis were not in agreement with some of results detected by virulence assessments, but the causes for evolution in natural Bgh populations concluded from AFLP analysis was more reasonable. 'Pallas' isogenic lines possessing known Bgh resistant genes were used in virulence analysis for the population consisting of729isolates collected from the winter barley region of China in2005and2006, and resistance and resistance genes to powdery mildew in328barley varieties (lines) were identified. All isolates were avirulent to Mlal Mla (A12), Mla3, Mla6Mlal4, Mla7Mla (No3), Mla7Ml (Lg2), Mla9Mlk, Mla9, Mlal3MlaRu3, Mlpl, Mlg (Cp) and mlo5, and the frequencies of isolates overcoming the genes Mlal2MlaEm2(0.1%), Mla7Mlk (0.4%), Mlat Mla8(0.9%), Mla10MlaDu2(2.8%) and Mlkl (4.2%) were very low. These results indicated that these resistance genes can be using in barley breeding program. Majority of328varieties (lines) tested were susceptible to powdery mildew, but37of these were resistant to all dominant pathotypes. Resistance genes can be postulated in less of the lines investigated, and the resistance genes in these lines were Ml (Bw), Mla8, Mlg, Mlra Mla8, Mla9Mlk, Mlal Mla (A12) or mlo5.
     112representative isolates of Bgh selected from different locations and different pathotypes, were inoculated on112barley varieties including leading barley cultivars and backbone parents in China. A set of differential hosts which is suitable to test pathotypes of Bgh in China was established by investigating on infection types and virulence frequency of112isolates on112barley varieties. The variation of virulence frequency from0to60%was continuous, and virulence frequency within60%to70%was not found, one was within70%to80%, one was within80%to90%, and one was100%. Infection symptom of most inoculated hosts was obvious and stable. Nine barley varieties were chosen differential hosts to identify pathotypes of Bgh in China, and they were Daner, Dulihuang, Yun2, E6, Supi4, Beiqing8, Pu7, Zhenongda7, and Zhepi3respectively, and more, Xiaoshanglixiahuang was used as a susceptible control variety. These barley varieties were used to test the112isolates,50pathotypes, of which a few were predominent pathotypes, were found. These results showed that these differential barley varieties were suitable to identify pathotypes of Bgh population in China.
引文
Ablett G A, Karakousis A, Banbury L, et al.. Application of SSR markers in the construction of Australian barley genetic maps. Aust. J. Agric. Res.,2003,54:1187-1195.
    Andrivon D, Allavieille C D. Race-Specific Resistance genes against Erysiphe graminis f.sp.hordei in old and recent French barley accessions. Plant Breed.,1992,108:40-52.
    Andrivon D, Vallavieille-Pope D C. Racial diversity and complexity in regional populations of Erysiphe graminis f. sp. hordei in France over a 5-year period. Plant Pathol.,1993,42:443-464.
    Backes G, Graner A, Foroughi-Wehr B, et al. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L). Theor. Appl. Genet.,1995,90:294-302.
    Backes G, Madsen L H, Jaiser H, et al.. Localisation of genes for resistance against Blumeria graminis f.sp.hordei and Puccinia graminia in a cross between a barley cultivar and a wild barley (.Hordeum vulgare ssp. spontanuem) lines. Theor. Appl. Genet.,2003,106:353-362.
    Backes G, Schwarz G, Wenzel G, et al.. Comparison between QTL analyses on powdery mildew resistance in barley based on detached primary leaves and on field data. Plant Breed.,1996,115: 419-421.
    Behn A, Hartl L, Schweizer G, Wenzel G, Wenzel G. QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor. Appl. Genet.,2004,108:1229-1235.
    Bernardes-de-Assis J, Storari M, Zala M, et al.. Genetic Structure of Populations of the Rice-Infecting Pathogen Rhizoctonia solani AG-1 1A from China.Phytopathol.,2009,99 (9):1090-1099.
    Bieri S, Mauch S, Shen Q-H, et al.. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell, 2004,16:3480-3495.
    Biffen R H. Mendel's laws of inheritance and wheat breeding. J. Agric. Sci.,1905,1:44-48.
    Bousse L, Vallavieille-Pope D C. Effect of sexual recombination on pathotype frequencies in barley powdery mildew populations of artificially inoculated field plots. Eur. J. Plant Pathol.,2003,109: 13-24.
    Braun U, Cook R T A, Inman A J, et al.. The taxonomy of the powdery mildew fungi. In:Belanger R R, Bushnell W R, Dik A J, et al.. The powdery mildews:a comprehensive treatise. St Paul:APS,2002, 13-55.
    Briggs F N, Stanford B H. Linkage of factors for resistance to mildew in barley. J. Genet.,1933,7: 107-117.
    Briggs F N, Stanford B H. Linkage relations of the Goldfoil factor for resistance tomildew in barley. J. Agric. Res.,1943,66:1-5.
    Brandle U E, Haemmerli U A, McDermott J M, et al.. Interpreting population genetic data with the help of genetic linkage maps. In:Crute I R, Holub E B and Burdon J J. The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wallingford:CAB International,1997,157-171.
    Bronson C R, Ellingboe A H. The influence of four unnecessary genes for virulence on the fitness of Erysiphe graminis f.sp.tritici. Phytopathol.,1986,76:154-158.
    Brown J K M. Chance and selection in the evolution of barley mildew. Trends in Microbiology,1994, (2):470-475.
    Brown J K M. Yield penalties of disease resistance in crops. Curr.Opin. Plant Biol.,2002, (5):339-344.
    Brown J K M. Little else but parasites. Science,2003,299:1680-1681.
    Brown J K M, Foster E M, Hara R B. Adaptation of powdery mildew populations to cereal varieties in relation to durable and non-durable resistance. In:Crute I R, Holub E B and Burdon J J. The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wall-ingford:CAB International,1997, 119-138.
    Brown J K M, Jessop A C. Genetics of avirulences in Erysiphe graminis f.sp. hordei. Plant Pathol.,1995, 44:1039-1049.
    Brown J K M, Le Boulaire S, Evans N. Genetics of responses to morpholine-type fungicides and of avirulences in Erysiphe graminis f.sp. hordei. Eur. J. Plant Pathol.,1996,102:479-490.
    Brown, J K M, Simpson C G. Genetic Analysis of DNA Fingerprints and Virulences in Erysiphe graminis f.sp. hordei. Curr. Genet.,1994,26:172-178.
    Brown J K M, Wolfe M S. Structure and evolution of a population of Erysiphe graminis f. sp. hordei. Plant Pathol.,1990,39:376-390
    Buschges R, Hollricher K, Panstruga R, et al.. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell,1997,88:695-705.
    Caffier V, Brandle U E and Wolfe M S. Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathol.,1999,48:582-587.
    Caffier V, Vallavieille-Pope D C, Brown J K M. Segregation of avirulences and genetic basis of infection types in Erysiphe graminis f.sp. hordei. Phytopathol.,1996,86:1112-1121.
    Caffier V, Hoffstadt T, Leconte M, et al.. Seasonal changes in pathotype complexity in French populations of barley powdery mildew. Plant Pathol.,1996,45:454-468.
    Chelkowski J, Tyrka M, Sobkiewicz A. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J. Appl. Genet.,2003,44 (3):291-309.
    Chin K M, Wolfe M S. Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathol., 1984,33:535-546.
    Christiansen S K, Giese H. Genetic analysis of the obligate parasitic barley powdery mildew fungus based on RFLP and virulence loci. Theor. Appl. Genet.,1990,79:705-712.
    Crute I R, Holub E B, Burdon J J. The gene-forgene relationship in plant-parasite interactions. Wallingford:CAB International,1997.
    Czembor H J, Gacek E S. Investigations on the methods of an increase of the stability of genetic resistance of barley to powdery mildew and other diseases. Biul. IHAR,1987,163:25-32.
    Czembor H J, Gacek E S. Systems for increasing durability of disease resistance in cereals. In:Arseniuk E, Goral T, Czembor P C. Proc. of 2nd symp.on plant resistance to diseases, pests and unfavorable environmental conditions. Poland:IHAR Radzikow,1995,39-48.
    Czembor J H. Resistance to powdery mildew in populations of barley landraces from Morocco. Genetic Resarch and Crop Evolution,2000,47:439-449.
    Czembor J H, Czembor H J. Powdery mildew resistance in cultivars of spring barley from Polish Register. Plant Breeding Seed Sci.,1998,42:87-99.
    Czembor J H, Czembor H J. Powdery mildew resistance in cultivars of winter barley from Polish Register. Plant Breeding and Seed Sci.,1999,43:65-75.
    De Wit P J G M. Molecular characterization of gene for gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Ann. Rev. Phytopathol.,1992,30: 391-418.
    De Wit P J G M. Pathogen avirulence and Plant resistance:a key role for recognition. Trends Plant Sci., 1997,2:452-458.
    Doll H, Jensen H P. Localization of powdery mildew resistance gene Mlra on barley chromosome 5. Hereditas,1986,105:61-65.
    Dreiseitl A. Adaptation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971-2000. Plant Soil Enviro.,49,2003, (6):241-248.
    Dreiseitl A. Variety resistance of winter barley to powdery mildew in the field in 1976-2005. Czech J. Genet. Plant Breed.,2007,43:87-96.
    Dreiseitl A, Dinoor A, Kosman E. Virulence and diversity of Blumeria graminis f. sp. hordei in Israel and the Czech Republic. Plant Disease,2006,90:1031-1038.
    Dreiseitl A, Harold E B. Source of Powdery mildew resistance genes in a wild barley collection. Genetic Resources and Crop Evolution,2003,50:345-350.
    Dreiseitl A, Pickering R A. Pathogenicity of Blumeria graminis f. sp. hordei in New Zealand in 1997. New Zealand Journal of Crop & Horticultural Science,1999,27:273-280.
    Dreiseitl A, Wang J M. Virulence and diversity of Blumeria graminis f.sp. hordei in east China. Eur. J. Plant Pathol.,2007,117:357-368.
    Dreiseitl A, Yang J M. Powderymildew resistance in a collection of Chinese barley varieties. Genetic Resources and Crop Evolution,2007,54 (2):259-266.
    Falak I, Falk D E, Tinker N A, et al.. Resistance to powdery mildew in a doubled haploid barley population and its association with marker loci. Euphytica,1999,107 (3):185-192.
    Friedt W, Ordon F. Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney R V, Tuberosa R. Genomics application in crops. Netherlands:Springer,2007,81-101.
    Flor H H. Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology, 1955,45:680-685.
    Freisleben R, Lein A. Ueber die Auffindung einer mehltauresistenten Mutante nach Roentgenbestrahlung einer anfonligen reinen Linie von Sommergerste. Naturwissenschaft,1942,30: 608
    Gabriel D W, Rolfe B G. Working models of specific recongnition in plant-microbe interactions. Annu. Rev. Phytopathol.,1990,28:365-391.
    Gacek E, Czembor H J. Quantitative analysis of the barley powdery mildew (Erysiphe graminis f.sp. hordei) population structure. Biul. IHAR,1988,167:13-19.
    Giese H. Powderymildew resistance genes in the Mla and Mlk regions on barley chromesome 5. Hereditas,1981,95:51-62.
    Gorg R, Holiricher K, Schuize-Lefert P. Functional analysis and RFLP-mediatedmapping of the Mlg resistance locus in barley. Plant J.,1993,3:857-866.
    Gotz M, Friedrich S, Boyle C. Development of cleistothecia and early ascospore release of Erysiphe graminis DC. f. sp. tritici in winter wheat in relation to host age and climatic conditions. Zeitschrift fonur Pflanzenkrankheiten und Pflanzenschutz,1996,103:134-141.
    Graner A, Jahoor A, Schondelmaier J, et al.. Construction of an RFLP map of barley. Theor. Appl. Genet.,1991,83:250-256.
    Halterman D, Zhou F S, Wei F S, et al.. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J.,2001,25:335-348.
    Halterman D A, Wei F S, Wise R P. Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol.,2003,131:558-567.
    Halterman D A, Wise R P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J.,2004, 38:215-226.
    Hearnden P R, Eckermann P J, McMichael G L, et al. A genetic map of 1000 SSR and DArT markers in a wide barley cross.Theor. Appl. Genet.,2007,115:383-391.
    Heun M. Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome,1992,35:1019-1025.
    Hilbers S, Fischbeck G, Jahoor A. Localization of the Laevigatum resistance gene MILa against powdery mildew in the barley genome by the use of RFLP markers. Plant Breed.,1992,109:335-338.
    Hinze K, Thompson R D, Ritter E, et al. Restriction fragment length polymorphism mediated targeting of the mlo resistance locus in barley (Hordeum vulgare). Proc. Natl. Acad. Sci. USA,1991,88: 3691-3695.
    Hiura U. Studies on the disease resistance in barley. VI. Genetics of resistance to powdery mildew. Berichte desohara Instituts fur Landwirtschaft Okayama,1960,11:235-300.
    Hossain M A, Sparrow D H B. Resistance to powdery mildew (Erysiphe gramiuis f.sp. hordei) in the barley cultivar Galleon. I. Relationship with known genes for resistance. Euphytica,1991a,52:1-9.
    Hossain M A, Sparrow D H B, Resistance to powdery mildew (Eryriphe graminis f.sp. hordei) in the barley cultivar Galleon. Ⅱ. Chromosomal location and linkage with hordein genes. Euphytica, 1991b,52:11-17.
    Hovmoller M S, Munk L, Ostergard H. Observed and predicted changes in virulence gene frequencies at 11 loci in a local barley powdery mildew population. Phytopathol.,1993,83:253-260.
    Hilbers S, Fischbeck G, Jahoor A. Localization of the Laevigatum resistance gene M1La against powdery mildew in the barley genome by use of RFLP markers. Plant Breed.,1992,109:335-338.
    Huang R J, Kranz, Welz H G. Virulence gene frequency change in Erysiphe graminis f. sp. hordei due to selection by noncorresponding barley mildew resistance genes and hitchhiking. J. Phytopathol., 1995,143:287-294.
    Jahoor A, Eriksen L, Backes G. QTLs and genes for disease resistant in barley and wheat. In:Gupta P K, Varshney R K. Cereal Genomics. Netherlands:Kluwer Academic Publishers 2004,199-251.
    Jahoor A, Fischbeck G. Sources of resistance to powdery mildew in barley lines derived from hordeum spontaneum. Plant Breed.,1987,99:274-281.
    Jahoor A, Fischbeck G. Identification of new genes for mildew resistance of barley at the Mla locus in lines derived from hordeum spontaneum. Plant Breed.,1993,110:116-122.
    Jensen H P, Christensen E, Jorgensen J H. Powdery mildew resistance genes in 127 Northwest European spring barley varieties. Plant Breed.,1992,108:210-228.
    Jensen J, Backes G, Skinnes H, et al.. Quantitative trait loci for scald resistance in barley localized by anon-interval mapping procedure. Plant Breed.,2002,121:124-128.
    Jensen J, Jensen H P, Jongensen J H. Linkage studies of barley powdery mildew virulence loci. Hereditas,1995,122:197-209.
    Jensen J, Jongensen J H. The barley chromosome 5 linkage map. Ⅱ. Extension of the map with four loci. Hereditas,1975,80:17-26.
    Jia Y, McAdams S A, Bryan G T, et al.. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J.,2000,19:4004-4014.
    Jorgensen J H. Erysiphe graminis powdery mildew of cereals and grasses. Advances of Plant Pathology, 1988, (6):135-157.
    Jorgensen J H. Discovery, characterization and exploitationof Mlo powdery mildew resistance in barley. Euphytica,1992a,63:141-152.
    Jorgensen J H. Erysiphe graminis, powdery mildew of cereals and grasses. Adv. Plant Pathol.,1988,6: 137-157.
    Jorgensen J H. Genes for powdery mildew reaction. Barley Genet. Newslett.1992b,22:110-131.
    Jorgensen J H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci.,1994,13:97-119.
    Jorgensen J H, Jensen H P. Powdery mildew resistance in barley landrace material. Ⅰ. Screening for resistance. Euphytica.1997,97:227-233.
    Karakousis A, Gustafson J P, halmers K. A consensus map of barley integrating SSR, RFLP,and AFLP markers. Aust. J. Agric. Res.,2003,54:1173-1185.
    Kolmer J A. Selection in a heterogeneous population of Puccinia recondita f. sp. Tritici. Phytopathol., 1993,83:909-914.
    Kolster P, Munk L, Stolen O, et al.. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Science,1986,26:903-907.
    Lamb C J. Plant disease resistance genes in signal perception and transduction. Cell,1994,76:419-422.
    Leister R T, Katagiri F. A resistance gene product of the nucleotide binding site-Leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo.Plant J.,2000,22 (4):345-354.
    Leung H, Nelson R J, Leach J E. Population structure of plant pathogenic fungi and bacteria. Adv. Plant Pathol.,1993,10:157-205.
    Li H B, Zhou M X. Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol. Breeding. DOI 10.1007/s11032-010-9445-x
    Limpert E, Andrivon D, Knittel R, et al.. Barley mildew in Europe:Patterns of composition of the pathogen population during the period 1985-1988. In:Jorgensen J H. Integrated control of cereal mildews:virulence patterns and their change. Denmark:Riso National Laboratory, Roskilde,1991, 87-103.
    Limpert E. Barley mildew in Europe:evidence of winddispersal of the pathogen and its implications for improved use of host resistance and of fungicides for mildew control. In:Wolfe M S, Limpert E. Integrated control ofcereal mildews:Monitoring the pathogen. Dordrecht/Boston:Martinus Nijhoff, 1987,31-33.
    Mains E B, Dietz S M. physiologic forms of barley mildew, Erysiphe graminis f. sp. hordei Marchal. Phytopathol.,1930,20:229-239.
    McDonald B A, McDermott J M. Population genetics of plant pathogenic fungi.1993, Bioscience,43: 311-319.
    Moseman J G. Physiological race of Erysiphe graminis f.sp. hordei in North America. Pytopathol.,1957, 46:318-322.
    Moseman J G. Host-pathogen interaction of the genes for resistance in Hordeum vulgare and for pathogenicity in Erysiphe graminis f.sp. hordei. Phytopathol.,1959,49:469-472.
    Moseman J G. Isogenetic barley lines for Erysiphe graminis f.sp.hordei. Crop Sci.,1972,12:681-682.
    Muller K,.McDermott J M, Martin M S, et al.. Analysis of diversity of plant pathogens:the barley powdery mildew pathogen across Europe. Europ. J. Plant Pathol.1996,102:385-395.
    Neger F W. Beitrage zur brologie der erysiphe. Ⅱ. Die keimungserscheinungen der conidien. Flora (Jena) 1902,90:221-272.
    Negassa M. Genetics of resistance to powdery mildew in some Ethiopian barleys. Hereditas 1985,102:123-138
    Ovesna J, Vacke J, Kucera L, et al.. Genetic analysis of resistance in barley to barley yellow dwarf virus. Plant Breed.,2000,119:481-486.
    Panstruga R, Molina-Cano J L, Reinstadler A, et al.. Molecular characterization of mlo mutants in North American two-and six-rowed malting barley cultivars. Mol. Plant Pathol.2005,6:315-320.
    Pedersen C, Rasmussen S W, Giese H. A Genetic Map of Blumeria graminis Based on Functional Genes, Avirulence Genes, and Molecular Markers. Fungal Genetics and Biology,35:2002,235-246.
    Perosl J P, Troulet C, Guerriero M, et al.. Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in southern France. Eur. J. of Plant Pathol.,2005,113: 407-416.
    Peterhanse C, Lahaye T. Be fruitful and multiply:gene amplification inducing pathogen resitance. Trends in plant science,2005,10 (6):257-260.
    Pickering R A, Hill A M, Michel M, et al.. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (.H. vulgare L.) chromosome 2 (21). Theor. Appl. Genet,1995, 91:1288-1292.
    Piffanelli P, Ramsay L, Waugh R. A barley cultivation associated polymorphism conveys resistance to powdery mildew. Nature,2004,430:887-891.
    Ploetzl R C, Schnell R J, Ying Z T, et al.. Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. Eur. J. Plant Pathol.,2005,111:317-326.
    Powers H R, Sando W J. Genetic control of the host-parasite relationship in wheat powdery mildew.Phytopathol.,1960,50:454-457.
    Prabhu A S, Araujo L G, Silval G B, et al. Virulence and rep-PCR analysis of Pyricularia grisea isolates from two Brazilian upland rice cultivars. Fitopatol. Bras.,2007,32 (1):13-20.
    Prada D, ullrich S E, Molina-Cano J L, et al.. Genetic control of dormancy in a Triumph/Morex cross in barley. Theor. Appl. Genet.,2004,109:62-70.
    Qi X, Jiang G, Chen W, et al. Isolate-specific QTLs for partial resistance to Puccinia hordei. Theor. Appl. Genet.1999,99:877-884.
    Ramsay L, Macaulay M, Ivanissevich S D, et al.. A simple sequence repeat-based linkage map of barley. Genetics,20001,56:1997-2005.
    Read B J, Raman H, McMichael G, et al.. Mapping and QTL analysis of the barley population Sloop×Halcyon.2003, Aust. J. Plant Physiol.,54:1145-1153.
    Repkova J, Dreiseitl A, Lizall P, et al. Identification of resistance genes against powdery mildew in four accessions of Hordeum vulgare ssp. Spontaneum. Euphytica,2006,151:23-30.
    Ridout C J, Skamnioti P, Porritt O, et al.. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell,2006,18: 2402-2414.
    Rostoks N, Mudie S, Cardie L. SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Gen. Genet.,2005,274:515-527.
    Sayed H, Backes G, Kayyal H, et al.. Newmolecular markers linked to qualitative and quantitative powdery mildew and scald resistance genes in barley for dry areas. Euphytica,2004,135:225-228.
    Schell D, Parker J E. Elicitor recognition and signal transduction in plant defense gene activation. Z. Naturforsch,1990,45:569-575.
    Schiemann A, Backes G. The use of molecular markers in practical barley breeding. In:Proceeding of the 8th International Barley Genetics Symposium. Adelaide Australia:2000,3:42-44.
    Schonfeld M, Ragni A, Fischbeck G, Jahoor A. RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f.sp.hordei) in barley. Theor. Appl. Genet.,1996,95:48-56.
    Schul T H, Dechert C, Kogel K H. A small GTP binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol.,2002,128:1447-1454.
    Schonfeld M, Ragni A, Fischbeck G, et al.. RFLP mapping of three new loci for resistance genes to powdery mildew(Erysiphe graminis f.sp. hordei) in barley. Theor. and Appl.Genet.,1996,93: 48-56.
    Schuller C, Backes G. Fischbeck G, et al.. RFLP markers to identi the alleles on the Mla locus conferring powdery mildew resistance in barley. Theor. Appl. Genet.,1992,84:330-338
    Schulze-Lefert P, Panstruga R. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu. Rev. Phytopathol.,2003,41:641-667.
    Schwarz G, Michalek W, Mohler V, et al.. Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor. Appl. Genet.,1999, 98:521-530.
    Shen Q H, Saijo Y, Mauch S, et al.. Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses, Science,2007,315:1098-1103.
    Shen Q H, Zhou F, Bieri S, et al.. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell,2003,15:732-744.
    Shtaya M J Y, Marcel T C, Sillero J C, et al.. Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica,2006,151:421-429.
    Silvar C, Dhif H, Igartua E, et al.. Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Mol. Breed.,2010,25:581-592.
    Simmonds N W. Principles of crop improvement. New York:Longman Scientific and Technical,1987.
    Skamnioti P, Pedersen C, Ghias R, et al.. Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVRa22 and AVRa12. Fungal Genetics and Biology,2008,45:243-252.
    Smedegard-Petersen V. Studies on Erysiphe graminis DC with a special view to the importance of the perithecia for attacks on barley and wheat in Denmark. Konglisk Veterinaerog Landbohojskoles Arsskrift,1967:1-28.
    Spaner D, Shugar L P, Choo T M, et al.. Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci.,1998,38:843-850.
    Spanu P D, Abbott J C, Joelle A, et al.. Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism, Science,2010,330:1543-1546.
    Takamatsu S. New taxonomic system and molecular phylogeny of the powdery mildew fungi. Plant Prot,2002,56:229-237. (in Japanese)
    Tang X, Frederick R D, Zhou J, et al.. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science,1996,274:2060-2063.
    Thompson J N, Burdon J J. Gene-for-gene coevolution between plants and parasites. Nature,1992,360: 121-125.
    Thuan N T N, Bigirimana J, Roumen E et al.. Molecular and pathotype analysis of the rice blast fungus in North Vietnam.Eur. J. Plant Pathol..2006,114:381-396.
    Weibull J, Walther U, Sato K, et al.. Diversity in resistance to abiotic stresses. In:Bothmer R, Hintum T, Knupffer H, et al.. Diversity in barley (Hordeum vulgare). Netherland:Elsvier,2003,143-178.
    Wei F, Gobelman-Werner K, Morroll S M, et al.. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics,1999,153:1929-1948
    Weibull J, Walther U, Sato K. Diversity in resistance to biotic stresses. In:Bothmer R von, Hintum T von, Knupffer H, et al.. Diversity in barley (.Hordeum vulgare). Amsterdam:Elsevier,2003, 143-178.
    Wenzl P, Li H, Carling J, Zhou M. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics,2006,7:206.
    Williams K J. The molecular genetics of disease resistance in barley. Australian Journal of Agricultural Research,2003,54:1065-1079.
    Wolfe M S, Knott D R. Populations of plant pathogens:some constraints on analysis of variation in pathogenicity.1982, Plant Pathol.,31:79-90.
    Wolfe M S, McDermott J M. Population genetics of plant pathogen interactions:The example of the Erysiphe graminis-Hordeum vulgare pathosystem. Ann. Rev. Phytopathol.,1994,32:89-113.
    Wolfe M S, Schwarzbach E. The use of virulence analysis in cereal mildews. Phytopathologische Zeitschift,1975,82:297-307.
    Yahyaoui A H, Reinhold M, Scharen A L. Virulence spectrum in populations of the barley powdery mildew pathogen Erysiphe graminis f.sp.hordei in Tunisia and Morocco in 1992. Plant Pathol., 1997,46:139-146.
    Zeven A C. Results of activities to maintain landraces and other material in some European countries in situ before 1945 and what we may learn from them. Genet. Resour. Crop Evol.,1996,43:337-341.
    Zhong S, Steffenson B J. A simple and sensitive silverstaining method for detecting AFLP markers in fungi. Fungal Genet. Newsl.,2000,47:101-102.
    Zhou F S, Kurth J C, Wei F S, et al.. Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell, 2001,13:337-350.
    陈德禄,谢兆英.从莆大麦5号的选育试论大麦白粉病抗性育种.福建稻麦科技,2000,18(增刊):35-36.
    范怀忠,王焕如,戎文治,等.植物病理学.北京:中国农业出版社.2000.134-135.
    黄金堂,李清华,陈海玲.大麦种质资源白粉病抗性鉴定与应用.植物遗传资源学报,2008,9(1):101-104.
    黄金堂.抗白粉病大麦资源主要农艺性状的遗传分化.麦类作物学报,2007,27(4):619-624.
    韩德俊,李振岐,曹莉,等.大麦抗白粉病基因Mlo的研究进展.西北植物学报,2003,23:496-502.
    卢良恕.中国大麦学.北京:中国农业出版社,1996.31-35.
    肖猛,唐子恺,王永康,等.四川大麦种质资源抗白粉病性鉴定.西南农业学报,2000,13(1)83-85.
    杨建明,沈秋泉,汪军妹,等.我国大麦生产、需求与育种对策.大麦科学,2003,(1):1-5.
    杨建明,汗军妹,朱靖环,等.“十一五”我国专用大麦的消费需求与发展目标.浙江农业学报,2005,17:228-230.
    张中一,冷怀琼,张志铭,等.植物病原真菌学.成都:四川科学技术出版社,1988,162-165.
    赵学平,陈建桥,祝小祥,等.大麦赤霉病、白粉病抗源筛选研究.大麦科学,1998,(1):28-30.
    Andrivon D, Vallavieille-Pope D C. Racial diversity and complexity in regional populations of Erysiphe graminis f. sp. hordei in France over a 5-year period. Plant Pathology.1993,42:443-464.
    Bousset L, Vallavieille-Pope D C. Barley powdery mildew populations on volunteers and changes in pathotype frequencies during summer on artificially inoculated field plots. European Journal of Plant Pathology,2003,109:25-33.
    Braun U, Cook R T A, Inman A J, Shin H D. The taxonomy of the powdery mildew fungi. In:Belanger R R, Bushnell W R, Dik A J, Carver T L W. The Powdery Mildews, A Comprehensive Treatise. Minnesota:ASP,2002,13-55.
    Brown J K M, Jorgensen J H. A catalogue of mildew resistance genes in European barley varieties. In: Jorgensen J H. Integrated Control of Cereal Mildews:Virulence Patterns and Their Change. Roskilde, Denmark:Riso National Laboratory,1991,263-286.
    Brown J K M, Wolfe M S. Structure and evolution of a population of Erysiphe graminis f. sp. hordei. Plant Pathology,1990,39:376-390.
    Caffier V, Brandle U E, Wolfe M S. Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathology,1999,48,582-587.
    Caffier V, Hoffstadt T, Leconte M, et al. Systems for increasing durability of disease resistance in cereals. In:Arseniuk E, Goral T, Czembor P C. Proceeding of the Second Symposium of Plant Resistance to Diseases, Pests and Unfavorable Environmental Conditions. Radzikow:IHAR,1995, 39-48.
    Czembor J H. Resistance to powdery mildew in populations of barley landraces from Morocco. Genetic Resarch and Crop Evolution,2000,47:439-449.
    Czembor J H, Czembor H J. Powdery mildew resistance in cultivars of spring barley from Polish Register. Plant Breeding Seed Science,1998,42:87-99.
    Czembor J H, Czembor H J. Powdery mildew resistance in cultivars of winter barley from Polish Register. Plant Breeding Seed Science,1999,43:65-75.
    Dreiseitl A. Direct selection in the Blumeria graminis f.sp. hordei population in the Czech Republic. Phytopatholgy,2000,35:317-322.
    Dreiseitl A. Variety resistance of winter barley to powdery mildew in the field in 1976-2005. Czech Journal of Genetic Plant Breeding,2007,43:87-89.
    Dreiseitl A, Dinoor A, Kosman E. Virulence and diversity of Blumeria graminis f. sp. hordei in Israel and the Czech Republic. Plant Disease,2006,90:1031-1038.
    Dreiseitl A, Pickering R A. Pathogenicity of Blumeria graminis f. sp. hordei in New Zealand in 1997. New Zealand Journal of Crop & Horticultural Science,1999,27:273-280.
    Dreiseitl A, Wang J M. Virulence and diversity of Blumeria graminis f.sp. hordei in east China. European Journal of Plant Pathology,2007,117:357-368.
    Dreiseitl A, Yang J M. Powdery mildew resistance in a collection of Chinese barley varieties. Genetic Research and Crop Evolution,2007,54:259-266.
    Duan X Y. Studies on DNA molecular marker for population diversity of powdery mildew on wheat. Ph D thesis, China Agricultural University, Beijing,1998.
    Efron B, Tibshirani R J. An Introduction to the Bootstrap. Landon:Chapman and Hall,1993,436.
    Friedt W, Ordon F. Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney R V,Tuberosa R. Genomics-Assisted Crop Improvement. Netherlands:Springer,2007, 81-101.
    Gilmour J. Octal notation for designating physiologic races of plant pathogens. Nature,1973,242:620.
    Goodwin S B, Spielman L J, Matuszak J M, Bergeron S N, Fry W E. Clonal genetic differentiation of Phytophthora infestans populations in northern and central Mexico. Phytopatholgy,1992,82: 955-961.
    Hermann A, Lower C F, Schachtel G A. A new tool for entry and analysis of virulence data for plant pathogens. Plant Pathology,1999,48:154-158.
    Huang R, Kranz J, Welz H G. Virulence gene frequency change in Erysiphe graminis f. sp. hordei due to selection by noncorresponding barley mildew resistance genes and hitchhiking. Phytopathology, 1995,143:287-294.
    Jorgensen J H. Integrated control of cereal mildews:virulence patterns and their change. In:Proceedings of Second European Workshop on Integrated Control of Cereal Mildews. Roskide:Riso National Laboratory Publication,1991,308.
    Jorgensen J H. Discovery, characterization and exploitation of mlo powdery mildew resistance in barley. Euphytica,1992,63:141-152.
    Jorgensen J H. Genetics of powdery mildew resistance in barley. Critical Review in Plant Science,1994, 13:97-119.
    Jorgensen J H, Houmoller M S. Distribution of powdery mildew resistance and virulence in Denmark. In: Wolfea M S,Limpert E. Integrated Control of Cereal Mildews:Monitoring the Pathogen. Dordrecht: The Commission of the European Communities Publication,1987,43-47.
    Kolster P, Munk L, Stolen O, Lohde J. Near-isogenic barley lines with genes for resistance to powdery mildew.Crop Science,1986,26:903-907.
    Kosman E. Difference and diversity of plant pathogen populations:A new approach for measuring. Phytopathology,1996,86:1152-1155.
    Kosman E. Koind-package of programs for calculating diversities within populations, distances between populations and measure of gene linkage. Petria,2002,12,249-252.
    Kosman E. Measure of multilocus correlation as a new parameter for study of plant pathogen populations.Phytopathology,2003,93:1464-1470.
    Limpert E, Andrivon D, Fischbeck G. Virulence patterns in populations of Erysiphe graminis f. sp hordei in Europe in 1986. Plant Patholgy,1990,39:402-415.
    Molina-Cano J F, Montoja J L, Echarte J, Royo C, Serra J,Marin-sanchez J P. Effectiveness of twenty-four barley resistance genes against powdery mildew (.Erysiphe graminis f. sp hordei EM Marchal) in Spain. Plant Breeding,1992,105:40-45.
    Newton A C, Hackett C A, Guy D C. Diversity and complexity of Erysiphe graminis f. sp. hordei collected from barley cultivar mixtures or barley plots treated with a resistance elicitor. European Journal of Plant Pathology,1998,104:925-931.
    Panstruga R, Molina-Cano J L, Reinstadler A, Muller J. Molecular characterization of mlo mutants in North American two-and six-rowed malting barley cultivars. Molecular Plant Pathology,2005, (6): 315-320.
    Rogers J S. Measures of genetic similarity and genetic distance. In:Studies in Genetic. Austin: University of Texas Publication,1972,145-153.
    Shannon C E, Weaver W. The Mathematical Theory of Communiciation. Urbana:University of Illinios Press,1949,125.
    Smedegard-Petersen V. Studies on Erysiphe graminis DC with a special view to the importance of the perithecia for attacks on barley and wheat in Denmark. Royal Veterinary and Agricultural University Yearbook.1967,1-28.
    Sogard B, Jorgensen J H. Genes for reaction to powdery mildew{Erysiphe graminis hordei).. Barley Genet Newsletter,1983,13:152-160.
    Stevens D B, Yarham D J. Autumn diseases of cereals and their control. In:Proceeding of the 1981 British Crop Protection Conference-Pests and Diseases. Croydon:British Crop Protection Council Publication,1981,725-738.
    Torp J H, Jensen P, Jorgensen J H. Powdery mildew resistance genes in 106 Northwest European spring barley varieties. Royal Veterinary and Agricultural University Yearbook,1978,75-102.
    Turner D M. Studies on cereal mildew in Britain.Transactions of the British Mycological Society,1956, 39:495-506.
    Vallavieille-pope C. Seasonal changes in pathotype complexity in French populations of barley powdery mildew. Plant Pathology,1996,45:454-468.
    Williams K J. The molecular genetics of disease resistance in barley. Australian Journal of Agricultural Research,2003,54:1065-1079.
    Wolfe M S. Crop strength through diversity. Nature,2000,406:681-682.
    Yang J M, Shen Q Q, Wang J M, Zhu J H. Barley production, demand and breeding in China. Barley Science,2003,(1):1-2. (in Chinese)
    Yang J M, Wang J M, Zhu J H, Shen Q Q. Demand and supply of malting and feed barley in China during 2006-2010. Acta Agriculture Zhejiangensis,2005,17:228-230. (in Chinese)
    Zine-Elabidine F, Reinhold M, Scharen A L. Effect of barley powdery mildew infect-ion on barley under simulated drought stress. Cereal Rusts Powdery Mildews Bulletin,1992,20:1-5.
    Bernardes-de-Assis J, Storari M, Zala M, et al.. Genetic Structure of Populations of the Rice-Infecting Pathogen Rhizoctoniasolani AG-1 IA from China.Phytopathology,2009,99 (9):1090-1099.
    Brandle U E, Haemmerli U A, McDermott J M and Wolfe M S. Interpreting population genetic data with the help of genetic linkage maps. In:Crute I R, Holub E B and Burdon J J. The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wallingford:CAB International,1997,157-171.
    Brown J K M, Chance and selection in the evolution of barley mildew. Trends in Microbiology,1994, (2):470-475.
    Brown J K M, Foster E M, OHara R B. Adaptation of powdery mildew populations to cereal varieties in relation to durable and non-durable resistance. In:Crute I R, Holub E B and Burdon J J.The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wallingford:CAB International, 1997,119-138.
    Brown J K M, Jessop A C, Rezanoor H N. Genetic uniformity in barley and its powdery mildew pathogen. Proceedings of the Royal Society of London Series B,1991,246:83-90.
    Caffier V, Brandle U E, Wolfe M S. Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathology,1999,48:582-587.
    Chen X, Line R F, Leung H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology,1993,83 (12):1489-1497.
    Columbia G D I, Grant M. D, Mark S G, et al.. Genetic diversity of Metarhizium anisopliae var. anisopliae in southwestern British, Journal of Invertebrate Pathology,2008,98:101-113.
    Enjalbert J, Duan X, Leconte M. Genetic evidence of local adaptation of wheat yellow rust(Puccinia s triiformis f.sp.tritici) within France.MolecularEcology,2005,14:2065-2073.
    Fargette Mi, Lollier V, Phillips M, et al. AFLP analysis of the genetic diversity of Meloidogyne chitwoodi and M.fallax, major agricultural pests. Genetics C. R. Biologies,2005,328:455-462.
    Fu Y B, Williams D J. AFLP variation in 25 Avena species. Theor. Appl. Genet.,2008,117:333-342.
    George M C, Nelson R J, Leigler R S, Leung H.Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitiue DNA sequences. Phytopathology,1998,88:223-229.
    Jones C J, Edwards K J, Castaglione S, et al.. Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories. Molecular Breeding,1997,3:381-390.
    Kolmer J. A Selection in a heterogeneous population of Puccinia recondita f. sp. tritici. Phytopathology, 1993.83:909-914.
    Kolster P, Munk L, Stolen O, et al.. Near-isogenic barley lines with genes for resistance to powdery mildew.1986, Crop Science,26:903-907
    Leung H, Nelson R J, Leach J E. Population structure of plant pathogenic fungi and bacteria. Adv. Plant Pathol.,1993,10:157-205.
    Majer D, Mithen R, Lewis B G, et al.. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycological Research,1996,9:1107-1111.
    McDonald B A, McDermott J M. Population genetics of plant pathogenic fungi.1993, Bioscience,43: 311-319.
    Paul S, Wachira F N, Powell W, et al. Diversity and genetic differentiation among populations of Indian and Kenyantea (Camellia sinensis(L.)O.Kuntze) revealed by AFLP markers. Theor. Appl. Genet., 1997,94:255-63.
    Perosl J P, Troulet C, Guerriero M, et al.. Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in southern France. European Journal of Plant Pathology,2005,113:407-416.
    Ploetzl R C, Schnell R J, Ying Z T, et al.. Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. European Journal of Plant Pathology,2005,111:317-326.
    Prabhu A S, Araujo L G, Silval G B, et al.. Virulence and rep-PCR Analysis of Pyricularia grisea Isolates from Two Brazilian Upland Rice Cultivars. Fitopatol. Bras.,2007,32 (1):13-20.
    Rahimmalek M, Tabatabaei B E S, Arzani A, et al.. Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP), Biochem. Syst. Ecol. 2009, doi:10.1016/j.bse.2009.06.002
    Shan W X, Chen S Y, Kang Z S. Genetic diversity in Puccinia striiformis Westend. f. sp. tritici revealed by pathogen genome-specific repetitive sequence. Canadian Journal of Botany,1998,76:587-595.
    Skamnioti P, Pedersen C, Ghias R, el al.. Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVRa22 and AVRa12.Fungal Genetics and Biology,2008,45:243-252.
    Thuan N T N, Bigirimana J, Roumen E et al.. Molecular and pathotype analysis of the rice blast fungus in North Vietnam.European Journal of Plant Pathology.2006,114:381-396.
    Tooley P W, ONeill N R O, Goley E D, Carras M M. Assessment of diversity in Claviceps africana and other Claviceps species by RAM and AFLP analyses.Phytopathology,2000,90:1126-1130.
    Vos P, Hogers R, BleekerM, et al.. AFLP:a new technique for DNA fingerprinting. NucleicAcids Res., 1995,23:4407-4414.
    Wolfe M S, Brandle U, Koller B, et al.. Barley mildew in Europe:population biology and host resistance. Euphytica,1992,63:125-139.
    Wolfe M S, Mc Dermott J M, Population genetics of plant-pathogen interactions:the example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annual Review of Phytopathology,1994,32: 89-113.
    Zabeau M, Vos P. Selective restriction fragment amplification,a method for DNA finger-Printing. European Patent Application 94202629 (publication no.05348AI). European Patent Office, Paris, 1993.
    Zhong S, Steffenson B J. A simple and sensitive silverstaining method for detecting AFLP markers in fungi. Fungal Genet.Newsl.,2000,47:101-102.
    陆宁海,郑文明,王建锋,等.陇南地区小麦条锈菌群体遗传多样性SSR分析.中国农业,2009,42(8):2763-2770
    郑文明,陈受宜,康振生,王阳,吴立人,李振岐.甘肃天水地区小麦条锈菌自然群DNA指纹分析.菌物学报,2005,24(2):199-206.
    Andrivon D, De Vallavieille-pope C. Race-specific resistance genes against Erysiphegraminis f. sp. hordei in old and recent French barley accessions. Plant Breeding,1992,108:40-52.
    Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell,1997,88:695-705.
    CaffierV, Brandle U E, WolfeM S. Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathology,1999,48:582-587.
    DreiseitlA. Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czeck Republic in 1971-2000.Plant Soil Environment,2003,49 (6):241-248.
    Dreiseitl A, Dinoor A, Kosman E. Virulence and diversity of Blum eria gram inis f. sp. hordei in Israel and in the Czech Republic. Plant Disease,2006,90 (8):1031-1038.
    Dreiseitl A, Pickering R A. Pathogenicity of Blumeria graminis f. sp. hordei in New Zealand in 1997. New Zealand Journal of Crop and Horticultural Science,1999,27 (4):273-280.
    Dreiseitl A, Rashal I. Powdery mildew resistance genes in Latvian barley varieties. European Journal of Plant Pathology,2004,135:325-332.
    Dreiseitl A, Wang JM. Virulence and diversity of Blumeria graminis f. sp. hordei in East China. European Journal of Plant Pathology,2007,117 (4):357-368.
    Dreiseitl A, Yang JM. Powderymildew resistance in a collection of Chinese barley varieties. Genetic Resources and Crop Evolution,2007,54 (2):259-266.
    Gilmour J. Octal notation for designating phisiologic races of plant pathogens. Nature,1973,242:620.
    Kolster P, Munk L, Stolen O, et al. Near2isogenic barley lines with genes for resistance to powdery mildew. Crop Scince,1986,26 (5):903-907.
    Kurth J, Kolsch R, SimonsV, et al. A high2resolution genetic map and a diagnostic RFLP marker for the Mlg resistance locus to powdery mildew in barley. Theoretical and App lied Genetics,2001,102: 53-60.
    Peterhansel C, Lahaye T. Be fruitful and multiply:gene amplification inducing pathogen resistance. Trends in Plant Science,2005,10 (6):257-260.
    Williams K J. The molecular genetics of disease resistance in barley. Australia Journal of Agricultural Research,2003,54 (11/12):1065-1079.
    Yahyaoui A H, ReinholdM, Scharen A L. Virulence spectrum in populations of the barley powdery mildew pathogen Erysiphe graminis f. sp. hordei in Tunisia and Morocco in 1992. Plant Pathology, 1997.46 (1):139-146.
    陈炳坤,陈德禄,郭媛贞,等.大麦抗白粉病育种进展与浅识.福建稻麦科技,2003,18(增刊):33-34
    李秀丽,朱靖环,陶跃之,等。东南沿海地区大麦白粉菌群体毒性分析.安徽农业大学学报,2007,34(2):287-290.
    杨建明,沈秋泉,汪军妹,等。我国大麦生产、需求与育种对策.大麦科学,2003(1):1-5
    Dreiseitl A, Dinoor A, Kosman E. Virulence and diversity of Blumeria graminis f. sp. hordei in Israel and the Czech Republic. Plant Disease,2006,90:1031-1038.
    Dreiseitl A, Pickering R A. Pathogenicity of Blumeria graminis f. sp. hordei in New Zealand in 1997. New Zealand Journal of Crop and Horticultureal Science,1999,27:273-280.
    Dreiseitl A, Yang J M. Powdery Mildew Resistance in a Collection of Chinese Barley Varieties. Genetic Research and Crop Evolution,2007,54,259-266.
    Kolster P, Munk L, Stolen O, et al. Near-isogenic barley lines with genes for resistance to powdery mildew.1986, Crop Science,26:903-907.
    Yahyaoui A H, Reinhold M, Scharen A L. Virulence spectrum in populations of the barley powdery mildew pathogen Erysiphe graminis f. sp. hordei in Tunisia and Morocco in 1992. Plant Pathology, 1997,46:139-146.
    Yarwood C E. Powdery mildews. Botanical review,1957,23:139-156.
    Zhang Z, Henderson C, Perfect E, et al.. Of genes and genomes, needles and haystacks:Blumeria graminis and functionality. Molecular of Plant Pathology,2005,6:561-575.
    陈夕军,王玲,左示敏,等.水稻纹枯病寄主-病原物互作鉴别品种与菌株的筛选.植物病理学报,39(5):514-520.
    陈丽娟,潘永东,尚红梅.青稞新品系87-9-5的选育.大麦科学,2001,(1):11-12.
    陈和,陈健,沈会权,等.啤酒大麦新品种“苏啤4号”.大麦与谷物科学,2006,(1):35
    杜宜新,杨秀娟,阮宏椿,等.不同鉴别体系对福建省稻瘟病菌的鉴别效果.江西农业大学学报,2008,30(5):8]4-818.
    黄金堂,陈海玲,李清华.大麦白粉病与播种密度、施氮水平关系探讨.大麦与谷物科学,2006(1):19-22.
    黄金堂,李清华,陈德禄,等.莆大麦7号高产高效优化栽培技术研究.麦类作物学报,2006,26(1):153-156.
    胡英忠.优质青稞农家品种—肚里黄.农村百事通.2007,(19):33.
    胡意良,余腾琼,汤翠凤,等.三套鉴别品种对云南高原粳稻白叶枯病菌致病型的鉴定比较.植物保护学报,2009,36(1):22-26.
    李进斌,李成云,张庆,等.两套鉴别品种对云南稻瘟病菌株鉴别能力的比较.中国农业科学2009,42(2):486-491.
    凌忠专,Mew T,王久林,等.中国水稻近等基因系的育成及其稻瘟病菌生理小种鉴别能力.中国 农业科学,2000,33(4):1-8.
    马学锋,李学文.优质青稞北青八号的特征特性及栽培要点麦类作物学报.2009,29(2):368.
    秦盈卜,李家发,金卫兵.啤用鄂大麦6号特征特性与栽培要点.大麦科学,2001,(4):39.
    全国稻瘟病生理小种联合试验组.我国稻瘟病生理小种研究.植物病理学报,1980,10(2):71-82.
    盛宝钦.用反应型记载小麦苗期白粉病.植物保护,1988,(1):49.
    司权民,张新心,段霞瑜,等.小麦白粉菌生理小种鉴定.中国农业科学,1987,20(5):64-70.
    王炎,胡剑锋,张金松,等.单二大麦高产技术栽培技术分析.大麦科学,1999,(2):18-19.
    许修宏,吕慧颖,陈秀双,等.大豆疫霉根腐病菌生理小种中国鉴别寄主的初步筛选,东北农业大学学报,33(2):139-142.
    杨金华,于亚雄,郑家文,等.啤酒大麦新品种“云大麦2号”.大麦与谷物科学,2009,(3):封三.
    周益军,程兆榜,范永坚,等.用不同类型的水稻鉴别品种鉴定江苏稻瘟病菌的致病性.作物学报,2003,29(2):268-273.
    赵理清,陆美琴.大麦新品种浙皮3号的选育与栽培要点.浙江农业科学,1994,(6):292-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700