用户名: 密码: 验证码:
土传烟草青枯病的生物防控及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草青枯病由茄科劳尔氏菌(Ralstonia solanacearum)引起,在我国长江流域及西南烟区普遍发生,危害严重,造成烟叶产量和品质降低甚至绝收。青枯病已经成为我国烟草生产上的主要限制因子之一。本研究主要从寄主-病原-环境三者生态互作角度出发,针对烟草青枯病的发生机理,运用生物防控和生物修复的手段防控青枯病的发生,并从拮抗菌在根系形成的生物保护膜和根系分泌物对病原菌与拮抗菌生长的促进与抑制作用两方面着重阐述了青枯病生物防控机理。
     从烟草青枯病发生严重的田间根际土壤及病株中采用茄科劳尔氏菌选择性培养基分离、筛选到青枯病病原菌119株。通过菌落形态、生理生化和16S rRNA基因序列分析,并结合病原菌回接实验,鉴定其中一株为茄科劳尔氏菌烟草专化型致病型(Ralstonia solanacearum E.F.Smith f. sp. nicotianae, Rs)。通过分别改变土壤病原菌数量及温湿度条件研究青枯病的发病条件,结果表明当土壤中Rs的浓度达到107cfug-1soil以上土壤温度达到30℃,湿度维持在75%以上时烟株最易发病。
     从健康烟株根际土壤分离、筛选得到两株高效的拮抗菌L-9和L-25,经16S rRNA基因序列和生理生化分析,分别将两株拮抗菌鉴定为Brevibacillus brevis (短短芽孢杆菌)和Streptomyces rochei(娄彻氏链霉菌)。平板拮抗实验结果表明,这两株拮抗菌不仅对茄科劳尔氏菌有较强的拮抗作用,平板拮抗圈分别达到11和151mm,而且对番茄青枯病、茄子青枯病、辣椒青枯病及烟草黑胫病等多种病害病原菌也有较好的平板拮抗作用。
     利用BIOLOG表型芯片鉴定系统对拮抗菌的特征性碳、氮源进行分析,比较了两种拮抗菌的平均颜色变化率(AWCD)和三种固体有机废弃物菜粕有机肥、小麦麸、燕麦麸主要成分的利用情况。研究结果表明,L-9和L-25在菜粕有机肥中的9种主要氨基酸的AWCD值都分别大于在小麦麸和燕麦麸主要氨基酸的AWCD值。综合其他的因素,确定菜粕有机肥与牛粪1:1(w:w)的混合物为两个拮抗菌二次发酵的最佳有机载体。
     通过拮抗菌发酵液和拮抗青枯病生物有机肥(BOF)的盆栽和大田试验,研究了两株拮抗菌的拮抗效果。结果表明,L-9生物有机肥与L-25生物有机肥1:1(w:w)处理在盆栽试验的各处理中防控效果最好,其防控率高达100%,大田试验的防治效果分别达到了95.4%(安徽试验大田)和30.1%(贵州试验大田)。BOF处理防控效果显著好于拮抗菌发酵液处理;L-9生物有机肥与L-25生物有机肥1:1配比施入土壤,要比单菌生物有机肥处理防控效果更好,发病率和病情指数最低,烟株生物量最大,根际土壤中病原菌数量最少,浓度控制在不易发病的106cfug-1soil以下。
     BOF处理根际的细菌和放线菌数量也显著高于病土处理,而真菌和病原菌的数量却显著低于病土处理;BOF处理的烟草的各种抗性酶活性如POD、CAT、PPO、SOD等与病土处理有显著差异,土壤各种酶活性与病土处理也有显著差异;扫描电镜结果显示,发病烟株的维管束导管中有大量粘性物质堵塞于其中,而且维管束严重变形,而健康烟株和施用BOF后未发病烟株的维管束长势正常,未有严重变形;利用梯度变性凝胶电脉(DGGE)和BIOLOG-Ecoplate分析根际土壤的微生物变化,结果表明,施用BOF后微生物群落结构发生了改变,逐渐由“真菌型”向“细菌型”过渡;BOF处理的Shannon指数、Simpson指数和Mclntosh指数均高于病土处理;研究结果同时表明,施用BOF不但可以抵制病害的发生,对烟叶产量也有较好的促进作用,盆栽试验与田间试验BOF处理与病土对照相比分别增产3.43和3.27倍。
     拮抗菌的根际定殖试验结果表明,烟草种子用拮抗菌发酵液处理后,拮抗菌会沿根系生长并附着在根和根毛上;而接种病原菌后,病原菌无法侵染根系,被阻挡在拮抗菌形成的生物保护壳(膜)外。荧光标记的病原菌跟踪结果表明,拮抗菌优先定殖于烟草根表利于抑制病原菌的定殖。通过高效液相色谱法(HPLC),分离并鉴定了烟草根系分泌物中的酚酸类物质。研究结果发现,烟草根系分泌物中检测到0.25μgg-1root DW根干重的苯甲酸和1.15μgg-1root DW的苯丙酸。外源添加苯甲酸和苯丙酸后,两种物质都是低浓度促进病原菌与拮抗菌的生长,高浓度抑制生长,而且两种酚酸类物质对病原菌促生浓度(苯甲酸为300mg L-1,苯丙酸为600mg L-1)大于对两株拮抗菌(L-9和L-25)的促生浓度,说明烟草土传病原菌更能有效地利用根系分泌物。
     综上所述,高效拮抗烟草青枯病生防菌Brevibacillus brevis和Streptomyces rochei,在最佳发酵底物-菜粕堆肥与牛粪有机肥(1:1)二次发酵,其混合生物有机肥防控效果最佳且拮抗菌优于青枯菌在烟株根际定殖。BOF通过改善土壤微生物群落结构、增强烟株自身抗性,从而生物防控青枯病、增加烟叶产量。烟草根系分泌物对青枯菌的促进作用大于对拮抗菌的促进作用,这是烟草产生连作障碍的主要原因之一。
Tobacco bacterial wilt, which was caused by Ralstonia solanacearum, spread widely and caused very severe damages in Changjiang River and Southwest tobacco field in China. The wilt disease can decrease tobacco product and quality or even cause total destruction. In a word, tobacco bacterial wilt has been one of the mort crucial limiting factors in Chinese tobacco production. From the viewpoint of host-pathogen-environment ecological interaction triangle, this study investigated the biological control of tobacco bacterial wilt, bioremediation of soils, the bio-film protection from antagonists to R. solanacearum and the effet on the growth of pathogen and antagonists of tobacco root exudates on the basis of pathogenesis of tobacco bacterial wilt.
     Rhizosphere soil or infested tobacco plants were collected from a severely wilt-diseased field. One hundred and nineteen colonies similar to R. solanacearum was screened on a semi-selective medium (SMSA) from roots and stem spots of infested plants and rhizosphere soils. A strain of R. solanacearum with strong virulence was identified by its colony and microscopic morphology,16S rRNA sequence homologies and its physo-biochemical characteristics. The isolated strain was identified as Ralstonia solanacearum E.F.Smith f. sp. Nicotianae (Rs) by re-inoculating pathogen to healthy tobacco plant and other four kinds of solanaceous plants. The results of pathogenic factors for R. solanacearum in soil showed that tobacco plants were more susceptible to wilt disease when the population of R. solanacearum reached to10cfu g-1soil, the environmental temperature was30℃and the humidity kept75%above.
     In lab condition, two antagonists, L-9and L-25, were isolated and screened from uninfected tobacco plants and rhizosphere soils. Through16S rRNA sequence homologies and physo-biochemical analysis, one strain was Brevibacillus brevis, the other was Streptomyces rochei. These two strains not only had antagonictic effect on R. solanacearum with antagonism zone11mm and15mm, but also suppressed other kinds of soil borne disease on plates in out lab, such as tomato bacterial wilt, eggplant bacterial wilt, pepper bacterial wilt and tobacco black shank.
     The carbon and nitrogen sources used by antagonists were analysed by BIOLOG phenotype microarray microplates. In microplates, the average well color development (A WCD) of amino acids, which were mainly contained in rapeseed meal, wheat barn and oat bran, was the highest in rapeseed meal among these three solid wastes. These results indicated that the rapeseed meal was the best substance for reproducetion of antagonists. Considering the comprehensive factors for tobacco plants, an organic fertilizer consisted of rapeseed meal and dairy manure at the proportion of1:1(w:w) was the best compost for the secondary solid fermentation of antagonists.
     Biological experiment was conducted using antagonistis cell suspention or bioorganic fertilizer (BOF) to proof bio-control efficacy of antagonists. The results showed that the mixed BOF treatment had the best biocontrol effect in all antagonists applied treatments in pot experiment. The control efficacy of mixed BOF treatment was up to100%in pot experiment and that was95.4%in Anhui field experiemt and30.1%in Guizhou field experiment. The effect of BOF applied treatments was better than antagonists-cell-suspension applied treatments. Besides, the result of treatment where the two BOF second solid fermentated were applied to the soil together at the proportion of1:1, was better than those of sigle BOF applied treatments. The disease incidence and index were the lowest in mixed BOF treatment among all treatments. Moreover, in mixed BOF treatment, tobacco biomass was the largest while R. solancearum population was the least and kept106cfu g-1soil.
     The counts of bacteria and actinomycetes were significantly higher while populations of fungi and R. solanacearum were much lower in BOF applied treatment than that of control treatment (infected soil). Furthermore, defence enzymes in leaves and roots, such as POD, CAT, PPO, SOD and so on, and the enzymes in soil were significantly different between the BOF applied treatments and the control treatment (infected soil). Observations of vascular bundle of healthy tobacco plant, wilt plant in control treatment (infected soil) and uninfected plant in antagonists applied treatment were made by scanning electron microscope (SEM). The SEM results showed that there was viscous material deforming and blocking vessel of vascular bundle in wilt tobacco while the vascular bundle of healthy tobacco in control and BOF treatments grew well with a normal shape. Denaturing Gradient Gel Electrophoresis (DGGE) and BIOLOG-Ecoplate were used to analyze the microbial changees in rhizosphere soil in pot experiment. Soil was transformed from fungal type to bacterial type, which indicated that continuous cropping soil was gradually recovered to a new microbial system, sustainable soil ecology and good productive functions. The Shannon index, Simpson index and McIntosh index were higher in BOF treatment than that of control treatment (infected soil). The application of BOF could not only suppress pathogen, but also have a promotion to tobacco yield. Biomass was increased3.43times and3.27times in pot and field experiment, respectivily.
     Rhizosphere colonization of antagonists experiment showed that, antagonistic strain adhered on root and root hairs along with the root growth due to the exudates of roots after cell suspensions of antagonists were inoculated to tobacco seeds before its germination. After R. solanacearum was inoculated, antagonists could colonize in rhizosphere firstly, forming a protecting biofilm to suppress R. solanacearum and prevent pathogens from infecting roots. Plasmid pJZ383with green fluorescent protein (gfp) was successfully transformed to R. solanacearum. Antagonists could colonize on the root surface prior to pathogen, thus suppressing R. solanacearum in the rhizosphere. Phenolic acids in tobacco root exudates (TRE) were isolated and identified by high performance liquid chromatography (HPLC). Benzoic acid with the concentration of0.25μg g-1dry roots and3-phenylpropanoic acid with the concentration of1.15μg g-1dry roots were identified in TRE. Exogenous phenolic acids were used to investigate the effect of some phenolic acids, which existed in TRE, on the growth of pathogen and antagonists. It revealed that lower concentration of benzoic acid and3-phenylpropanoic acid promoted the growth of pathogen and antagonists, while higher concentration of those phenolic acids inhibited pathogen and antagonists. Besides, the promotion concentration of these phenolic acids for R. solanacearum (benzoic acid:300mg L-1and3-phenylpropanoic acid:600mg L-1) were higher than that for antagonists. This suggested that R. solanacearum made a better use of tobacco root exudates.
     Above all, two antagonistic microbes, Brevibacillus brevis and Streptomyces rochei were screened. They were applied to aan orgnic fertilizer consisted of rapeseed meal and dairy manure at the proportion of1:1(w:w) for the secondary solid fermentation to make a BOF. The mixed BOF had the best control efficacy and the antagonists could colonize on root surface prior to pathogen. BOF could biocontrol tobacco bacterial wilt and increase yield through improve soil microbial diversities and strengthened tobacco self-resistance. Tobacco root exudates had a larger role in growth promoting of R. solanacearum than antagonists. This was one of the most important reseaons for tobacco obstacle of continuous mono-cropping.
引文
Allen C., Gay J., Simon-Buela L. A regulatory locus, pehSR, controls polygalacturonase production and other virulence functions in Ralstonia solanacearum[J]. Mol Plant Microbe Interact. 1997,10 (9):1054-1064
    Anuratha C.S., Gnanamanickam S.S. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria[J]. Plant Soil.1990,124:109-116
    Arwiyanto. T., Goto. M., Tsuyumu. S., Takikawa Y. Biological Control of Bacterial Wilt of Tomato by an Avirulent Strain of Pseudomonas solanacearum Isolated from Strelitzia reginae[J]. Ann.Phytopath.Soc.Japan.1994,60:421-430
    Ash C., Priest F.G., Collins M.D. Molecular identification of rRNA group 3 Bacillus PCR probe text, Proposal for the creation of a new genus Paenibacillus[J]. Antonie Van Leeuwen Hoek.1994,64: 25-260
    Atta H.M., Ahmad M.S. Antimycin-A antibiotic biosynthesis produced by Streptomyces sp. AZ-AR-262:taxonomy, fermentation, purification and biological activities[J]. Aust J Basic and Appl Sci.2009,3 (1):126-135
    Bais H.P., Walker T.S., Schweizer H.P. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum[J]. Plant Physiol Biochem.2002,40 (11): 983-995
    Bais H.P., Park S.W., Weir T.L. How plants communicate using the underground information superhighway[J]. Trends Plant Sci.2004,9 (1):26-32
    Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnology Advances.1998,16:729-770
    Bellingham N.F., Morgan J.A.W., Saunders J.R., Winstanley C. Flagellin gene sequence variation in the genus Pseudomonas[J]. syst.Appl.Microbiol.2001,24:157-165
    Bertin C., Yang X., Weston L.A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant Soil.2003,256 (1):67-83
    Blum U., Shafer S. Microbial population and phenolic acids in soil[J]. Soil Biology & Biochemistry. 1988,20 (6):793-800
    Bochner B., Gomez V., Ziman M., Yang S., Brown S.D. Phenotype microarray profiling of Zymomonas mobilis ZM4[J]. App Biochem Biotechnol.2010,161:116-123
    Boehm M.J., Hoitink H.A.J. Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia[J]. Phytopathology.1992,82:259-264
    Boehm M.J., Madden L.V., Hoitink H.A.J. Effect of Organic Matter Decomposition Level on Bacterial Species Diversity and Composition in Relationship to Pythium Damping-Off Severity[J]. Appl Environ Microbiol.1993,59:4171-4179
    Bottomley P.J., Yarwood R.R., Kageyama S.A., Waterstripe K.E., Williams M.A., Cromack Jr K., Myrold D.D. Responses of soil bcterial and fungal communities to reciprocal transfers of soil between adjacent coniferous forest and meadow vegetation in the Cascade Mountains of Oregon[J]. Plant Soil.2006,289:35-45
    Boudazin G, Le Roux A.C., Josi K., Labarre P., Jouan B. Design of division specific primers of Ralstonia solanacearum and application to the identification of European isolates[J]. Eur.J.Plant Pathol.1999,105:373-380
    Bowen GD. Microbial dynamics in the rhizosphere:possible strategies in managing rhizosphere populations[J]. The Rhizosphere and Plant Growth.1991:25-32
    Brown M.E. Seed and root bacterization[J]. Annual Review of Phytopathology.1974,12:311-331
    Brumbley S.M., Carney B.F., Denny T.P. Phynotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, Aputative LysR transcriptional regulator[J]. J.Bacteriol.1993, 175 (17):5477-5487
    Buchanan R.E., Gibbens N.E.伯杰细菌鉴定手册[M].北京:科学出版社,1984
    Buddenhagen I., Sequeira L., Kelman A. Designation of races of Pseudomonas solanacearum[J]. Phytopathology.1962,52:726
    Burge M.N. The scope of fungi in biological control[M]. Manchester:Manchester University Press, 1988
    Cao Y., Zhang Z., Ling N., Yuan Y, Zheng X., Shen B., Shen Q. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Bio Fertil Soils.2011,47:495-506
    Cartwright D.K., JR H.W.S. Biological Control of Phytophthora Parasitica Var. Nicotianae on Tobacco Seedlings with Non-pathogenic Binucleate Rhizoctonia Fungi[J]. Soil Bio & Biochem.1998,30: 1879-1884
    Carvalho J.C., Oishi B.O., Woiciechowski A.L., Pandey A., Babitha S., Soccol C. Effect of substrates on the production of Monascus biopigments by soild-state fermentation and pigment extraction using different solvents[J]. Indian Journal of Biotechnology.2007,6:194-199
    Castrillo L.A., Thomsen L., Juneja P., Hajek A.E. Detection and quantification of Entomophage maimaiga resing spores in forest soil using real-time PCR[J]. Mycological research.2007,111: 324-331
    Catello P., Riccardo S., Alessandro P., Felice S., Giuliano B. Compost amendments enhance peat suppressiveness to Pythium ultimum,Rhizoctonia solani and Sclerotinia minor[J]. Biological Control.2011,56:115-124
    Celine J., Francois V., Claude A. Soil health through soil disease suppression:Which strategy from descriptors to indicators [J]. Soil Biology & Biochemistry.2007,39:1-23
    Chen C. The measurement of SOD activity by NBT[M]. Higher Education Press,2000
    Chen L., Yang X., Raza W., Li J., Liu Y, Qiu M., Zheng F., Shen Q. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Appl Microbiol Biotechnol.2011,89:1653-1663
    Chen W.Y. Pathological characteristics of wilt types and spomtaneous mutants of Pseudomonas solanacearum[J]. Plant Protection Bulletin of Taiwan Tobacco Rese arch Institute.1983,25 (3): 149-256
    Chet A., Benhamou N., Haran S. Mycoparasitism and lytic enzymes[M]. United Kingdom:Taylor and Francis,Ltd.,1998
    Ciampi-Panno. L., Fernandez. C., Bustamante. P., Andrade. N., Ojeda. S., Contreras A. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum[J]. American Potato Jjournal.1989,66:316-332
    Compant S., Clement C., Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants:Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry.2010,42:669-678
    Cook R.J. Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Annu Rev. of Phytopathol.1993,31:53-80
    Dai Y, Su Y, Wei W., Wu J., Fan Y. Effect of top excision on the potassium accun.mation and expression of potassium channel genes in tobacoo[J]. J Exp Bot.2009,60:279-289
    Deng Z., Kuang C., Zhou Z., Huang S., Luo K. Identification of the race of tobacco bacterial wilt in Hunan[J]. Journal of Hunan Agricultural University (Natural Sciences).2004,30:47-49
    DeShazer D., Brett P.J., Carlyon R., Woods D.E. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182:isolation of motility mutants and molecular characterization of the flagellin structural gene[J]. J.Bacteriol.1997,179:2116-2125
    Dijksterhuis J., Sanders M., Gorris L.G., Smid E.J. Antibiosis plays a role in the context of direct interaction during antogonism of Paenibacillus polymyxa towards Fusarium oxysporum[J]. Jouornal of Applied Microbiology.1999,86:13-21
    Dubey S.C., Suresh M., Singh B. Evaluation of Trichoderma species against Fusarium oxysporum f.sp.cicseris for integrated management of chickpea wilt[J]. Biol.Control.2007,40:118-127
    Duijff B.J., Recorbet G, Peter A., Bakker H.M., Loper J.E., Lemanceau P. Microbial antagonism at the root level is involved in the suppression of fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358[J]. Phytopathology.1999,89: 1073-1079
    Edwards S.G., Seddon B. Bacillus brevis as a bio-control agent against Botrytis cinerea on protected Chinese cabbage[M]. Pudoc Scientific Publications,1992
    Edwards S.G, Seddon B. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro[J]. J Appl Microbiol.2001,91 (4):652-659
    Egamberdieva D., Kucharova Z., Davranov K., Berg G, Makarova N., Azarova T., Chebotar V., Tikhonovich I., Kamilova F., Validov S.Z., Lugtengerg B. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils[J]. Bio Fertili Soil.2010,47:197-205
    El-Abyad M.S., El-Sayed M.A., El-Shanshoury A.R., El-Sabbagh S., M. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp.[J]. Plant Soil. 1993,149:185-195
    Ellis R.J., Morgan P., Weightman A.J., Fry J.C. Cultivation-dependent and independent approaches for determining bacterial diversity in heavy-metal-contaminated soil[J]. Applied and Environmental Microbiology.2003,69 (6):3223-3230
    Englerbrecht M.C. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum[J]. ACIAR Bact.Wilt News Lett.1994,10:3-5
    Fegan M., Taghavi M., Sly L.I., Hayward A.C. Phylogeny,diversity and molecular diagnostics of Ralstonia solanacearum[M]. Berlin:Springer-Verlag,1998
    Fery P., Prior P., Marie C. Hrp-mutants of Pseudomonas solanacearum as pot ential biocontrol agents of tomato bacterial wilt[J]. Applied and Environmental Microbiology.1994,60:3175-3181
    Filion M., St-Arnaud M., SH. J.-H. Quantification of Fusarium solani f.sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media[J]. Phytopathology.2003,93 (2):229-235
    Garcia-Limones C., Harvas A., Navas-Cortes J.A., Jimenez-Diaz R.M., Tena M. Introduction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea(Cicer arietinum L.) and Fusarium oxysporum f.sp.ciceris[J]. Physiological and Molecular Plant Pathology.2002,61:325-337
    Geels F.P., Schippers B. Selection of Antagonistic Fluorescent Pseudomonas spp. and their Root Colonization and Persistence following Treatment of Seed Potatoes[J]. Phytopath Z.1983.108: 193-206
    Genin S., Boucher C. Ralstonia solanacearum:secrets of a major pathogen unveiled by analysis of its genome[J]. Mol Plant Pathol.2002,3:111-118
    Goldstein, Jerome. Compost suppresses disease in the lab and on the fields[J]. Bio Cycle.1998,11 (2): 62-64
    Granada G.A. Characteristics of colomdian isolates of Pseudomonas solanacearum from tobacco[J]. Phytopathology.1983,65:1004
    Guo J., Qi H., Guo Y., Ge H., Gong L., Zhang L., Sun P. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria[J]. Biol Control.2004,29:66-72
    Haggag W., Timmusk S. Colonization of peanut roots by bioflim-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease[J]. J Appl Microbiol.2008,104:961-969
    Hajdukiewicz P., Svab Z., Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation[J]. Plant Mol Biol.1994,25 (6):989-994
    Hales B.A., Morgan J.A.W., Hart C.A., Winstanley C. Variation in flagellin genes and proteins of Burkholderia cepacia[J]. J.Bacteriol.1998,180:1110-1118
    Han S. Diagnosis of plant disease[M]. Beijing:High Education Press,2001
    Haque M.A. Bacteriocin typing scheme and distribution of Pseudomonas solanacearum in fourecured tobacco in North Carolina[J]. Tobacco Science.1986,30:50-52
    Harrison U.J., Frank J.L. Disease management through suppressive soils[J]. Department of plantpathology,north carolina state university.1999,23 (9):14
    Hayward A. Ralstonia solanacearum[M]. London (GB):Academic Press,2000
    Hayward A.C. Characteristics of Pseudomonas solanacearum[J]. J Appl Abst.1964,27 (2):265-277
    Hayward A.C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annu Rew Phytopathol.1991,29:65-87
    He Z.G., Kisla D., Zhang L.W., Yuan C.H., K.B.. G.-C., Yousef A.E. Isolation and identification of a Paenibacillus polymyxa strain that co-produces a novel lantibiotic and polymyxin[J]. Appli.and Environ.Microbiol.2007,73:168-178
    Ho W., Chen L., Ko W. Pseudomonas solanacearum suppressive soils in Taiwan[J]. Soil Biology & Biochemistry.1988,20:489-492
    Hoitink H.A.J., Boehm M.J. Biocontrol within the context of soil microbial communities:a substrate-dependent phenomenon[J]. Ann.Rev.Phytopathol.1999,37:427-446
    Hornby D. Biological control of soil-borne plant pathogens[M]. Wiltshire:Redwood Press Limited, 1990
    Hu Y.S., Wu K., Liu N., Chen H.G, Jia X.C. Dynamics of microbial communities in bulk and developing cucumber rhizosphere soil[J]. Agricultural Sciences in China.2004,3 (5):376-383
    Husain A.K., Kelman A. Relation of slime production to mechanism of wilting and pathogenicity of Pseudomonas solanacearum[J]. Phytopathology.1958,48:155-165
    Jansson J.K. Marker reporter genes illuminating tools environmental microbiologists[J]. Curr Opin Microbiol.2003,6:310-316
    Jaynes J.M., Nagpala P., Destefano-Beltran L., Huang J.H., Kim J., Denny T., Cetiner S. Expression of a Cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum[J]. Plant Science Limerick,1993,89 (1):43-53
    Jilani G., Mahmood S., Chaudhry A., Hassan I., Akram M. Allelochemicals:sources, toxicity and microbial transformation in soil-a review[J]. ann Microbiol.2008,58:351-357
    Joseph S., David W.R. Molecular Cloning:A Laboratory Manual[M]. Beijing:Science Press,2002
    Kaga K., Hara H., Tanaka H. Suppressive to bacterial wilt of tobacco in Japan and population dynamics of Pseudomonas solanacearum in these soils[J], Ann.Phytopathol.Soc.Japan.1997,63:304-308
    Kamal K.P., Brian M.G. Biological control of plant pathogens[J]. The plant Health Instructor.2006:1-25
    Kamilova F., Validov S., Azarova T., Mulders I., Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selets for a new class of biocontrol bacteia[J]. Environmental Microbiology.2005,7 (11):1809-1817
    Kanda A., Ohnishi S., Tomiyama H., Hasegawa H., Yasukohchi M., Kiba A., Ohnishi K., Okuno T., Hikichi Y. Type Ⅲ-secretion machinery deficent mutants of Ralstonia solanacearum lose their ability to colonize, proliferate and induce host responses immediately after invasion, resulting in loss of their virulence[J]. J.Gen Plant Pathol.2003,69:250-257
    Kelman A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolim medium[J]. Phytopathology.1954,64:693-695
    Koki T., Makito K. Suppression of Ralstonia solanacearum in Soil Following Colonization by Other Strains of R.solanacearum[J]. Japanese Society of Soil Science and Plant Nutrition.2000,46(2): 449-459
    Komada H. Biological control of Fusarium wilts in Japan[M]. Wiltshire:Redwood Press Limited,1990
    Korhonen T.K., Nurmiaho-Lassila E.-L., Laakso T, Haahtela K. Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals[J]. Plant Soil.1986,90:59-69
    Kuiters A. Leaching of phenolic compounds from leaf and needle litter of several decidous and coniferous trees[J]. Soil Biology & Biochemistry.1986,18:475-480
    Lang J., Hu J., Ran W., Xu Y., shen Q. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer [J]. Biol Fertil Soils.2012,48:191-203
    Lemessa F., Zeller W. Isolation and characterisation of Ralstonia solanacearum strains from Solanaceae crops in Ethiopia[J]. J Basic Microbiol.2007,47 (1):40-49
    Leonardo D., Blanca L.F., Landa B. Host crop affects rhizosphere colonization and competitiveness of 2,4-Diacetylphloroglucinol-producing Pseudomonas fluorescens[J]. Phytopathology.2006,96: 751-762
    Lewis P., Marston A.L. GFP vectors for contolled expression and dual labelling of protein fusions in Bacillu subtilis[J]. Gene.1999,227:101-109
    Ling N., Huang Q., Guo S., Shen Q. Paenibacillus polymyxa SQR-21 systenmically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum[J]. Plant Soil.2011,341:485-493
    Liu Q., Li Z., Tang Z., Zeng X. Biological Control of Tobacco Bacterial Wilt by Soil Amendments and Antagonistic Bacteria[J]. Chinese J Biol Control.1999,15:94-95
    Liu X., He P., Jin J. Advances in effect of potassium nutrition on plant disease resistance and its mechanism[J]. Plant Nutr Fertil Sci.2006,12 (3):445-450
    Lwin M., Ranamukhaarachchi S.L. Development of biologicl control of Ralstonia solanacearum through antagonistic microbial populations[J]. International Journal of Agriculture & Biology.2006,8 (5):657-660
    Ma R.X., Feng Y. Effect of allelopathic chemical on growth and denitrification of Bacillus subtilis under anaerobic condition[J]. Chem Ecol.1998,2:187-193
    Madani M., Subbotin S.A., Moens M. Quantitative detection of the potato cyst nematode,Globodera pallida, and the beet cyst nematode, Heterodara schachtii, using real-time PCR with SYBR green Ⅰ dye[J]. Molecular and cellular probes.2005,19 (2):81-86
    Manjula K., Prodile A.R. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1[J]. Canadian Journal of Microbiology.2001,47: 618-625
    McLarghlin R.J., Sequeira L., Weingartner D.P. Biocontrol of bacterial wilt of potato with an avirulent strain of Pseudomonas solanacearum:interactions with root-knot nematodes[J]. American potato journal.1990,67:93-107
    Miller R.D., Ren M白肋烟低亚硝胺品种选育[J].中国烟草科学.2009,1:22-23
    Morgan J.A.W., Bellingham N.F., Winstanley C., Ousley M.A., Hart C.A., Saunders J.R. Comparison of flagellin genes from clinical and environmental Pseudomonas aeruginosa isolates[J]. Appl.Environ.Microbiol.1999,65:1175-1179
    Moschler, W.W, Shear GM., Rogers M.J., Terrill T.T. No-tillage tobacco studies in Virginia[J]. Tobacco Science.1971,15:12-14
    Mullins P., Wang J.S., Qiu D. Disease control and grown enhance rent effect of harpin on tobacco[J]. Phytopathology.1998,88:65
    Murry A.H., Iason G.R., Stewart C. Effect of simple phenolic compounds of heather(Calluma vulgaris) on rumen microbial activity in vitro[J]. Journal of Chemical Ecology.1996,22 (8):1493-1505
    Nakkeeran S., Dilantha Fernando W.G, Siddiqui Z.A. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases[M]. Netherlands:2005
    Nayyar A., Hamel C., Lafond G., Gossen B., Hanson K., Germida J. Soil microbial quality associated with yield reduction in continuous-pea[J]. Appl Soil Ecol.2009,43:115-121
    Nelson D.M., Ohene-Adjei S., Hu F.S., Cann I.K.O., Mackie R.I. Bacterial diversity and distribution in the holocene sediments of a Northern Temperate Lake[J]. Micobial Ecology.2007,54:252-263
    PandeyA. Solid-state fermentation[J]. Biochem.2003,13 (2-3):81-84
    Papavizas G.C. Thichoderma and Gliocladium:biology,ecology and potential for biocontrol[J]. Annu.Rev.Phytopathol.1985,23:23-54
    Papavizas G.C., Lewis J.A. The use of fungi in integrated contol of plant diseases[M]. Manchester University Press,1988
    Parez P. Root exudates of wild oats:Allelopathic effect on spring wheat[J]. Phytochemistry.1991,30 (7): 2199-2202
    Park K., Pau D., Kim K.Y., Nam W.K., Lee Y.K., Choi H.W., Lee S.Y. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum[J]. The Plant Pathology Journal.2007,23 (1):22-25
    Pastrik K.H., Maiss E. Detection of Ralstonia solanacearum in potato tubers by polymerase chain reaction[J]. J.Phytopathol.2000,148:619-626
    Patrick Z. Phytotoxic substance in arable soils associated with decomposition of plant residues [J]. Phytopathology.1963,53:152-161
    Patrick Z. Phytotoxic substance associated with the decomposition in soil plant residues[J]. Soil Sci. 1971,111(1):13-19
    Patterson D. Effects of allelopathic chemicals on growth and physiological response of soybean (Glycine max)[J]. Weed Sci.1981,29 (1):53-58
    Pramanik M.H.R., Nagai M., Asao T. Effects of temperature and photoperiod on the phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture[J]. J Chem Ecol.2000,28 (8): 1953-1967
    Qi Y., Xie Y., Zhang X., Zhang H. Study of DNA Extraction Methods in Fusarium oxysporum f.sp. cubense[J]. Biotechnology.2004,14(6):32-34
    Ramos H.J.O., Roncato-Maccari L.D.B., Souza E.M., Soares-Ramos J.R.L., Hungria M., Pedrosa F.O. Monitoring Azospirillium-wheat broad-host range vector[J]. Biotechnology.2002,97:243-252
    Raupach G.S., Kloepper J.W. Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methl bromide fumigation[J]. Plant Disease.2000,84: 1073-1075
    Reigosa M.J., Sanchez-Moreiras A., Gonzalez L. Ecophysiological approach in allelopathy[J]. Crit Rev Plant Sci.1999,18:577-608
    Roberts S.J., Eden-Green S.J., Jones P., Ambler D.J. Pseudomonas syzygii sp.nov,the cause of Sumatra disease of cloves[J]. Syst.Appl.Microbiol.1990,13:34-43
    Robertson A., E.,, Wechter W.P., Denny Timothy P., Fortnum B.A., Kluepfel D.A. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence[J]. Molecular Plant-Microbe Interactions.2004,17:1376-1384
    Rojo F.G., Reynoso M.M., Ferez M., Chulze S.N., Torres A.M. Biological control by Trichoderma species of Fusarium solani causing peanut crown root rot under field conditions[J]. Crop Protection.2007,26 (4):549-555
    Rorales W.M. Genetics of avirulence in Pseudomonas solanacearum[J]. Tobacco Abstract.1988,32 (2): 340
    Sabuquillo P., Cal A.D., Melgarejo P. Biocontrol of tomato wilt by Panicillium oxalicum preparations in different crop conditions[J]. Biol.Control.2006,37:256-265
    Saxena D., Stotzky G. Bacillus thuringiensis (t) toxin released from root exudates and biomass of Bt corn has no apparent effect on earrhworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology & Biochemistry.2001,33:1225-1230
    Schaad N.W.植物细菌鉴定实验指南[M].贵阳:贵州人民出版社,1986
    Schell M.A., Denny T.P., Huang J. Extracellular virulence factors of Pseudomonas solanacearum.Role in disease and their regulation. [M]. Dordrecht:Kluwer Academic Publishers,1994
    Schippers B., Bakker A.W., Backker P.A.H.M. Interactions of deleterious and geneficial rhizosphere microorganisms and the effect on cropping practices[J]. Ann.Rev.Phytopathol.1987,25: 339-358
    Schonfeld J., Heuer H., Van Elsas J.D., Smalla K. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments[J]. Appl Environ Microbiol.2003,69 (12):7248-7256
    Seal S.E., Jackson L.A., Young J.P., Daniels M.J. Differentiation of Pseudomonas solanacearum,Pseudomonas syzygii,Pseudomonas pickettii,and the blood disease bacterium by partial 16S rRNA sequencing:construction of oligonucleotide primers for sesitive detection by polymerase chain reaction[J]. J.Gen.Microbiol.1993,139:1587-1594
    Sekiguchi H., Watanabe M., Nakahara T., Xu B.H., Uchiyama H. Succession of bacterial community structure along the Changjiang river determined gradient gel electrophoresis and clone library analysis[J]. Applied and Environmental Microbiology.2002,68 (10):5142-5150
    Shah D.S.H., Perehinec T., Stevens S.M., Aizawa S., Sockett R.E. The flagellar filament of Rhodobacter sphaeroides:pH-induced polymorphic transitions and analysis of the fliC gene[J]. J.Bacteriol. 2000,182:5218-5224
    Shida O., Takagi H., Kadowaki K., Komagata K. Proposal for two new genera, Brevibacillus gen.nov. and Aneurinibacillus gen.nov.[J]. Int J System Bacteriol.1996,46 (4):939-946
    Staddon W.J., Duchesne L.C., Trevors J.T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns[J]. Microbial Ecology.1997,34:125-130
    Sushma GS. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants[J]. FEMS Microbiol Ecol.2003,45 (3): 219-227
    Taghavi M., Hayward C., Sly L.I., Fegan M. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum,Pseudomonas syzygii,and the blood disease bacterium of banana based on 16S rRNA gene sequences[J]. Int.J.Syst.Bacteriol.1996,46:10-15
    Tang C., Yong C. Collection and indentification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima)[J]. Plant Physiol.1982,69:155-160
    Tasteyre A., Karjalainen T., Avesani V., Delmee M., Collignon A., Bourlioux P., Bare M.C. Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups[J]. J.Clin.Microbiol.2000,38:3179-3186
    Timmusk S., Grantcharova N., Wagner D. Paenibacillus polymyxa invades plant roots and forms biofilms[J]. Appl Environ Microbiol.2005,71:7292-7300
    Tjamos E.C., Tsitsigiannis D.I., Tjamos S.E., Antoniou P.P., Katinakis P. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts[J]. Eur J Plant Pathol.2004,110:35-44
    Trillas M.I., Casanova E., Cotxarrera L. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control.2006a,39:32-38
    Trillas M.I., Casanova E., Cotxarrera L., Ordovas J., Borrero C., Aviles M. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biol Control.2006b,39:32-38
    Trillas. M.I., Casanova. E., Cotxarrera. L., Ordovas. J., Borrero. C., Aviles M. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biol Control.2006,39:32-38
    Utkhede R.S. Soil sickness,replant problem or replant disease and its integrated control[J]. Allelopathoy Journal.2006,18:56-62
    Van der Krift T., Kuikman P., Moller F., Berendse F. Plant species and nutritional-mediated control over rhizodeposition and root decomposition[J]. Plant Soil.2001,228:191-200
    van der Wolr J.M., Vriend S.G.C., Kastelein P., Nijhuis E.H., van Bekkum.P.J., van Vuurde J.W.L. Immunofluorescence colony-staining(IFC) for detection and quantification of Ralstonia(Pseudomonas) solanacearum biovar2(race3) in soil and verification of positive results by PCR and dilution plating[J]. Eur.J.Plant Pathol.2000,106:123-133
    Wang H., Zhang X., Zhao L., Xu Y. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor[J]. J Ind Microbiol Biotechnol.2008,35 (6):603-309
    Weir T., Park S.-W., Vivanco J. Biochemical and physiological mechanisms mediated by allelochemicals[J]. curr Opin Plant Biol.2004,7:472-479
    Weller S.A., Elphinstone J.G., Smith N.C., Boonham N., Stead D.E. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay[J]. Appl Environ Microbiol.2000,66 (7):2853-2858
    Winstanley C., Morgan J.A.W. The bacterial flagellin gene as a biomarker for detection,population genetics andd epidemilological analysis[J]. Microbiology.1997,143:3071-3084
    Wu H., Yang X., Fan J., Miao W., Ling N., Xu Y, Huang Q., Sheng Q. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms[J]. Biocontrol.2009,54:287-300
    Wu H.S., Yang X.M., Fan J., Q.,, Miao W.G., Ling N., Xu Y.C., Huang Q.W., Shen Q.R. Suppression of fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microrganisms[J]. BioControl.2008,54:287-300
    Wu H.W., Haig T., Pratley J. Allelochemicals in wheat (Triticum aestivum L.):variation of o phenolic acids in shoot tissues[J]. J Chem Ecol.2001a,27 (1):125-135
    Wu H.W., Haig T., Pratley J., Lemerle D., An M. Allelochemicals in wheat (Triticum aestivum L):production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one[J]. Journal of Chemical Ecology.2001b,27 (8):1691-1700
    Xi C.W., Lambrecht M., Vanderleyden J., Michiels J. Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies[J]. Microbiol.Meth.1999,35:85-92
    Xu S., Xiao B., Li Y. Progress on TMV Resistant Breeding of Tobacco[J]. Chinese Agricultural Science Bulletin.2009,25:91-94
    Ye S., Zhou Y, Sun Y, Zou L., Yu J. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt[J]. Environ Exp Bot.2006,56:255-262
    Yong X., Cui Y, Chen L., Ran W., Shen Q., Yang X. Dynamics of bacterial communities during solid-state fermentation using agro-industrial wastes to produce poluy-γ-glutamic acid, revealed by real-time PCR and denaturing gradient gel electrophoresis (DGGE)[J]. Appl Microbiol Biotechnol.2011,92:717-725
    Yoshimochi T., ZHang Y, Kiba A., Hikichi Y, Ohnishi K. Expression of hrpG and activation of response regulator HrpG are controlled by distinct signal cascades in Ralstonia solanacearum[J]. Journal of General Plant Pathology.2009,75:196-204
    Yu J., Ye S., Zhang M., Hu W. Effects of root exudates and aqueous root extracts of cucmber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber[J]. Biochemical systematics and ecology.2003,31:129-139
    Yu J.Q. Effects of root exudates of cucumber and allelochemicals on ion uptake by cucumber seedlings[J]. J Chem Ecol.1997,23 (3):817-827
    Yu J.Q. Autotoxic potential in vegetables crops[J]. In Ailelopathy update-basic and applied aspects.1999: 149-162
    Zhang F.S., Shen J., Li L. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China[J]. Plant Soil.2004,260:89-99
    Zhang N., Wu K., He X., Li S., Zhang Z., Shen B., Yang X. A new bioorganic fertilizer cna effectivily control banana wilt by strong colonization with Bacillus subtilis N11[J]. Plant Soil.2011,344: 87-97
    Zhang S., Raza W., Yang X., Hu J., Huang Q., Xu Y, Liu X., Ran W, Shen Q. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer[J]. Bio Fertil Soils. 2008,44:1073-1080
    Zhao Q., Dong C., Yang X., Mei X., Ran W., Shen Q., XU Y. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilized[J]. Appl Soil Ecol.2011,47:67-75
    蔡燕飞,廖宗文,章家恩.生态有机肥对土壤微生物多样性和番茄青枯病的影响[J].应用生态学报.2003,14(3):349-353
    车建美,刘波,蓝江林.短短芽孢杆菌JK-2的GFP标记及其抑菌作用[J].中国生物防治.2010,26(2):230-234
    陈翠莲The measurement of SOd activity by NBT[M]高等教育出版社,2000
    陈瑞泰,朱贤发,王智发.全国16个主产烟省(区)烟草侵染性病害调查报告[J].中国烟草科学.1997.4:1-7
    陈晓红,邹志荣.温室蔬菜栽培连作障碍研究现状及防治措施[J].陕西农业科学.2002,(12):16-17
    陈志杰,梁银丽,张锋.温室土壤连作对黄瓜主要病害的影响[J].中国生态农业学报.2008,16(1):71-74
    邓阳春,黄建国.长期连作对烤烟产量和土壤养分的影响[J].植物营养与肥料学报.2010,16(4):840-845
    丁海兵,郭亚利,黄建国.连作烤烟不同粒级土壤酶活性研究[J].耕作与栽培.2005,5:13-15
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    董怀玉,姜玉,徐秀德,王丽娟,程根武.玉米丝黑穗病接种浓度与发病关系研究[J].玉米科学.2007,15(5):139-141
    巩普遍.过氧化物酶活性的测定[M].高等教育出版社,2000
    关松荫.氧化还原酶[M].农业出版社,1986
    郭亚利.烤烟根系分泌物和提取物对幼苗生长及土壤酶活性的影响[J].植物营养学.2006:44
    郭亚利,李明海,吴洪田,袁玲,黄建国.烤烟根系分泌物对烤烟幼苗生长和养分吸收的影响[J].植物营养与肥料学报.2007,13(3):458-463
    韩雪,吴凤芝,潘凯.根系分泌物与土传病害关第之研究综述[J].植物保护科学.2006,22(2):316-318
    郝文雅,冉炜,沈其荣,任丽轩.西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响[J].中国农业科学.2010,43(12):2443-2452
    郝晓娟,刘波,谢关林,葛慈斌,林抗美.短短芽孢杆菌JK-2菌株对番茄枯萎病的抑菌作用及其小区防效[J].中国生物防治.2007a,23(2):233-236
    郝晓娟,刘波,谢关林,葛慈斌,林娟.短短芽孢杆菌jk-2菌株抑菌物质特性的研究[J].浙江大学学报(农业与生命科学版).2007b,33(5):484-489
    何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理[J].自然科学进展.1995,5: 7-16
    何欣,郝文雅.,杨兴明,沈其荣,黄启为.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报.2010a,16:978-985
    何欣,黄启为,杨兴明,冉炜,徐阳春,沈标,沈其荣.香蕉枯萎病致病菌筛选及致病菌浓度对香蕉枯萎病的影响[J].中国农业科学.2010b,43:3809-3816
    胡元森,吴坤,李翠香,贾新成.黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析[J].中国农业科学.2007,40(10):2267-2273
    华静月,何礼远.我国植物青枯菌的生化型和其他生理差异[J].植物保护学报.1984,11(1):43-50
    黄福新,陈水惠,周兴华.烟草青枯病综合防治研究[J].广西农业科学.1997:32-35
    霍沁建,张深,王若焱.烟草青枯病研究进展[J].植物保护科学.2007,23(8):364-368
    纪成灿,方树民,顾钢,林海,吴正举,陈剑芳.烟草品种抗表枯病鉴定中的相关因素分析[J].中国烟草科学.2000,(2):14
    季学军,竟丽丽,马称心,孙学永.烟草青枯病抗性的研究进展[J].安徽农业科学.2008,10:4158-4159
    晋艳,杨宇虹,段玉琪.连作对烟叶产量质量的影响[J].西南农业学报.2004,17:267-272
    康耀卫,何礼远.植物青枯菌致病机理[J].自然科学进展.1995,(5):199-222
    柯文辉.烟草连作障碍的根际微生态研究[J].农学.2009,硕士:71
    孔维栋,刘可星,廖宗文.不同腐熟程度有机物料对土壤微生物群落功能多样性的影响[J].生态学报.2005,25(9):2291-2296
    黎定军,廖晓兰,罗宽.湖南烟草青枯病土壤拮抗菌的筛选[J].湖南农业大学学报.1997,(3):255-259
    李春俭,张福锁.微生物产生的生长调节物质与植物生长[J].世界农业.1995,8:42-43
    李合生.苯丙氨酸解氨酶(PALase)活性的测定[M].高等教育出版社,2000
    李林章,谢从华,柳俊.茄科雷尔氏菌(Ralstonia solanacearum)分子生物学基础及其致病机制[J].中国马铃薯.2005,19(5):290-294
    李清飞,李红丽,王岩,刘国顺,郭桥燕.烟草青枯病病原菌的分离及其拮抗菌的筛选[J].河南农业科学.2005:51-53
    李胜华,谷丽萍,刘可星,廖宗文.有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控[J].植物营养与肥料学报.2009,15(4):965-969
    李天福,王彪,王树会.云南烤烟轮作的现状分析与保障措施[J].中国烟草科学.2006,27(2):48-51
    李天金.烤烟主要灾害性病害及其防治措施[J].植保技术与推广.2000,20(2):22-231
    李霞.土壤添加剂防治烟草青枯病研究[J].西南农业学报.2008,21(2):364-367
    李勇,刘时轮,黄小芳,万隆.人参(Panax ginseng)根系分泌物成分对人参致病菌的化感效应[J].生态学报.2009,29(1):161-168
    梁拥军,苏建通,孙向军,刘金兰,许宁子,张晋芳.2株芽孢杆菌对4种抗生素的耐药性研究[J].水产科学.2009,28(5):259-262
    廖宗文.工业废物的农用资源化[M].北京:中国环境科学出版社,1996
    凌宁,王秋君,杨兴明,徐阳春,黄启为,沈其荣.根际施用微生物有机肥防治连任西瓜枯萎病研究[J].植物营养与肥料学报.2009,15(5):1136-1141
    刘爱华,徐保民,陈燕.不同配方施肥及微生物菌肥对大蒜重茬病防治效果[J].山东农业科学.2009,6:91-92
    刘方,卜通达,何腾兵.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技.2002,6:30-331
    刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品.2006,8(9):37-40
    刘国顺.第三章烟草的产量与质量[M].北京:中国农业出版社,2003
    刘华山,张玉丰,韩锦峰.烟草花叶病防治研究进展[J].安徽农业科学.2005,33(8):1482-1483
    刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品.2007,9(03A):649-651
    刘乐涛,曹远银,肖淑芹.辣椒疫病拮抗菌的筛选及其防治效果研究[J].沈阳农业大学学报.2008,39(3):313-317
    刘润进,裘维蕃.内生菌根菌(VAM)诱导植物抗病性研究的新进展[J].植物病理学报.1994,24(1):1-4
    刘熙,廖本裕.无土蔬菜栽培[M].亚洲出版社,2004
    芦春莲,曹洪战,李兰会,冯付军.豆皮和麦麸对生长育肥猪饲喂价值的比较[J].畜牧与兽医.2007,39(2):33-35
    罗佳.微生物有机肥防治棉花黄萎病的作用机制[J].南京农业大学学报.2010a:71-88
    罗佳.微生物有机肥防治棉花黄萎病的作用机制[J].资源与环境科学学院.2010b,博士:71-88
    罗宽,王庄.利用拮抗的Pseudomonas spp.和无致病力的P. solanacearum防治青枯病的研究[J].植物病理学报.1983,13(1):51-56
    罗宽,何昆,匡传富.三株拮抗细菌对烟草青枯病的抑制效果[J].中国生物防治.2002,18(4):185-186
    罗战勇,陈元生,周会光.防治烟草青枯病的药剂筛选试验[J].广东农业科学.2000,(1):42-43
    吕建林,刘二明,柏连阳,肖启明,奉光平,燕玮婷.烟草青枯病生防菌混合接种对其定殖及防效的影响[J].中国生物防治.2010,26(2):200-205
    马晓凤,刘森.燕麦品质分析及产业化开发途径的思考[J].农业工程学报.2005,21:374-377
    潘建菁,巫升鑫,谢小丹.烟草种质资源及烤烟杂交组合对表枯病的抗性评价[J].种子.2004,7:13-16
    齐永志,甄文超,代丽.连作条件下不同品种草莓生长发育和根部病害发生状况的研究[J].中国农学通报.2008,24(6):374-378
    任欣正.不同寄主青枯菌菌株的比较研究[J].植物病理学报.1981,11(4):1-7
    阮维斌,王敬国,张福锁.根际微生态系统中的大豆孢囊线虫[J].植物病理学报.2002,32(3):200-205
    阮维斌,刘默涵,潘洁,王静,陆文龙,马成仓,王敬国,高玉葆.不同饼肥对边作黄瓜生长的影响及其机制初探[J].中国农业科学.2003,36(12):1519-1524
    宋瑞芳,丁永尔,宫长荣,徐光辉,韩晓哲.烟草抗病性与防御酶活性间的关系研究进展[J].中国农学通报.2007,23(5):309-314
    谭光赞,林捷,刘可星.复合微生物菌剂对番茄青枯病和土壤微生物多样性的影响[J].华南农业大学学报.2007,28(1):45-49
    谭秀梅,孔令刚,王华田.杨树人工林连作土壤中酚酸类化感物质的累秒规律及其对微生物群落的影响[J].山东大学学报.2008,41(1):14-19
    汤会君,张俊华,魏向峰.不同抗性烟草品种感染Pseudomonas syringae pv.tabaci病菌后几种酶活性测定[J].东北农业大学学报.2005,36(4):430-434
    田涛,王琦.绿色荧光蛋白作为分子标记物在微生物学中的应用[J].微生物学杂志.2005,25(1):68-73
    汪炳华.云南烟草主栽品种抗青枯病男间抗性测定及评价[J].农学院.2008,农业推广硕士:27
    王海梅.影响植物病害发生和流行的因素浅析[J].现代农业科技.2007,17:118-119
    王鹏.有机生物活性肥料对土壤肥力、微生物及酶活性的影响[J].安徽农学通报.2006,12(12):114-115
    王茹华,周宝利,张启发.嫁接对茄子根际微生物种群数量的影响[J].园艺学报.2005,32(1):124-126
    王淑英,赵学懿,丁国卫.甘肃春蚕豆叶部病害与流行因素的分析[J].甘肃农业科技.1998,2:37-39
    王永红,冉炜,张富国,杨兴明,徐阳春,沈其荣.混合菌种固体发酵菜粕生产氨基酸肥料的条件研究[J].中国农业科学.2009,42(10):3530-3540
    巫升鑫,方树民,潘建菁.烟草种质资源抗青枯病筛选鉴定[J].中国烟草学报.2004,10:22-25
    肖相政,刘可星,廖宗文.生物有机肥对番茄青枯病的防效研究及机理初探[J].农业环境科学学报.2009,28(11):2368-2373
    肖相政,刘可星,廖宗文,杜建军.枯草芽孢杆菌X—4对土壤青枯菌消长变化及防病效果的影响 [J].湖北农业科学.2011,50(2):2425-2428
    肖相政.,刘可星,廖宗文.短小芽孢杆菌BX-4抗生素标记及定殖效果研究[J].农业环境科学学报.2009,28(6):1172-1176
    肖永生,黎定军,袁俊鹏,黄汉军.对烟草青枯病苗期抗性鉴定接种方法的探讨[J].湖南农业科学.2000.3:39-40
    萧浪涛,王三根.多酚氧化酶活性测定[M].中国农业出版社,2005
    杨兰芳,庞静,彭小兰,闫静静.紫外分光光度法测定植物过氧化氢酶活性[J].现代农业科技.2009,20:364-366
    杨友才,周清明,朱列书.烟草品种青枯病抗病性及抗性遗传研究[J].湖南农业大学学报.2005,31(4):381-383
    杨宇红,刘俊平,杨翠荣.无致病力hrp-突变体防治茄科蔬菜青枯病[J].植物保护学报.2008,35:433-437
    姚革,张帆,李舟.土壤添加剂防治细菌性青枯病初报[J].生物防治通报.1994,10(3):106-109
    叶志毅,屠振力.桑树根的分泌物的根际微生物的研究[J].蚕业科学.2005,31(1):18-19
    易有金,尹华群,罗宽,刘学瑞,刘二明.烟草内生短短芽孢杆菌的分离鉴定及对烟草青枯病的防效[J].植物病理学报.2007a,37(3):301-306
    易有金,刘如石,尹华群,罗宽,刘二明,刘学端.烟草青枯病拮抗内生细菌的分离、鉴定及田间防效[J].应用生态学报.2007b,18(3):554-558
    尹华群.烟草青枯病(Ralstonia solanacearum)内生细菌及根围拮抗细菌研究[J].植物保护学院.2004
    尹华群,易有金,罗宽,匡传富,邓正平.烟草青枯病内生拮抗细菌的鉴定及小区防效的初步测定[J].中国生物防治.2004,20(3):219-220
    于淑池,张利于,王立安.拮抗细菌作为生物防治手段研究进展[J].河北农业科学.2004,8(1):62-65
    张慧.防治棉花黄萎病微生物有机肥的研制及其生物效应[J].南京农业大学学报.2008:43-47
    张慧,杨兴明,冉炜,徐阳春,沈其荣.土传棉花黄萎病拮抗菌的筛选及其生物效应[J].土壤学报.2008,45(6):1095-1101
    张深.烟草青枯病拮抗菌的筛选及抗菌物质的研究[J].微生物.2007,硕士:41
    张深,吴洪田,霍沁建,梁永江,薛小平,张洁,黄建国.烟草青枯病拮抗菌的筛选及抑菌活性的测定[J].烟草科技.2007,6:56-58
    张新慧,张恩和.不同植龄啤酒花根际微生物的变化及与产量和品质的关系[J].草业学报.2007,16(5):56-60
    张亚平,刘日明.根际微生物与地膜甜菜生长发育关系的研究[J].石河子大学学报(自然科学版). 1999,3(3):183-186
    张鋆.荧光定时定量PCR技术初探[J].生命科学趋势.2003,1(4):1-13
    赵健,兰成忠,陈庆河,邱荣洲,翁启勇.抗番茄青枯病内生拮抗细菌的筛选及室内防效测定[J].武夷科学.2006,22:49-54
    郑继法,丁爱云,张建华.烟草青枯病研究进展[J].山东农业大学学报.1998,(4):527-531
    郑继法,丁爱云,王智发.烟草细菌性病害识别及其综合防治技术[J].烟草研究与管理.2000,(5):26-27
    郑继法,王智发,丁爱云.烟草青枯病在山东的发生与防治对策[J].烟草研究与管理.2001,(1):31-32
    郑继法,张建华.,许永玉,王智发.利用无毒产细菌素菌株防治烟草细菌性青枯病[J].中国烟草.1994,(3):21-24
    周礼恺,张志明.土壤酶活性的测定方法[J].土壤通报.1980,5:37-39
    周清明,黎定军.烟草品种(系)对青枯病菌的抗性鉴定与分析[J].湖南农业大学学报.1996,22(3):275-277
    朱红根,蒋正根,胡蓉花.烟草青枯病发生与防治对策[J].江西烟草.1998,(4):26-27
    朱圣杰,丁克坚,檀根甲.植物细菌性青枯病的生物防治研究进展[J].安徽农业科学.2003,31(4):606-607,615
    朱贤朝,王彦亭,王智发.中国烟草病害[M].北京:中国农业出版社,2002
    诸葛根樟,Lapis D.B.水稻叶鞘腐败病的研究Ⅰ.病原菌的致病性及发病的影响因子[J].植物病理学报.1985,15(1):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700