用户名: 密码: 验证码:
基于分子生物学的堆肥功能微生物种群与体系基质特性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业废物堆肥化过程中细菌和真菌种群是堆肥微生物的重要组成成分。它们的种群组成及动态变化与堆肥化过程中各理化因子密切相关。目前学者对堆肥基质中不同的理化因子对细菌和真菌等微生物群落的影响大小及显著性缺乏整体的认识。因此判断不同理化因子对细菌和真菌等微生物种群得影响大小及显著性对于我们优化堆肥工艺、提高堆肥效率意义重大。本研究选用稻草秸秆、菜叶、土壤和麸皮等原料按照11:3:8:2比例(干重)均匀混合模拟农业废物堆肥,使用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术研究了堆肥化过程中细菌、真菌的种群动态变化特征。对细菌和真菌DGGE图谱去除背景噪音后进行条带匹配分析,以条带在不同泳道中亮度峰值的百分含量构建细菌和真菌的物种组成矩阵。使用Canoco4.5软件对获得的细菌、真菌种群数据与堆肥过程因子进行冗余分析(redundancy analysis,RDA)。结果显示,这些过程因子分别解释了73.2%和75.5%的细菌和真菌种群的变化。细菌种群组成的动态变化与WSC、铵态氮和硝态氮显著相关。它们分别解释了19.5%(P=0.002)、14.1%(P=0.004)和8.5%(P=0.002)的细菌种群组成。堆体温度、WSC和含水率显著影响真菌种群组成。它们分解解释了17.0%(P=0.002)、11.8%(P=0.002)和8.5%(P=0.01)的真菌种群数据。这些过程因子的有效调控对于优化农业废物堆肥过程中细菌和真菌的降解活性,进而促进堆肥的顺利完成具有重要意义。
     氨是堆肥材料中主要的微生物可利用性含氮化合物,氮素的损失形式之一是氨的挥发。微生物将氨氧化为亚硝酸盐是硝化作用的限速步骤,决定着堆肥体系氮素得转移转化平衡。堆肥体系细菌和古细菌均具有编码氨单加氧酶的amoA功能基因,负责将氨转化为羟胺,完成堆肥体系氨的最终生物氧化。目前学界对氨氧化细菌和氨氧化古细菌在堆肥体系中的存在特征及在多大程度上影响堆肥体系氮素得转移转化平衡缺乏认识。本研究主要采用编码氨氧化菌的氨单加氧酶的amoA基因PCR-DGGE技术和荧光定量聚合酶链式反应(real-time PCR)技术,并结合堆肥基质的潜在硝化能力,比较农业废物堆肥过程中氨氧化古细菌和氨氧化细菌对堆肥基质硝化能力的贡献能力差异。结果显示,在每单位样品干重中,潜在硝化活性取值变化范围是29.3~89.9ng NO2-/(g min)。在堆肥2~6d内收集到的样品体现最高的硝化活性。随着高温期的到来,堆肥基质潜在硝化能力迅速降低,在腐熟期潜在硝化能力进一步增加,堆肥结束时达到66.1ng NO2-/(g min)。氨氧化古细菌和氨氧化细菌对堆肥理化参数的响应存在差异。古细菌amoA基因在整个堆肥进程中均有存在,主要来自于土壤/沉积物聚类(soil/sedimentcluster),这些物种与Candidatus Nitrososphaera gargensis等氨氧化古细菌有很近的遗传距离。而细菌的amoA基因仅在堆肥升温期和腐熟期检测到,全部属于亚硝化单孢菌属(Nitrosomonas),这些基因序列与欧洲亚硝化单孢菌(Nitrosomonas europaea)、Nitrosomonas communis/nitrosa等文献报道较多的已分离鉴定的亚硝化单孢菌发育关系最为接近。堆肥高温期和降温期过高的堆体温度和氨氮含量严重抑制了氨氧化细菌的种群活性。另外,氨氧化古细菌和细菌amoA基因DGGE图谱显示,古细菌amoA基因多样性在堆肥高温期达到最大值,而堆肥基质的潜在硝化能力同时达到峰值。潜在硝化能力PAO和古细菌amoA基因丰度之间存在显著正相关(R2=0.554, P<0.001),氨氧化古细菌对微生物氨氧化的功能主导作用主要发生在高温期和降温期。氨氧化细菌与堆肥基质潜在硝化活性同样显著正相关(R2=0.503,P=0.03),但这种对氮素转移转化的驱动作用主要体现在升温期和腐熟期。
     木质纤维素因为结构复杂能够抵御微生物的生物降解作用,严重减缓了废物的堆肥化降解速度。大量研究表明,通过添加某些木质纤维素降解菌剂,可以有效地促进堆肥体系木质纤维素等难降解有机物的生物降解,提高堆肥效率并最终改善堆肥产品质量。黄孢原毛平革菌(Phanerochaete chrysosporium)是目前为止发现的降解木质素成分能力最强的一种白腐真菌(white-rot fungi)。近年来学者主要关注于P. chrysosporium接种对堆肥体系腐熟度指数、酶活、木质素降解速率和重金属毒性的钝化等影响。然而,我们对接种P. chrysosporium对农业废物堆肥化体系本土细菌和真菌种群的影响仍然知之甚少。采用不同阶段接种黄孢原毛平革菌(P. chrysosporium),设置4个堆肥体系,分别编号为Run A、Run B、Run C和Run D,每个体系设有3个平行。其中Run A作为没有接种P.chrysosporium的菌丝体的控制体系;Run B仅在堆肥的一次发酵阶段(2d)接种了1%的P. chrysosporium菌丝体(湿重/堆肥原料干重,下同);Run C仅在二次发酵阶段(20d)接种了1%的P. chrysosporium菌丝体;Run D在一次发酵阶段和二次发酵阶段均接种1%的P. chrysosporium菌丝体。我们采用荧光定量PCR、克隆文库构建和PCR-DGGE等分子生物学技术研究不同P. chrysosporium的接种方式,及这些方式引起的基质异质性对农业废物堆肥体系本土细菌和真菌种群的影响。采用回归分析(regression analysis)、冗余分析(RDA)和方差分离(variance partition analysis)等多元分析方法计算和判定这些因素的影响大小及显著性。结果表明,不同P. chrysosporium接种方式显著改变了堆体基质的堆体温度、氨态氮、硝态氮、WSC、pH和C/N等参数;不同接种处理的堆体半纤维素、纤维素与木质素的降解率最终达到堆肥结束时的50%、45%和40%。在二次发酵阶段接种P. chrysosporium对木质素降解的促进作用更加明显。 P.chrysosporium接种对细菌种群丰度具有一定的刺激作用。一次发酵阶段和二次发酵阶段接种P. chrysosporium的堆体16S rDNA基因数量均显著高于未接种堆体。这也许说明,低分子量的有机物质被P. chrysosporium产生的各种胞外酶作用后释放到堆肥基质中,进而刺激了本土细菌种群的生长和代谢。细菌16S rDNA基因数量与堆体温度、铵态氮显著正相关,而与硝态氮显著负相关。不同P.chrysosporium接种策略下细菌种群组成与C/N、堆体温度和WSC显著相关。方差分离分析结果显示,它们分别解释了7.9%(P=0.03)、7.7%(P=0.026)和7.5%(P=0.034)的细菌种群组成。不同接种方式引起的堆肥基质条件变化(35.1%,P=0.002)对细菌群落的影响比接种本身(20.5%,P=0.048)更大。这些结果表明P. chrysosporium菌剂主要通过提高堆体温度、改善基质营养物质的可利用性和改变其他参数的方式来影响堆肥体系本土细菌群落的数量及组成。
     克隆测序和系统发育树构建结果表明,20个堆肥样品共获得956个有效测序结果,分属于13种真菌物种。不同P. chrysosporium接种方式下的堆肥样品本土优势真菌为子囊菌门的产黄顶孢霉(Acremonium chrysogenum)、白地霉(Galactomyces geotrichum)和嗜热节格孢霉(Scytalidium thermophilum)等真菌。担子菌门的灰盖鬼伞(Coprinopsis cinerea)和未定地位真菌(Fungi incertaesedis)的奥古斯塔被孢霉(Mortierella angusta)在堆肥样品中也大量存在。枝状枝孢霉(Cladosporium cladosporioides)、隐球酵母菌(Cryptococcuspodzolicus)、 Cystofilobasidium macerans、德巴利酵母菌(Debaryomycesnepalensis)、阿姆斯特丹散囊菌(Eurotium amstelodami)、稻黑孢霉(Nigrosporaoryzae)与小不整球壳菌(Plectosphaerella cucumerina)数量较少,仅在堆肥初期存在(1d~7d)。一次发酵阶段未接种P. chrysosporium的堆体真菌丰度显著高于接种处理的堆体。在二次发酵阶段,真菌种群总数与本土真菌数逐渐降低,不同处理间没有显著差异。二次发酵阶段接种的外源白腐真菌P. chrysosporium能够比较顺利的完成在堆肥基质中的定殖与生长,其数量占总真菌总数的17.8~26.7%。堆肥初始样品本土真菌组成与后期样品差异明显,这一差异主要是由堆肥温度的变化所引起。二次发酵阶段接种显著改变了本土真菌种群组成。二次发酵阶段接种的堆体本土优势真菌物种主要为产黄顶孢霉(A. chrysogenum)和白地霉(G. geotrichum);而未接种的堆体其本土优势真菌物种主要为枝状枝孢霉(C. cladosporioides)和嗜热节格孢霉(S. thermophilum)。回归分析显示本土真菌种群数量与C/N、WSC显著正相关,而与硝态氮显著负相关。冗余分析表明本土真菌种群的动态变化与C/N、含水率和硝态氮显著相关。 P.chrysosporium接种改变了堆肥基质的C/N、含水率和硝态氮等因素,进而影响本土真菌种群结构与丰度。
Bacteria and fungi species play significant roles in the decomposition andmineralization of agricultural organic wastes during composting. Their communitycompositions are likely influenced by several physico-chemical parameters incomposting systems. So far, the physico-chemical parameters have not beenevaluated simultaneously with the bacterial and fungal composition changes toseparate out their relative importance. It is of interest to conduct such research todetermine to what extent of differences in bacterial and fungal communities areinfluenced by these parameters, respectively. The goal of this study was to identifyand prioritize some of the physico-chemical parameters that contributed to bacterialand fungal community compositions during agricultural waste composting. Ricestraw, vegetables, soil and bran were homogenized at a ratio of11:3:8:2to simulateagrcultural wastes composting. Bacterial and fungal community compositions weredetermined by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE). DGGE banding profiles both for bacterial and fungal community weredigitized after average background subtraction for the entire gel.The relativeintensity of a specific band was transformed according to the sum of intensities of allbands in a pattern. Redundancy analysis (RDA) was conducted to determine therelationships between microbial community structure and physico-chemicalparameters by Canoco (version4.5). The results showed that approximate73.2%and75.5%of the variation in the bacterial and fungal species data were explained by allparameters. The temporal variation of bacterial community composition wassignificantly related to WSC (19.5%, P=0.002), ammonium (14.1%, P=0.004)andnitrate (8.5%, P=0.002), while the most variation in the distribution of fungalcommunity composition was statistically explained by pile temperature (17.0%,P=0.002), WSC (11.8%, P=0.002), and moisture content (8.5%, P=0.01). Thoseparameters were the most likely ones to influence, or be influenced by the bacterialand fungal species.
     NH_3and its unincorporated form NH4+are the most important nitrogenouscompounds available in the compost materials. An alkaline pH during thecomposting process may lead to substantial loss of nitrogen as gaseous NH3. Theoxidation of ammonia is the first and rate-limiting step of nitrification, anddetermines the transformation balance between oxidized and reduced forms ofnitrogen. Both ammonia oxidizing bacteria (AOB) and archaea (AOA) employ thesame functional amoA gene, encoding a subunit of the ammonia monooxygenaseenzyme responsible for the first step of the nitrification process. The roles of AOAand AOB, and to what extent these ammonia oxidizers might affect nitrogentransformation balance during the composting process are not well understood yet.The aim of this study was to compare the relative contribution of AOA and AOB tonitrification during agricultural waste composting. Potential ammonia oxidation(PAO) rate was also determined. The amoA gene abundance and composition weredetermined using quantitative PCR (qPCR) and DGGE, respectively. Relationshipsbetween PAO rates and the amoA gene abundance were determined to assess thecontribution of AOA and AOB to nitrification.The results showed that the PAO ratevaried between29.3and89.9ng NO2-min-1g-1DW compost sample, with samplescollected on day2to day6displaying the highest activities. The PAO rate decreasedsignificantly during the thermophilic stage and increased further during thematuration stage and reached66.1ng NO2-min-1g-1DW compost sample by the endof the process. The archaeal amoA gene was abundant throughout the compostingprocess. Phylogenetic analyses of the archaeal amoA gene fragments for day4showed that all AOA sequences fell within the soil/sediment lineage. While thebacterial amoA gene abundance decreased to undetectable level during thethermophilic and cooling stages. The high temperature and low oxygenconcentration during the thermophilic and cooling stages might have provided anunfavourable condition for the AOB populations. Phylogenetic analyses of thebacterial amoA gene fragments for day50showed that most AOB sequences showinghigher sequence similarity to Nitrosomonas europaea/communis. DGGE showedmore diverse archaeal amoA gene composition when the PAO rate reached peak values. A significant positive relationship was observed between the PAO rate andthe archaeal amoA gene abundance (R2=0.554; P<0.001), indicating that archaeadominated ammonia oxidation during the thermophilic and cooling stages. Bacteriawere also related to ammonia oxidation activity (R2=0.503; P=0.03) especiallyduring the mesophilic and maturation stages.
     As an important fraction of the total organic matter in the compost materials,the lignocellulose are resistant to biodegradation by microbial communities, addingadds difficulties to wastes disposal. Several species of basidiomycetes designated aswhite-rot fungi can efficiently decompose lignocellulose into carbon dioxide andwater in a variety of lignocellulosic materials. The inoculation with thoselignocellulolytic microorganisms has been widely used as a strategy that couldpotentially speed up the composting process and ultimately improve the quality ofcompost product. Phanerochaete chrysosporium (P. chrysosporium) has been widelyassumed one of the most active ligninolytic organisms among white-rot fungidescribed to date. Much attention has currently been drawn to the effects of P.chrysosporium inoculation on the sample maturity index, the enzyme activities andthe reduction of heavy metal toxicity. However, little information is available on theeffect of inoculation with P. chrysosporium on the indigenous microbialcommunities during agricultural waste composting. This research was conducted todistinguish between the separate effects of the P. chrysosporium inoculation andsample property heterogeneity induced by different inoculation regimes on theindigenous bacterial communities during agricultural waste composting. Fourseparate experiments, each in triplicate, were conducted in this experiment. Run Awas uninoculated with P. chrysosporium as control. Run B and Run C wereinoculated with1%of P. chrysosporium mycelium (fresh weight) during the firstfermentation phase (day2) and the second fermentation phase (day20), respectively.Run D was inoculated with the same amount of P. chrysosporium mycelium bothduring the first and the second fermentation phases. The bacterial communityabundance and structure were determined by the quantitative PCR and denaturinggradient gel electrophoresis analysis, respectively. Results showed that different inoculation regimes changed pile temperature, ammonium, nitrate, WSC, pH andC/N. The ratios of lignocellulose degradation for all runs reached final values ofabout50%,45%and40%for cellulose, hemicellulose and lignin, respectively.Statistically significant higher bacterial16S rDNA gene abundance was obtained intreatments with P. chrysosporium inoculation treatments, indicating a significantstimulatory effect of P. chrysosporium inoculation on the bacterial communityabundance. The bacterial community abundance significantly coincided with piletemperature, ammonium and nitrate (P<0.006). Variance partition analysis showedthat the P. chrysosporium inoculation directly explained20.5%(P=0.048) of thevariation in the bacterial communities, whereas the sample property changes inducedby different inoculation regimes indirectly explained up to35.1%(P=0.002). Thebacterial community structure was significantly related to pile temperature, WSCand C/N ratio when P. chrysosporium were inoculated. The C/N ratio solelyexplained7.9%(P=0.03) of the variation in community structure, whereas piletemperature, WSC explained7.7%(P=0.026) and7.5%(P=0.034), respectively. P.chrysosporium inoculation affected the indigenous bacterial communities mostprobably indirectly through increasing pile temperature, enhancing the substrateutilizability and changing other physico-chemical factors.
     The fungal community structure and diversity were obtained by sequencingtechnology and the quantitative PCR (qPCR) method, respectively. By sequencing,956effective sequences in total were yielded for all20samples, which consisted of13unique OTUs at99%sequence identity. The dominant phylum across all pooledsamples was Ascomycota, specifically from the species Acremonium chrysogenum,Galactomyces geotrichum and Scytalidium thermophilum. Species of Coprinopsiscinerea and Mortierella angusta that affiliated with Basidiomycota and Fungiincertae sedis, respectively, were also extensively represented. Cladosporiumcladosporioides, Cryptococcus podzolicus, Debaryomyces nepalensis,Cystofilobasidium macerans, Eurotium amstelodami, Nigrospora oryzae, andPlectosphaerella cucumerina were present in samples collected during the earlystage (from day1to day7), but at low abundance. The white-rot fungi inoculants P. chrysosporium were present in relatively higher abundance in samples collectedduring the second fermentation phase (17.8-26.7%of total fungal communities). P.chrysosporium only accounted for4.4%of the total fungal population on day7forRun D. Principal component analysis based on relative OUT abundance indicatesthat the indigenous fungal communities might apparently not be changed by P.chrysosporium inoculants during the thermophilic stage (day4to day12, exceeding50°C). Indigenous fungal community structure significantly changed afterinoculation during the second fermentation phase (day13to day50). Samplesinoculated with P. chrysosporium during the second fermentation phase (i.e., Runs Cand D) contained higher proportion of A. chrysogenum and G. geotrichum affiliatedwith Ascomycota compared with the control (i.e., Run A) on Day50. Thosenon-inoculated samples (i.e., Runs A and B) that dominated by C. cinerea and S.thermophilum were well separated from those P. chrysosporium inoculated ones. Thetotal and indigenous fungal community abundances in samples with P.chrysosporium inoculation were statistically lower compared to the control (Run A)during the first7days. The regressions between fungal community abundance andsample properties showed that there were significant negative relationships betweenindigenous fungal18S rDNA gene abundance and C/N ratio (R2=0.4483, P<0.01)and WSC (R2=0.691, P<0.001), as well as a significant positive relationship betweenindigenous fungal18S rDNA gene abundance and moisture content (R2=0.2058,P=0.045). The results of redundancy analysis showed that the most variation indistribution of indigenous fungal community structure was statistically explained byC/N ratio (F=34.546, P=0.002), moisture content (F=3.471, P=0.032), and nitrateconcentration (F=5.219, P=0.012). Those factors as well as the interactions amongthem were the most likely ones to influence, or be influenced by the indigenousfungal communities in samples with different P. chrysosporium inoculation regimes.
引文
[1]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,13-512
    [2]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000
    [3]李艳霞,王敏健,王菊思,等.城市固体废弃物堆肥化处理的影响因素.土壤与环境,1999,8(1):61-65
    [4] Tiquia S M, Wan J H C, Tam N F Y. Microbial population dynamics andenzyme activities during composting. Compost Science and Utilization,2002,10(2):150-161
    [5]刘有胜,杨朝晖,曾光明,等.PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析.环境科学学报,2007,27(5):1-6
    [6]韩如砀,闵航,陈美慈,等.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析.微生物学报,2002,42(2):138-144
    [7]杨虹,李道棠,朱章玉.高温嗜粪菌的选育和猪粪发酵研究.上海环境科学,1999,18(4):170-172
    [8]杨朝晖,刘有胜,曾光明,等.厨余垃圾高温堆肥中嗜热细菌种群结构分析.中国环境科学,2007,27(6):733-737
    [9] Peter M D, William C G. Microbial diversity in hot synthetic compost asrevealed by PCR-amplified rRNA sequences from cultivated isolates andextracted DNA. Microbiology Ecology,2001,35:207-216
    [10] KhalilA I, Beheary M S, Salem E M. Monitoring of microbial population andtheir cellulolytic activities during the composting of municipal solid waste.World Journal of Microbiology and Biotechnology,2001,17:155-161
    [11] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in acompost environment a review. Bioresource technology,2000,72:169-183
    [12]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [13]杨恋,杨朝晖,曾光明,等.好氧堆肥高温期的嗜热真菌和嗜热放线菌群落结构.环境科学学报,2008,28(12):2514-2521
    [14] Gullen D. Recent advances on the molecular genetic fungi. Biotechnology,1997,53:273-289
    [15]黄丹莲,曾光明,胡天觉,等.白腐菌应用于堆肥处理含木质素废物的研究.环境污染治理技术与设备,2005,6(2):29-32
    [16] Collins P J, Field J A, Teunissen P, et al. Stabilization of lignin peroxidases inwhite rot fungi by tryptophan. Applied and Environmental Microbiology,1997,63(7):2543-2548
    [17] Ferraz A, Rodriguez J, Freer J, et al. Biodegradation of Pinusradiate softwoodby white-rot brown-rot fungi. World Journal of Microbiology&Biotechnology,2001,17:31-34
    [18] Yu M, Zeng G, Chen Y, et al. Influence of Phanerochaete chrysosporium onmicrobial communities and lignocellulose degradation during solid-statefermentation of rice straw. Process Biochemistry,2009.44:17-22
    [19] Zeng G, Yu M, Chen Y, et al. Effects of inoculation with Phanerochaetechrysosporium at various time points on enzyme activities during agriculturalwaste composting. Bioresource Technology,2010,101:222-227
    [20] Huang D, Zeng G, Feng C, et al. Mycelial growth and solid-state fermentationof lignocellulosic waste by white-rot fungus Phanerochaete chrysosporiumunder lead stress. Chemosphere,2010,81:1091-1097
    [21]李国学,张祖锡,白瑛.高温堆肥和沤肥碳氮转化和杀灭病原菌的比较研究.北京农业大学学报,1995,21(3):286-290
    [22]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究.华中科技大学学报(城市科学版),2002,19(2):57-59
    [23]刘志恒,姜成林.放线菌现代生物学与生物技术.北京:高等教育出版社,2004,210-218
    [24]闫江,江娟.生活垃圾厌氧堆肥产甲烷及古细菌多样性分析.环境科学与技术,2006,29(4):9-11
    [25] Maeda K, Toyoda S, Shimojima R, et al. Source of nitrous oxide emissionsduring the cow manure composting process as revealed by isotopomeranalysis of and amoA abundance in betaproteobacterial ammonia-oxidizingbacteria. Applied Environmental and Microbiology,2010,76,1555-1562
    [26] Yamamoto N, Otawa K, Nakai Y. Diversity and abundance ofammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattlemanure composting. Microbial Ecology,2010,60,807-815
    [27] De Gannes V, Eudoxie G, Dyer D H et al. Diversity and abundance ofammonia oxidizing archaea in tropical compost systems. Frontiers inMicrobiology,2012,3:244
    [28] Xiao Y, Zeng G M, Yang Z H, et al. Continuous thermophilic composting(CTC) for rapid biodegradation and maturation of organic municipal solidwaste. Bioresource Technology,2009,100(20):4807-4813
    [29] Baziramakenga R, Simard R R. Low molecular weight aliphatic acid contentsof composted manures. Journal of Environmental Quality,1998,27(3):557-561
    [30] Stegera K, Jarvisa A, Smarsb S, et al. Comparison of signature lipid methodsto determine microbial community structure in compost. Journal ofMicrobiological Methods,2003,55(2):371-382
    [31]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,13-512
    [32]任连海,何亮,宁娜,等.餐厨垃圾高效好氧堆肥过程参数的影响因素研究.北京工商大学学报(自然科学版),2010,28(5):40-44
    [33] Nakasaki K, Yaguchi H, Sasaki Y, et al. Effects of pH control on compostingof garbage. Water Management and Research,1993,11(2):117-125
    [34] Sánchez-Monedero M A, Roig A, Paredes C, et al. Nitrogen transformationduring organic waste composting by the Rutgers system and its effect on pH,EC and maturity of the composting mixtures. Bioresource Technology,2001,78(3):301-308
    [35] Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminatedsolid waste with inocula of white-rot fungus. Bioresource Technology,2007,98(2):320-326
    [36] Zeng G, Yu M, Chen Y, et al. Effects of inoculation with Phanerochaetechrysosporium at various time points on enzyme activities during agriculturalwaste composting. Bioresource Technology,2010,101(1):222-227
    [37] Jeris J S, Regan R W. Controlling environmental parameters for optimumcomposting, Part II: Moisture, free air space and recycle. Compost Science,1973,14(2):132-149
    [38]陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2007,8-15
    [39] Macgregor S T. Composting process control based on interaction betweenmicrobial, heat output and temperature. Applied and EnvironmentalMicrobiology,1981,41(6):1321-1329
    [40]杨毓峰,薛澄泽,唐新保.畜禽废弃物好氧堆肥化条件研究.陕西农业科学,1996,45(6):10-11
    [41] Vuorinen A H, Saharinen M H. Evolution of microbialogical and chemicalparameters during manure and straw co-composting in a drum compostingsystem. Agriculture, Ecosystems and Environment,1997,66(1):19-29
    [42] Golueke C G. Principles of composting. In:The biocycle guide to the art andscience of composting. Emmaus:J G Press,1991,14-39
    [43]李艳霞,王敏健,王菊思,等.城市固体废弃物堆肥化处理的影响因素.土壤与环境,1999,8(1):61-65.
    [44] Eliane D G D, Angelo S M M, Carlota de O R Y, et al. Effect of carbon:nitrogen ratio (C:N) and substrate source on glucose-6-phosphatedehydrogenase (G-6-PDH) production by recombinant Saccharomycescerevisiae. Journal of Food Engineering,2006,75(1):96-103.
    [45]康湛莹,李瑞增,车承斌.重金属离子杀菌作用的机理.哈尔滨科学技术大学学报,1995,19(3):103-105
    [46] He M M, Tian G M, Liang X Q. Phytotoxicity and speciation of copper, zincand lead during the aerobic composting of sewage sludge. Journal ofHazardous Materials,2009,163(2-3):671-677
    [47]胡天觉.城市有机固体废物仓式好氧堆肥工艺改进及理论研究:[湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2005,19-40
    [48] Cajthaml T, Bhatt M, Sasek V, et al. Bioremediation of PAH-contaminatedsoil by composting: a case study. Folia Microbiologica,2002,47(6):696-700
    [49]王伟东.木质纤维素快速分解复合系及有机肥微好氧新工艺.北京:中国农业大学,2005.3-30
    [50]郁红燕,曾光明,黄国和,等.木质素降解真菌的筛选及产酶特性研究.应用与环境生物学报,2004,10(5):639-642
    [51]黄红丽,曾光明,黄国和,等.堆肥中木质素降解微生物及其对腐殖质形成作用.中国生物工程杂志,2004,24(8):29-31
    [52]席北斗,孟伟,黄国和,等.生活垃圾堆肥接种技术.环境科学,2003,24(1):157-160
    [53] Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminatedsolid waste with inocula of white-rot fungus. Bioresource Technology,2007,98:320-326
    [54] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situdetection of individual microbial cells without cultivation. MicrobiologicalResearch,1995,59(1):143-169
    [55] Burke T, Seidler R, Smith H. Editorial. Molecular Ecology,1992,1(1):1
    [56] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbialpopulation by denaturing gradient gel electrophoresis analysis of polymerasechain reaction-amplified genes encoding for16S rRNA. AppliedEnvironmental Microbiology,1993,59(3):695-700
    [57] Muyzer G, Brinkhoff T, Ulrich N, et al. Denaturing gradient gelelectrophoresis (DGGE) in microbial ecology. Molecular Microbial EcologyManual,1998,3.4.4:1-27
    [58]刘新春,吴成强,张昱,等.PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报,2005,25::842-843.
    [59] Cea M, Jorqueraa M, Rubilara O, et al. Bioremediation of soil contaminatedwith pentachlorophenol by Anthracophyllum discolor and its effect on soilmicrobial community. Journal of Hazardous Materials,2010,181(1-3):315-323
    [60] Maeda K, Hanajima D, Morioka R, et al. Characterization and spatialdistribution of bacterial communities within passively aerated cattle manurecomposting piles. Bioresource Technology,2010,101(24):9631-9637
    [61] Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogeneticprofile of eukaryotic communities in the composting process of rice strawestimated by PCR-DGGE analysis. Biology and Fertility of Soils,2004,40(5):334-344
    [62] Cahyani V R,Watanabe A, Matsuya K, et al. Succession of microbiotaestimated by phospholipids fatty acid analysis and changes in organicconstituents during the composting process of rice straw. Soil Science&PlantNutrition,2002,48(5):735-743
    [63] Steel H, Pen a E, Fonderie P, et al. Nematode succession during compostingand the potential of the nematode community as an indicator of compostmaturity. Pedobiologia,2010,53(3):181-190
    [64] Halet D, Boon N, Verstraete W. Community dynamics of methanotrophicbacteria during composting of organic matter. Journal of Bioscience andBioengineering,2006,101(4):297-302
    [65]李凤,曾光明,范长征,等.农业有机废物与城市生活垃圾堆肥高温期微生物种群结构比较.微生物学报,2009,36(11):1657-1663
    [66]王新新,韩祯,白志辉,等.含油污泥的堆肥处理对微生物群落结构的影响.农业环境科学学报,2011,30(7):1413-1421
    [67] Takaku H, Kodaira S, Kimoto A, et al. Microbial communities in the garbagecomposting with rice hull as an amendment revealed by culture-dependentand-independent approaches. Journal of Bioscience and Bioengineering,2006,101(1):42-50
    [68] Green S J, Michel Jr. F C, Hadar Y, et al. Similarity of bacterial communitiesin sawdust-and straw-amended cow manure composts. FEMS MicrobiologyLetters,2004,233(1):115-123
    [69] Vance I, Blayden SL, Tampion J. Cellulose degradation andcarboxymethylcellulase production by Sporocytophaga myxococcoides grownin an air-lift fermenter. Biotechnology Letters,1981,3(1):45-48
    [70] Zhu Y, Li H, Zhou H, et al. Cellulose and cellodextrin utilization by thecellulolytic bacterium Cytophaga hutchinsonii. Bioresource Technology,2010,101(16):6432-6437
    [71]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用.生态学杂志,2003,5:131-136
    [72]齐鸿雁,薛凯,张洪勋.磷脂肪酸谱图分析方法及其在微生物生态学中的应用.生态学报,2003,23:1576-1582
    [73]张洪勋,王晓谊.微生物生态学研究方法进展.生态学报,2003,23:988-995
    [74]姚槐应,何振立,黄昌勇.不同土地利用方式对红壤微生物多样性的影响.水土保持学报,2003,6:51-54
    [75]于树,汪景宽,李双异.应用PLFA方法分析长期不同施肥处理土壤微生物群落结构的影响.生态学报,2008,28(9):4221-4227
    [76]白震,张明,宋斗妍,等.不同施肥对农田黑土微生物群落的影响.生态学报,2008,28(7):3245-3254
    [77] Klamera M, B th E. Estimation of conversion factors for fungal biomassdetermination in compost using ergosterol and PLFA18:2ω6,9. Soil Biologyand Biochemistry,2004,36:57-65
    [78] Lei F, VanderGheynst J S. The effect of microbial inoculation and pH onmicrobial community structure changes during composting. ProcessBiochemistry,2000,35:923-929
    [79]高娃,于洁,乌兰,等.蒙古国传统发酵乳中部分乳杆菌16S rRNA-RFLP的分类.中国乳品工业,2010,1:4-7
    [80]张海涛,靳艳,虞星炬,等.16S rDNA-RFLP分析繁茂膜海绵可培养放线菌的多样性.微生物学报,2005,45(6):828-831
    [81]杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法.环境科学,2006,27(8):1613-1617
    [82]喻曼,许育新,曾光明,等.RFLP法研究接种对农业废物堆肥微生物多样性的影响.农业环境科学学报,2010,29(2):396-399
    [83]郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,2004,15(11):2019-2024
    [84]姚斌,汪海珍,徐建民等.除草剂对水稻土微生物的影响.环境科学学报,2004,24(2):349-354
    [85] Toyota K, Kuninaga S. Comparison of soil microbial community betweensoils amended with or without farmyard manure. Applied Soil Ecology,2006,33(1):39-48
    [86] Cullings K, Raleigh C, New M H, et al. Effects of artificial defoliation ofpines on the structure and physiology of the soil fungal community of a mixedpine-spruce forest. Applied and Environmental Microbiology,2005,71(4):1996-2000
    [87] Chinalia F A, Killham K S.2,4-Dichlorophenoxyacetic acid (2,4-D)biodegradation in river sediments of Northeast-Scotland and its effect on themicrobial communities (PLFA and DGGE). Chemosphere,2006,64(10):1675-1683
    [88]邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源.食品与生物技术,2002,2(1):88-93
    [89]阮同琦,赵祥颖,刘建军.木聚糖酶及其应用研究进展.山东食品发酵,2008,1:42-45
    [90] Reese E T. The biological degradation of soluble cellulose derivatives and itsrelationship to the mechanism of cellulose hydrolysis. Journal of Bacteirology,1950,59(4):485-497
    [91] Strom P F. Identification of thermophilic bacteria in solid waste composting.Applied and Environmental Microbiology,1985,50(4):906-913
    [92] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in acompost environment: a review. Bioresource Technology,2000,72:169-183
    [93] Crawford J H. Composting of agricultural wastes: a review. ProcessBiochemistry,1983,18:14-18
    [94] Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignindegradation pathway in actinomycetes. Journal of General and AppliedMicrobiology,1992,138:2441-2448
    [95] Carol A C. Bacterial associations with decaying wood: a review. InternationalBiodetertoration&Biodegradation,1996,37(1):101-107
    [96] Lokesh K V.(14)C-lignin-lignocellulose biodegradation by bacteria isolatedfrom polluted soil. Indian Journal of Experimental Biology,2001,39(6):584-589
    [97] Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose byPhanerochaete chrysosporium in continuously agitated culture is associatedwith enhanced production of lignin peroxidase. Journal of Biotechnology,2000,78(2):185-192
    [98] Shingo K, Masanori A, Noriko O, et al. Degradation of a non-phenolic L-O-4substructure and of polymeric lignin model compounds by laccase ofCoriolusversicolor in the presence of1-hydroxybenzotriazole. FEMSMicrobiology Letters,1999,170(1):51-57
    [99] Tuomela M, Oivanenl P, Hatakka A. Degradation of synthetic14C-lignin byvarious white-rot fungi in soil. Soil Biology&Biochemistry,2002,34(11):1613-1620
    [100]Reddy G V. Babu P R, Komaraiah P, et al. Utilization of banana waste for theproduction of lignolytic and cellulolytic enzymes by solid substratefermentation using two Pleurotus species (P. ostreatus and P. sajorcaju).Process Biochemistry,2003,38(10):1457-1462
    [101]Zeng G M, Huang H L, Huang D L, et al. Effect of inoculating white-rotfungus during different phases on the compost maturity of agricultural wastes.Process Biochemistry,2009,44(4):396-400
    [102]杨琦,张亚雷,汪立忠,等.垃圾填埋场的厌氧降解作用及其微生物类群.中国沼气.1997,15(3):7-10
    [103]Kenneth E H, Robert E K, Robert K H. Temperature effects: methanegeneration from landfill samples. Journal of Environmental EngineeringDivision,1982,108(4):629-638
    [104]Huang Y, Ao X L, Zhao X. The mechanism of PCP biodegradation and thecapacity for PCP degraded by ECMF. Ecology and Environment,2006,15(5):1080-1085
    [105]Salkinoja-Salonen M S, Hakulinen R, Valo R, et al. Biodegradation ofrecalcitrant organochlorine compounds in fixed film reactors. Water Scienceand Technology,1986,15(8-9):309-319
    [106]Tuomela M, Lyytik inen M, Oivanen P, et al. Mineralization and conversionof pentachlorophenol (PCP) in soil inoculated with the white-rot fungusTrametes versicolor. Soil Biology and Biochemistry,1999,31(1):65-74
    [107]Laine M M, Ahtiainen J, Wagman N, et al. Fate and toxicity of chlorophenols,polychlorinated dibenzo-p-dioxins and dibenzofurans during composting ofcontaminated sawmill soil. Environmental Science andTechnology,1997,31(11):3244-3250
    [108]Jiang X Y, Zeng G M, Huang D L, et al. Remediation of pentachlorophenolcontaminated soil by composting with immobilized Phanerochaetechrysosporium. World Journal of Microbiology and Biotechnology,2006,22(9):909-913
    [109]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002:140-142
    [110]Jarvis, Sundberg C, Milenkovski S, et al. Activity and composition ofammonia oxidizing bacterial communities and emission dynamics of NH3andN2O in a compost reactor treating organic household waste. Journal ofApplied Microbiology,2009,106(5):1502-1511
    [111]Wessén E, Nyberg K, Jansson J K, et al. Responses of bacterial and archaealammonia oxidizers to soil organic and fertilizer amendments under long-termmanagement. Applied Soil Ecology,2010,45(3):193-200
    [112]K nneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophicammonia-oxidizing marine archaeon. Nature,2005,437:543-546
    [113]Venter J C, Remington K, Heidelberg J F, et al. Environmental genomeshotgun sequencing of the Sargasso Sea. Science,2004,304:66-74
    [114]Nicol G W, Schleper C. Ammonia-oxidizing Crenarchaeota: Important playersin the nitrogen cycle? Trends in Microbiology,2006,14(5):207-212
    [115]Purkhold U, Pommerening-Roser A, Juretschko S, et al. Phylogeny of allrecognized species of ammonia oxidizers based on comparative16S rRNAand amoA sequence analysis: implications for molecular diversity surveys.Applied and Environmental Microbiology,2000,66(12):5368-5382
    [116]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展.生态学报,2009,29(1):406-415
    [117]虞泳,曾光明,陈耀宁,等.农业废物好氧堆肥中氨氧化细菌的种群结构.环境科学,2011,32(11):298-303
    [118]Kowalchuk G A, Naoumenko Z S, Derikx P J L, et al. Molecular analysis ofammonia-oxidizing bacteria of the beta subdivision of the classProteobacteria in compost and composted materials. Applied andEnvironmental Microbiology,1999,65(2):396-403
    [119]Yamamoto N, Otawa K, Nakai Y. Diversity and abundance ofammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattlemanure composting. Microbial Ecology,2010,60,807-815
    [120]Xie K, Jia X, Xu P, et al. Improved composting of poultry feces viasupplementation with ammonia oxidizing archaea. Bioresource Technology,2012,120:70-77
    [121]Fukumoto Y, Osada T, Hanajima D, et al. Patterns and quantities of NH3, N2Oand CH4emissions during swine manure composting without forced aerationeffect of compost pile scale. Bioresource technology,2006,89:109-114
    [122]EI Kader N A, Robin P, Paillat J, et al. Turing, compacting and the addition ofwater as factors affecting gaseous emissions in farm manure composting.Bioresource Technology,2010,98(14):2619-2628
    [123]Szanto G L, Hamelers H V M, Rulkens W H, et al. NH3, N2O and CH4emissions during pas passively aerated composting of straw-rich pig manure.Bioresource Technology,2010,98(14):2659-2670
    [124]IPCC. Climate changes1995-the science of climate change. Contribution ofgroup I to second assessment report of the intergovernmental panel to climatechange.
    [125]Philippot L, Piutti S, Martin-Laurent F, et al. Molecular analysis of thenitrate-reducing community from implanted and maize-planted soils. Appliedand Environmental Microbiology,2005,68(12):6121-128
    [126]贺琪,李国学,张亚宁.高温堆肥中的氮素损失极其变化规律.农业环境科学学报,2005,24,1:169-173
    [127]张相锋,王洪涛,周辉宇,等.花卉废物和牛粪联合堆肥何总的氮素迁移.环境科学,2003,24,3:126-131
    [128]Zumft W G. Cell biology and molecular basis of denitrification. Microbiologyand Molecular Biology Reviews,1997,61(4):533-552
    [129]Shoun H, Kim D H, Uchiyama H, et al. Denitrification by fungi. FEMSMicrobiology Letters,1992,94(3):277-281
    [130]Tanimoto T, Hatano K, Kim D H, et al. Co-denitrification by the denitrifyingsystem of the fungus Fusarium oxysporurn. FEMS Microbiology Letters,1992,93(2):177-180
    [131]Philippot L. Denitrifying genes in bacterial and archaeal genomes.Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2002,1577(3):355-376
    [132]Cheneby D, Perrez S, Devroe C, et al. Denitrifying bacteria in bulk andmaize-rhizospheric soil: Diversity and N2O-reducing abilities. CanadianJournal of Microbiology,2004,50(7):469-474
    [133]Scala D J, Kerkhof L J. Horizontal heterogeneity of denitrifying bacterialcommunities in marine sediments by terminal restriction fragment lengthpolymorphism analysis. Applied and Environmental Microbiology,2000,66(5):1980-1986
    [134]Prieme A, Braker G, Tiedje J M. Diversity of nitrite reductase (nirK and nirS)gene fragments in forested upland and wetland soils. Applied andEnvironmental Microbiology,2002,68(4):1893-1900
    [135]Rich J J, Heichen R S, Bottomley P J, et al. Community composition andfunctioning of denitrifying bacteria from adjacent meadow and forest soils.Appliedand Environmental Microbiology,2003,69(10):5974-5982
    [136]Throb ck I N, Enwall K, Jarvis A, et al. Reassessing PCR primers targetingnirS, nirK and nosZ genes for community surveys of denitrifying bacteriawith DGGE. FEMS Microbiology Ecology,2004,49(3):401-417
    [137]Firestone M K, Smith M S, Firestone R B, et al. The influence of nitrate,nitrite and oxygen on the composition of the gaseous products ofdenitrification in soil. Soil Science Society of America Journal,1979,43(6):1140-1144
    [138]Davidson E A, Swank W T. Environmental parameters regulating gaseousnitrogen losses from two forested ecosystems via nitrification anddenitrification. Applied and Environmental Microbiology,1986,52(6):1287-1292
    [139]Weier K L, Doran J W, Power J F, et al. Denitrification and thedinitrogen/nitrous oxide ratio as affected by soil water, available carbon, andnitrate. Soil Science Society of America Journal,1993,57(1):66-72
    [140]Thomas K L, Lloyd D, Boddy L. Effects of oxygen, pH and nitrateconcentration ondenitrification by Pseudomonas species. FEMS MicrobiologyLetters,1994,118(12):181-186
    [141]Fromin N, Hamelin J, Tarnawski S, et al. Statistical analysis of denaturing gelelectrophoresis (DGE) fingerprinting patterns. Environmental Microbiology,2002,4(11):634-643
    [142]Fromin N, Hamelin J. Tarnawski S, et al. Statistical analysis of denaturing gelelectrophoresis (DGE) fingerprinting patterns. Environmental Microbiology,2002,4(11):634-643
    [143]Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects onbacterial community composition in the rhizosphere. Soil Biology andBiochemistry,2001,33:1437-1445
    [144]张金屯.数量生态学.北京:科学出版社,2004,131-180
    [145]Ter Braak C J F, Smilauer P. CANOCO Reference Manual and User’S Guideto Canoco for Windows (version4.5). New York:Centre for BiometryWageningen,2002
    [146]杨再超,王智慧,张朝晖,等.藓类附生原生动物群落对汞铊矿重金属污染的监测.环境科学学报,2010,30(7):1486-1491
    [147]陈旭,羊向东,董旭辉,等.近50年来环境变化对巢湖硅藻组合演替的影响.湖泊科学,2011,5:665-672
    [148]彭亿,李裕元,李忠武,等.亚热带稻田弃耕湿地土壤因子对植物群落结构的影响.应用生态学报,2009,20(7):1543-1550
    [149]Gilbride K A, Frigon D, Cesnik A, et al. Effect of chemical and physicalparameters on a pulp mill biotreatment bacterial community.Water research,2006,40:775-787
    [150]Andersen R, Grasset L, Thormann M N, et al. Changes in microbialcommunity structure and function following Sphagnum peatland restoration.Soil Biology and Biochemistry,2010,42:291-301
    [151]Ter Braak C J F.1986. Canonical correspondence analysis:a new eigenvectortechnique for multivariate direct gradient analysis. Ecology,67:1167-1179
    [152]吕晋,邬红娟,马学礼,等.武汉市湖泊蓝藻分布影响因子分析生态环境.生态环境,2008,17(2):515-519
    [153]栾青杉,孙军,宋书群,等.长江口夏季浮游植物群落与环境因子的典范对应分析.植物生态学报,2007,31(3):445-450
    [154]董莲花,李宝珍,袁红莉,等.褐煤腐殖酸对土壤氨氧化古细菌群落结构的影响.微生物学报,2010,50(6):780-787
    [155]Yan Q, Yu Y, Feng W, et al. Plankton community composition in the ThreeGorges Reservoir Region revealed by PCR-DGGE and its relationships withenvironmental factors. Journal of Environmental Sciences,2008,20(6):732-738
    [156]Liang C, Das K C, McClendon R W. The influence of temperature andmoisture contents regimes on the aerobic microbial activity of a biosolidscomposting blend. Bioresource Technology,2003,86(2):131-137
    [157]Hsu J H, Lo S L. Recycling of separated pig manure: characterization ofmaturity and chemical fractionation of elements during composting. WaterScience and Technology,1999,40:121-127
    [158]Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogeneticcomposition of bacterial communities responsible for the composting processof rice straw estimated by PCR-DGGE analysis. Soil Science and PlantNutrition,2003,49(4):619-630
    [159]Ishii K, Takii S. Comparison of microbial communities in four differentcomposting processes as evaluated by denaturing gradient gel electrophoresisanalysis. Journal of Applied Microbiology,2003,95(1):109-119
    [160]Tang J C, Shibata A, Zhou Q, et al. Effect of temperature on reaction rate andmicrobial community in composting of cattle manure with rice straw. Journalof Bioscience and Bioengineering,2007,104(4):321-328
    [161]Eiland F, Klamer M, Lind A M, et al. Influence of initial C/N ratio onchemical and microbial composition during long term composting of straw.Microbial Ecology,2001,41,272-280
    [162]Gelsomino A, Keijzer-Wolters A C, Cacco G, et al. Assessment of bacterialcommunity structure in soil by polymerase chain reaction and denaturinggradient gel electrophoresis. Journal of Micobiological Methods,1999(1-2),38:1-15
    [163]Nakasaki K, Tran L T H, Idemoto Y, et al. Comparison of organic matterdegradation and microbial community during thermophilic composting of twodifferent types of anaerobic sludge. Bioresource Technology,2009,100:676-682
    [164]Vivas A, Moreno B, Garcia-Rodriguez S, et al. Assessing the impact ofcomposting and vermicomposting on bacterial community size and structure,and microbial functional diversity of an olive-mill waste. BioresourceTechnology,2009,100:1319-1326
    [165]Roesti D, Gaur R, Johri B N, et al. Plant growth stage, fertilizer managementand bio-inoculation of arbuscularmycorrhizal fungi and plant growthpromoting rhizobacteria affect the rhizobacterial community structure inrain-fed wheat fields. Soil Biology and Biochemistry,2006,38:1111-1120
    [166]Borcard D, Legendre P, Drapeau P. Partialling out the spatial component ofecological variation. Ecology,1992,73:1045-1055
    [167]Yang Z H, Xiao Y, Zeng G M, et al. Comparison of methods for totalcommunity DNA extraction and purification from compost. AppliedMicrobiology and Biotechnology,2007,74:918-925
    [168]Li A J, Yang S F, Li X Y, et al. Microbial population dynamics during aerobicsludge granulation at different organic loading rates. WaterResearch,2008,42(13):3552-3560
    [169]Hoshino Y T, Morimoto S. Comparison of18S rDNA primers for estimatingfungal diversity in agricultural soils using polymerase chainreaction-denaturing gradient gel electrophoresis. Soil Science and PlantNutrition,2008,54:701-710
    [170]Lep J, milauer P. Multivariate analysis of ecological data using Canoco. UnitedKingdom, Cambridge: Cambridge University Press,2003,50-51
    [171]Yu H, Zeng G, Huang H, et al. Microbial community succession andlignocellulose degradation during agricultural waste composting.Biodegradation,2007,18:793-802
    [172]戴芳,曾光明,袁兴中,等.生物表面活性剂在农业废物好氧堆肥中的应用.环境科学,2005,26(4):181-185
    [173]Tremier A, Guardia A de, Massiani C, et al. A respirometric method forcharacterising the organic composition and biodegradation kinetics and thetemperature influence on the biodegradation kinetics, for a mixture of sludgeand bulking agent to be co-composted. Bioresource Technology,2005,96:169-180
    [174]黄国锋,钟流举,张振钿,等.猪粪堆肥化处理过程中的氮素转变及腐熟度研究.应用生态学报,2002,13(11):1459-1462
    [175]Ovreas L, Forney L, Daae F L, et al. Distribution of bacterioplankton inmeromictic Lake Saelenvannet, as determined by denaturing gradient gelelectrophoresis of PCR-amplified gene fragments coding for16S rRNA.Applied and Environmental Microbiology,1997,63:3367-3373
    [176]Yang C H, Crowley D E. Rhizosphere microbial community structure inrelation to root location and plant iron nutritional status. Applied andEnvironmental Microbiology,200066,345-351
    [177]Konstantinov S R, Zhu W Y, Williams B A, et al. Effects of fermentablecarbohydrates on piglet facial bacterial communities as revealed by16Sribosomal DNA. FEMS Microbiology Ecology,2003,43:225-235
    [178]张嘉超,曾光明,喻曼,等.农业废物好氧堆肥过程因子对细菌群落结构的影响.环境科学学报,2010,30(5):1002-1010
    [179]Bernal M P, Alburquerque J A, Moral R. Composting of animal manures andchemical criteria for compost maturity assessment. A review. BioresourceTechnology,2009,100:5444-5453
    [180]Maeda K, Morioka R, Osada T. Effect of covering composting piles withmature compost on ammonia emission and microbial community structure ofcomposting process. Journal of Environmental Quantity,2009,38:598-606
    [181]Agnew J M, Leonard J J. The Physical Properties of Compost. Compost Science andUtilization,2003,11(3):238-264
    [182]Herrmann R F, Shann JF. Microbial community changes during thecomposting of municipal solid waste. Microbial Ecology,1997,33:78-85
    [183]McCartney D, Tingley J. Development of a rapid moisture content method forcompost materials. Compost Science and Utilization,1998,6:14-25
    [184]Huang G F, Wong J W C, Wu Q T, et al. Effect of C/N on composting of pigmanure with sawdust. Waste Management,2004,24:805-813
    [185]Day M, Krzymien M, Shaw K, et al. An investigation of the chemical andphysical changes occurring during commercial composting. Compost Scienceand Utilization,1998,6:44-66
    [186]Fan Y T, Li C L, Lay J J, et al. Optimization of initial substrate and pH levelsfor germination of sporing hydrogen-producing anaerobes in cow dungcompost. Bioresource Technology,2004,91(2):189-193
    [187]Paul J W, Beanchamp E G, Zhang X. Nitrous and nitric oxide-emissions duringnitrification and denitrification from manure-amended soil in the laboratory.Canadian Journal of Soil Science,1993,73:539-553
    [188]Inbar Y, Hadar Y, Chen Y. Recycling of cattle manure: the composting processand characterization of maturity. Journal of Environmental Quality,1993,22:857-863
    [189]Kowalchuk G A, Naoumenko Z S, Derikx P J L, et al. Molecular analysis ofammonia-oxidizing bacteria of the β subdivision of the class proteobacteria incompost and composted Materials. FEMS Microbiology Ecology,1999,2:109-121
    [190]Zhang J, Zeng G, Chen Y, et al. Effects of physico-chemical parameters on thebacterial and fungal communities during agricultural waste composting.Bioresource Technology,2011,102:2950-2956
    [191]Kurola J, Salkinoja-Salonen M, Aarnio T, et al. Activity, diversity andpopulation size of ammonia-oxidising bacteria in oil-contaminatedlandfarming soil. FEMS Microbiology Letters,2005,250:33-38
    [192]Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenasestructural gene amoA as a functional marker: molecular fine-scale analysis ofnatural ammonia-oxidizing populations. Applied and EnvironmentalMicrobiology,1997,63:4704-4712
    [193]Tourna M, Freitag T E, Nicol G W, et al. Growth, activity and temperatureresponses of ammonia-oxidising archaea and bacteria in soil microcosms.Environmental Microbiology,2008,10:1357-1364
    [194]徐灵,王成端,姚岚.污泥堆肥过程中主要性质及氮素转变.生态环境,2008,17(2):602-605
    [195]夏月,朱永官.硝化作用作为生态毒理指标评价土壤重金属污染生态风险.生态毒理学报,2007,2(3):273-279
    [196]马英,钱鲁闽,毛永胜,等.硝化细菌分子生态学研究进展.中国水产科学,2007,14(5):872-879
    [197]Broos K, Mertens J, Smolders E. Toxicity of heavy metals in soil assessedwith various soil microbial and plant growth assays: a comparative study.Environment Toxicology Chemistry,2005,24(3):634-640
    [198]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals tomicroorganisms and microbial processes in agricultural soils. Soil Biologyand Biochemistry,1998,30:1389-1414
    [199]Smolders E, Buekers J, Oliver I. Soil properties affecting microbial toxicity ofzinc in laboratory-spiked and field-contaminated soils. EnvironmentToxicology and Chemistry,2004,23:2633-2640
    [200]Dancer W S, Peterson L A, Chesters G. Ammonification and nitrification of Nas influenced by soil pH and previous N treatments. Soil Science Society ofAmerica Journal,1973,37:67-69
    [201]Katyal J C, Cater M F, Vlek P L G. Nitrification activity in submerged soil andits relation to denitrification loss. Biology and Fertility of Soils,1988,7(1):16-22
    [202]王连峰,蔡祖聪.水分和温度对旱地红壤硝化能力和反硝化活力的影响.土壤,2004,36:543-546
    [203]Mahendrappa M K, Smith R L, Christiansen A T. Nitrifying organismsaffected by climatic region in western United States. Soil Science Society ofAmerica Journal,1996,30:60-62
    [204]Innerebner G, Knapp B, Vasara T, et al. Traceability of ammonia-oxidizingbacteria in compost-treated soils. Soil Biology and Biochemistry,2006,38:1092-1100
    [205]Shimaya C, Hashimoto T. Improvement of media for high temperatureammonia-oxidizing bacteria in compost. Soil Science and Plant Nutrition,2008,54:529-533
    [206]Sánchez-Monedero M A, Serramiá N, Civantos C G, et al. Greenhouse gasemissions during composting of two-phase olive mill wastes with differentagroindustrial by-products. Chemosphere,2010,81:18-25
    [207]Leininger S, Urich T, Schloter M, et al. Archaea predominate amongammoniaoxidizing prokaryotes in soils. Nature,2006,442:806-809
    [208]Jin T, Zhang T, Yan Q. Characterization and quantification ofammoniaoxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removingreactor using T-RFLP and qPCR. Applied Microbiology and Biotechnology,2010,87:1167-1176
    [209]Okano Y, Hristova K R, Leutenegger C M, et al. Application of real-time PCRto study effects of ammonium on population size of ammonia-oxidizingbacteria in soil. Applied and Environmental Microbiology,2004,70:1008-1016
    [210]Avrahami S, Ralf C, Gesche B. Effects of ammonium concentration on N2Orelease and on the community structure of ammonia oxidizers and denitrifiers.Applied and Environmental Microbiology,2002,68:5685-5692
    [211]Enwall K, Nyberg K, Bertilsson S, et al. Long-term impact of fertilization onactivity and composition of bacterial communities and metabolic guilds inagricultural soil. Soil Biology and Biochemistry,2007,39:106-115
    [212]Avrahami S, Werner L, Ralf C. Effects of temperature and fertilizer onactivity and community structure of soil ammonia oxidizers. EnvironmentalMicrobiology,2003,5:691-705.
    [213]Tuba H, Erguder, Nico Boon, et al. Environmental factors shaping theecological niches of ammonia oxidizing archaea. FEMS Microbiology Review,2009,33:855-869
    [214]De la Torre J R, Walker C B, Ingalls A E. Cultivation of a thermophilicammonia oxidizing archaeon synthesizing crenarchaeol. EnvironmentalMicrobiology,2008,10:810-818
    [215]Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation andammonia-oxidizing bacteria and archaea from estuaries with differinghistories of hypoxia. The ISME Journal,2007,1:660-662
    [216]Wells G F, Park H D, Yeung C H, et al. Ammonia-oxidizing communities in ahighly aerated full-scale activated sludge bioreactor: Betaproteobacterialdynamics and low relative abundance of Crenarchaea. EnvironmentalMicrobiology,2009,11(9):2310-2328
    [217]Limpiyakorn T, Sonthiphand P, Rongsayamanont C, et al. Abundance of amoAgenes of ammonia-oxidizing archaea and bacteria in activated sludge offull-scale wastewater treatment plants. Bioresource Technology,2011,102:3694-3701
    [218]Erguder T H, Boon B N, Wittebolle L, et al. Environmental factors shapingthe ecological niches of ammonia oxidizing archaea. FEMS MicrobiologyReview,2009,33:855-869
    [219]Yan J, Jetten M, Rang J, et al. Comparison of the effects of different salts onaerobic ammonia oxidizers for treating ammonium-rich organic wastewater byfree and sodium alginate immobilized biomass system. Chemosphere,2010,81:669-673
    [220]Béline F, Martinez J, Chadwick D, et al. Factors affecting nitrogentransformations and related nitrous oxide emissions from aerobically treatedpiggery slurry. Journal of Agricultural Engineering Research,1999,73(3):235-243
    [221]Maeda K, Hanajima D, Toyoda S, et al. Microbiology of nitrogen cycle inanimal manure compost. Microbial Biotechnology,2011,4(6):700-709
    [222]Hatzenpichler R, Lebedeva E V, Spieck E, et al. A moderately thermophilicammonia-oxidizing crenarchaeote from a hot spring. Proceedings of theNational Academy of Sciences of the United States of America,2008,105(6):2134-2139
    [223]Herndl G J, Reinthaler T, Teira E, et al. Contribution of archaea to totalprokaryotic production in the deep Atlantic Ocean. Applied andEnvironmental Microbiology,2005,71:2303-2309
    [224]Hallam S J, Konstantinidis K T, Putnam N, et al. Genomic analysis of theuncultivated marine crenarchaeote Cenarchaeum symbiosum. Proceedings ofthe National Academy of Sciences of the United States of America,2006,103(48):18296-18301
    [225]Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilationand ammonia oxidation suggested by environmental genomic analyses ofmarine Crenarchaeota. PloS Biology,2006,4:520-536
    [226]Huang D L, Zeng G M, Feng C L, et al. Mycelial growth and solid-statefermentation of lignocellulosic waste by white-rot fungus Phanerochaetechrysosporium under lead stress. Chemosphere,2010,81:1091-1097
    [227]Vargas-García M C, Suárez-Estrella F F, López M J, et al. Influence ofmicrobial inoculation and co-composting material on the evolution ofhumic-like substance during composting of horticultural wastes. ProcessBiochemistry,2006,41:1438-1443
    [228]Vargas-García M C, Suárez-Estrella F F, López M J, et al. Effect ofinoculation in composting process: modifications in lignocellulosic fraction.Waste Management,2007,27:1099-1107
    [229]Taccari M, Stringini M, Comitini F, et al. Effect of Phanerochaetechrysosporium inoculation during maturation of co-composted agriculturalwastes mixed with olive mill wastewater. Waste Management,2009,29:1615-1621
    [230]Wang H, Fan B, Hu Q, et al. Effect of inoculation with Penicillium expansumon the microbial community and maturity of compost. BioresourceTechnology,2011,102:11189-11193
    [231]Phil K, Dan C. Extracellular oxidative systems of the lignin-degradingbasidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology,2007,44:77-87
    [232]Huang D L, Zeng G M, Feng C L, et al. Degradation of lead-contaminatedlignocellulosic waste by Phanerochaete chrysosporium and the reduction oflead toxicity. Environmental Science&Technology,2008,42:4946-4951
    [233]Chen M, Zeng G, Tan Z, et al. Understanding lignin-degrading reactions ofligninolytic enzymes: binding affinity and interactional profile. PloS ONE,2011,6:e25467
    [234]López M J, Vargas-García M C, Suárez-Estrella F F, et al.Lignocellulose-degrading enzymes produced by the ascomycete Coniochaetaligniaria and related species application for a lignocellulosic substratetreatment. Enzyme and Microbial Technology,2007,40(4):794-800
    [235]Miki K, Renganathan V, Mayfield M B, et al. Aromatic ring cleavage of aβ-biphenyl ether dimmer catalyzed by lignin peroxidase of Phanerochaetechrysosporium. FEBS Letters,1987,210(2):199-203
    [236]Chen A, Zeng G, Chen G, et al. Simultaneous cadmium removal and2,4-dichlorophenol degradation from aqueous solutions by Phanerochaetechrysosporium. Applied Microbiology and Biotechnology,2011,91:811-821
    [237]Williams R A D. Caldo-active and thermophilic bacteria and theirthermostable proteins. Science Progress,1975,62(5):373-394
    [238]Castaldi P, Garau G, Melis P. Maturity assessment of compost from municipalsolid waste through the study of enzyme activities fractions. WasteManagement,2008,28(3):371-378
    [239]Mouchacca J. Thermophilic fungi: Biodiversity and taxonomic status.Cryptogamie Mycologie,1997,18:19-69
    [240]Li N, Zeng G, Huang D, et al. Oxalate production at different initial Pb2+concentrations and the influence of oxalate during solid-state fermentation ofstraw with Phanerochaete chrysosporium. Bioresource Technology,2011,102:8137-8142
    [241]Lestan D, Lamar R T. Development of fungal inocula for bioaugmentation ofcontaminated soils. Applied and Environmental Microbiology,1996,62(6):2045-2052
    [242]Zhu N. Effect of low initial C/N ratio on aerobic composting of swine manurewith rice straw. Bioresource Technology,2007,98:9-13
    [243]Zhang J, Zeng G, Chen Y, et al. Impact of Phanerochaete chrysosporiuminoculation on indigenous bacterial communities during agricultural wastecomposting. Applied Microbiology and Biotechnology,2013,97(7):3159-3169
    [244]White T J, Bruns T, Lee S, et al. Amplification and direct sequencing offungal ribosomal RNA genes for phylogenetics,1990, pp315-322. In Innis MA, Gelfrand D H, Sninsky J J, White T J (ed), PCR protocols: a guide tomethods and applications. Academic Press, San Diego, CA.
    [245]Prévost-Bouré N C, Christen R, Dequiedt S, et al. Validation and applicationof a PCR primer set to quantify fungal communities in the soil environmentby real-time quantitative PCR. PloS ONE,2011,6(9):e24166
    [246] Vainio E J, Hantula J. Direct analysis of wood-inhabiting fungi usingdenaturing gradient gel electrophoresis of amplified ribosomal DNA.Mycological Research,2000,104:927-936

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700