用户名: 密码: 验证码:
二斑叶螨与灰飞虱的微卫星开发及种群遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朱砂叶螨Tetranychus cinnabarinus (Boisduval)和二斑叶螨T. urticae Koch属于蛛形纲Arachnida、蜱螨亚纲Acari、真螨目Acariformes、叶螨科Tetranychidae,是农林生产中十分重要的害螨。这两种叶螨具有多种扩散机制,由于叶螨无翅,通常依靠爬行进行扩散;但它们也可以借助风和人类活动进行远距离的传播;叶螨复杂的扩散机制可能导致复杂的种群遗传结构。但是,由于这两种叶螨体内可用的分子标记较少,导致我国这两种叶螨的种群遗传多样和种群遗传结构的研究相对滞后。此外,在中国,朱砂叶螨与二斑叶螨两种叶螨并存,红色型被认为是本地种,而绿色型的变种被认为是入侵种。朱砂叶螨和二斑叶螨在欧美被认为是二斑叶螨的不同色型,因为两者可以自由交配,形态学和线粒体DNA水平上难以找出差别;而在中国等亚洲国家两者被认为是两种不同的螨类,理由是成螨体色差异较大,遗传杂交实验常得到不亲和的结果。二者的分类地位一直存在较大争论。
     针对以上问题笔者首先通过抑制PCR的方法成功构建了微卫星富集文库来,开发叶螨微卫星分子标记;并结合以前报道的微卫星分子标记研究了我国25个地理种群的二斑叶螨和朱砂叶螨的种群遗传多样性和种群遗传结构,比较了两者种群遗传多样性和种群遗传结构的差异,并从种群生态学的角度探讨朱砂叶螨与二斑叶螨的分类进化地位,获得以下结果与结论:
     1)通过叶螨的基因组DNA提取纯化、酶切、接头连接及抑制PCR扩增等步骤成功构建了二斑叶螨微卫星富集文库,挑取180个阳性克隆成功测序,并设计了53对微卫星引物,最后成功获得2个多态性较好的微卫星标记。本研究是首次通过抑制PCR的方法构建叶螨的微卫星富集文库来开发微卫星,通过此研究,我们得出结论,叶螨体内微卫星变异速率较低严重的影响了微卫星开发效率。
     2)结合笔者刚开发的2个微卫星及以前报道的6个微卫星,对中国18个朱砂叶螨种群和7个二斑叶螨种群,共计1055个叶螨样本进行了种群遗传多样性和种群遗传结构分析。8个微卫星位点共检测到109个等位基因。平均每个位点13.63个等位基因。然而,平均每个种群每个位点等位基因丰富度和杂合度都较低,表明我国的叶螨种群遗传多样性较差。对朱砂叶螨和二班叶螨的等位基因丰富度和预期杂合度的T测验发现:我国的二斑叶螨的多样性显著低于朱砂叶螨,这可能是由于朱砂叶螨是本地种,而二斑叶螨是入侵种,在入侵过程中发生瓶颈效应造成的。通过等位基因丰富度和预期杂合度(AR和HE)与地理坐标(经度和纬度)之间的皮尔逊相关性分析表明,朱砂叶螨的遗传多样性与纬度成正相关性,这是由于低纬度地区的朱砂叶螨每年发生的代数较多,维持了较高的遗传多样性。Hardy-Weinberg平衡测试显示25个种群里面有23个种群因为杂合体缺失而偏离了平衡,进一步分析发现无效等位基因的存在是引起偏离平衡的重要因素。
     3)25个叶螨种群的总体分化指数FST为0.506,种群之间高度遗传分化。种群间基因流较小,种群多样性较差及存在地理隔离效应是引起朱砂叶螨种群分化的重要因素。通过构建NJ系统发育树、贝叶斯聚类及分子变异模型分析(AMOVA),结果显示我国的叶螨种群分为五个分支,其中朱砂叶螨的聚类结果与地理分布有很好的相关性。此外,我们的遗传数据不支持将两种形式的叶螨分成两个物种,因为两者的分化水平处于不同地理种群的分化水平,两者在DNA组成上没有实质的不同,体色的差异可能由于表观遗传方式的不同造成的。
     灰飞虱Laodelphax striatellus (Fallen)属半翅目飞虱科,世界范围内主要分布在温带地区,广泛分布于东亚、东南亚、欧洲和北非等地,可在温带地区安全越冬。国内分布遍及全国各地,以长江流域和华北稻区发生较多。灰飞虱除以成虫、若虫刺吸危害外,还是多种植物病毒病害的重要媒介昆虫,可传播多种病毒病害,其传毒危害造成的损失远远大于其刺吸危害。尽管灰飞虱的经济地位重要,但是对于灰飞虱的种群遗传学的研究报道却比较少。原因在于灰飞虱上可用的遗传标记较少,且不能提供足够的遗传学信息。而微卫星(microsatellite)分子标记由于广泛地在基因组中分布、良好的重复性和保真性、较高的变异频率、呈孟德尔式遗传、共显性等优点,已成为种群遗传学研究中应用最为广泛的分子标记。但是,目前尚未有灰飞虱微卫星的开发的报道。基于以上原因,笔者分别通过褐飞虱EST数据库和抑制PCR构建微卫星富集文库来开发灰飞虱的微卫星,并应用新开发的9个微卫星标记和一段线粒体COI基因的序列对中国17个地理种群共计720个灰飞虱个体展开种群遗传多样性和种群遗传结构的研究,并得到相关的结果与结论:
     1)由于国际无灰飞虱微卫星的报道,基于EST微卫星具有较高的不同种属之间的转移性、开发成本低和效率高的特性,首先根据褐飞虱的EST数据库开发褐飞虱的微卫星,然后验证在其灰飞虱上的转移性。笔者通过搜索褐飞虱的EST数据库,设计引物并PCR验证,最终开发了12个多态性较好的褐飞虱微卫星标记。微卫星等位基因的测序结果揭示了微卫星复杂的变异机制。对这12对微卫星引物在灰飞虱上面的转移性研究结果发现:这12对卫星引物高度专属于褐飞虱,不能够用于灰飞虱。我们得出结论:灰飞虱与褐飞虱属于不同的属,分化时间较长,且进化速度较快,两者的基因组信息差异太大,导致两者之间的微卫星不能相互转移。
     2)通过抑制PCR的方法构建了灰飞虱(TC)6(AC)5和(AG)6(AC)5的复合型微卫星富集文库,挑取200个阳性克隆测序,设计了100对微卫星引物,最终成功开发了9个多态性较好的微卫星,通过三个地理种群对新开发的微卫星进行检测,结果显示每个位点具有13到30个等位基因。平均表观杂合度和预期杂合度分别在在0.255~0.833和0.392~0.929之间,这9个微卫星位点具有高度的多态性,新开发的微卫星位点将为灰飞虱种群遗传结构的研究提供有效的分子标记手段,本研究首次在国际上报道了9个灰飞虱微卫星,填补了国际无灰飞虱微卫星的空白。
     3)运用9个微卫星分子标记对17个地理种群的灰飞虱种群遗传结构的研究,结果显示每个种群平均每个位点的等位基因个数在12.111~16.333之间。所有种群的表观杂合度介于0.536~0.683之间,预期杂合度介于0.742~0.840之间。说明我国的灰飞虱具有较高水平的遗传多样性,并且华东种群和华北种群较东北种群和华南种群的多样性要高。由于灰飞虱的近交导致大部分种群因杂合体缺失而偏离Hardy-Weinberg平衡。除了华南的永福和南宁种群外,其他种群都具有私有等位基因,这可能是由于华南地区的分析样本较少造成的。基于FST统计显示种群间分化较小或无分化,总体FST为0.004,只有东北的黑龙江HLJ种群和辽宁的丹东DD种群与其他种群有较微弱的显著分化,贝叶斯聚类及NJ分析结果同样显示17个种群具有不稳定的种群遗传结构黑龙江HLJ种群和辽宁的丹东DD种群与其他种群有较微弱的差异。AMOVA分析结果表明灰飞虱的微弱变异主要来自个体之间的差异,而种群间及4个区域间的遗传分化极小。与地理距离的相关性分析结果表明,尽管灰飞虱的遗传分化水平较低,但是与地理距离还有较弱的负相关性,说明地理距离在灰飞虱种群分化中起一定作用。
     4)基于线粒体一段COI基因序列对种群的研究发现,COI基因经比对并去掉引物及测序较差的部分后,最终得到了769bp的片段,没有终止密码子碱基的插入或缺失出现,共有33个变异位点,占总序列的4.2%,其中简约信息位点15个。总体来说灰飞虱多样性较好,在720个个体中共发现了37个单倍型,单倍型多样性指数0.159~0.764之间,平均0.642;核酸多样性较差,在0.101%~0.320%之间,平均0.217%。与微卫星的结果相似,华东种群较东北种群和华南种群的多样性要高;东北地区的灰飞虱多样性较差,平均每个种群有5.5个单倍型,并且这四个种群中无私有单倍型存在。其中最差的是黑龙江HLJ种群,只有3个单倍型。COI基因的FST统计比微卫星的结果稍大,但还是处于较低分化的水平,平均分化指数为0.055,表明灰飞虱的确分化较小或无分化。COI的分析同样表明东北的黑龙江种群与其他种群有显著分化。AMOVA分析结果同样显示灰飞虱的微弱变异主要来自个体之间的差异。
     5)根据微卫星和COI基因对灰飞虱种群遗传结构的研究,我们得出结论:灰飞虱种群分化水平较低,分化程度与具有迁飞习性的东亚飞蝗相似,种群间基因流较强,灰飞虱可能具有远距离迁飞习性。基于COI基因的分析发现37个单倍型在各个种群中分布不均匀,这可能是由于环境选择压力的不同造成,单倍型与灰飞虱的适合度及迁飞是否有某种联系需要进一步的实验验证,另外,我们还发现灰飞虱感染的Wolbachia没有引起单倍型多样性的降低,但导致了核酸多样性的降低,这是由于Wolbachia对线粒体拉升效应造成的。
Both the two-spotted spider mite Tetranychus urticae Koch and the carmine spider mite T. cinnabarinus (Boisduval), which belong to Arachnida, Acari, Acariformes, Tetranychidae, Tetranychus, are very important mite pests. The two species have multiple dispersal mechanisms. They are wingless and usually rely on crawling for their dispersal. But they can also be carried for long distance by the wind and by human activities. Due to the complex dispersal mechanisms of T. urticae, the population structure and diversity would be complex. However, due to the limited number of markers used to analyse geographic populations and individuals, the information that they provided was insufficient to understand the genetic diversity and population structure clearly. In addition to questions about the population structure and genetic diversity of T. urticae in China, there is a big question about its taxonomy. Due to reproductive compatibility, difficult to find out the differences in morphology and mitochondrial DNA levels, T. cinnabarinus and T. urticae are considered to be the single species in Europe and the United States. However, in China and other Asian countries, they are considered to be two different species of mites. The reasons are the differences of body color and reproductive incompatibility between them. Therefore, whether they constitute one or two species has been debated for long time.
     To address the above issues, a microsatellites-enriched DNA library was constructed using a suppression-PCR procedure. We genotyped25populations of spider mites in China using eight microsatellite loci, including2newly developed by ourselves and6previously reported. We also compared the difference of the genetic diversity and population structure of the two types of mites, and try to clarify the taxonomic status of the two types of mites from a population genetic structure perspective. The main results and conclusions are as follows:
     1) We successfully constructed the microsatellites-enriched DNA library of the spider mite using a suppression-PCR procedure. Of the180clones sequenced,53sequences flanking microsatellites were selected for primer design. Finally, two microsatellites with good polymorphism was isolated from the genome of the spider mite. This is the first time to use the suppression-PCR procedure for microsatellites isolation in spider mites. Low mutation rate of the mite microsatellites bring the isolation efficiency down.
     2) We genotyped a total of1055individuals from18T. cinnabarinus populations and7T.urticae populations in China using eight microsatellite loci. One hundred alleles were identified in the8loci, with13.63in each locus across the25populations. However, the low values of heterozygosity and allelic richness implies the low level of genetic diversity of the spider mites. In addition, genetic diversity of the red form mites was found to be higher than the green form. Pearson correlations between statistics of variation (AR and He) and geographic co-ordinates (latitude and longitude) showed that the genetic diversity of T. cinnabarinus was correlated with latitude. The declining genetic diversity of T. cinnabarinus with increasing latitude may be because the northern populations have fewer generations per year. Twenty-three of the25populations used in this study deviated from HWE, and of these,19populations displayed significant heterozygote deficiency. Further analysis revealed that the deficit in heterozygotes were due to null allele.
     3) We found a highly significant genetic differentiation among the25populations with global FST=0.506. Spider mites possess low levels of genetic diversity, limited gene flow between populations and significant IBD (isolation by distance) effect. These factors in turn contribute to the strong subdivision of genetic structure. Based on the results of NJ tree, Bayesian analysis and AMOVA, we conclude that five clades likely exist in China. In addition, the population genetic structures of the two forms of mites do not support their separation into two species. The morphological difference between the two forms of mites may be the result of epigenetic effects.
     The small brown planthopper (SBPH) Laodelphax striatellus Fallen is an important agricultural pest, which is widely distributed in temperate zones such as East Asia, Southeast Asia, Europe and Northern Africa, and can overwinter safely in these areas. This pest is one of the most serious pest insects of rice plant and many other kinds of gramineous plants. Besides the direct sucking damage, the agricultural significance of SBPH lies in its ability to spread the damaging plant disease, Rice stripe virus (RSV). Despite the economic importance of this pest, the population genetic structure and genetic diversity were little known. In recent years, due to the characteristics of high level of polymorphism, co-dominant Mendelian inheritance, high frequency of occurrence, and ease of detection by PCR, microsatellites or simple sequence repeats (SSR) have been widely used in population genetic studies. However, no microsatellites primers developed specifically for the SBPH bottlenecked the process of population genetic study for the SBPH. To resolve the aforementioned issues, we tried to develop microsatellites through searching the EST database of the brown planthopper (BPH), Nilaparvata lugens (Stal) and construction the microsatellites-enriched libraries. Employing9new microsatellites developed in this study and COI gene, we investigated the genetic structure of17L. striatellus populations in China. The main results are as follows:
     1) An enormous number of ESTs are now available in the public sequence database, and can be exploited to identify markers inexpensively. Compared with conventional markers derived from genomic DNA, EST-derived markers are easy to develop, and highly transferable. In this study, we mined existing BPH ESTs for new microsatellites, and validated the transferability from BPH to SBPH. Finally we developed and characterized12polymorphic microsatellites from the expressed sequence tags database of the brown planthopper (BPH), Nilaparvata lugens (Stal). Microsatellites sequencing revealed complex mechanisms of mutations of the12microsatellites loci. The fact of failed transferability of the new microsatellites from BPH to SBPH may be due to that the two species had diverged long time ago, and evolved quickly.
     2) Nine microsatellites loci were isolated from the genome of Laodelphax striatellus (Fallen)(Homoptera:Delphacidae) by constructing (TC)6(AC)5and (AG)6(AC)5compound SSR enriched libraries using suppression-PCR procedure. These loci developed in this study were high polymorphism with13to30alleles per locus in three tested populations. The observed and expected heterozygosities ranged from0.255to0.833and0.392to0.929respectively. These microsatellites markers can be used for population genetic structure and genetic diversity research of L. striatellus.
     3) The results of the microsatellites implied L. striatellus populations possess high levels of genetic diversity. The allele numbers of each locus in each population were ranged from12.111to16.333. The observed heterozygosity and expected heterozygosity were0.536-0.683and0.742-0.840respectively. The L. striatellus populations in East China have much higher levels of genetic diversity than the populations in Northeast China and South China. Most microsatellites displayed a significant departure from Hardy-Weinberg equilibrium (HWE) in most populations due to serious inbreeding. Private alleles were identified in all populations except YF and NN, which are all located in South China. This may be due to the limited number of analyzed samples in the two populations. Little genetic differentiation among almost all the populations, with global FST=0.004. However, HLJ and DD show slightly but significant differentiation with some other populations. This was also evidences by the results of NJ tree and Bayesian analysis. AMOVA results indicate that genetic variation mainly comes from the individuals' level. Although the level of population differentiation was very low, there were also mild IBD effects among L. striatellus populations. Which means geographical distance plays a role in population differentiation.
     4) All sequences were truncated to the same length (769bp) to eliminate missing data. The sequences had33polymorphic sites (accounting4.2%), of which15were parsimony informative. In general, L. striatellus populations have high levels of genetic diversity. An alignment the COI gene from720individuals from17populations across China revealed37haplotypes. The haplotype diversity ranged between0.159and0.764with mean0.642. However, the nucleotide diversity was relatively low, which was ranged between0.101%and0.320%(mean0.217). The L. striatellus populations in East China and North China also showed much higher levels of genetic diversity than the populations in Northeast China and South China based on the COI gene. With5.5haplotypes per populations and no private haplotypes, the Northeast China populations posses the lowest levels of genetic diversity. Among which, HLJ was the lowest one, only3haplotypes were identified in this population. The COI also revealed little genetic differentiation among populations, although the values of FST calculated by COI gene (mean0.055) were slightly larger than by microsatellites. HLJ populations also displayed significant differentiation with some other populations according to the COI gene. AMOVA results also indicate that genetic variation mainly comes from the individuals' level.
     6) According to the research on the population structure of L. striatellus by SSR and COI, we concluded that:the L. striatellus population shows a relative low level of genetic differentiation, which is similar with the migratory species Locusta migratoria manilensis (Meyen), while there is a strong gene flow among these populations indicating that the L. striatellus may have Long-distance migratory ability. Based on the COI we found that37haplotypes distribute unevenly among populations. This could be explained by the environmental selection pressures. However, whether there is a linkage between the haplotypes and the fitness, migration of L. striatellus requires further experimental verification. Furthermore, we found that individuals infected with Wolbachia don't cause a reduction in the diversity of haplotypes but the nuclear polymorphisms, which can be reasoned by the hitchhiking.
引文
1 蔡双虎,程立生.二斑叶螨的研究进展。热带农业科学,2003,23:68-74.
    2 陈思宏,马学文,于涌鑫,倪运东,李春梅.不同药剂防治水稻灰飞虱示范总结.虫媒病毒病学术研讨会,2004,51-52.
    3 程立生.二斑叶螨的检疫重要性.植物检疫,1994,8(3):164-165.
    4 董慧芳,郭玉杰,牛离平.用杂交方法鉴定我国三种常见叶螨.植物保护学报,1987,14(3):157-162.
    5 贺媛,朱宇波,侯洋旸,姚士桐,陆志杰,金周浩,张孝羲,翟保平.江浙麦区灰飞虱春季种群的发生消长和迁飞动态.中国水稻科学,2012,26(1):109-117.
    6 洪晓月.农业螨类学.北京:中国农业出版社,2012,
    7 洪晓月,丁锦华.农业昆虫学.北京:中国农业出版社,2007
    8 季英华,史文琦,乐文静,刘莉,周益军.不同地理种群灰飞虱基于COⅡ基因的系统发育分析.江苏农业科学,2010,26(3):499-502.
    9 江原昭三,真棍德纯.农业螨类学,全国农村教育协会,1975.
    10 匡海源,程立生.关于区分朱砂叶螨和二斑叶螨两个近似种的研究.昆虫学报,1990,33(1):109-116.
    11 李崇奇,常青,陈建琴,张保卫,朱立峰,周开亚.东北亚地区野猪种群mtDNA遗传结构及系统地理发生.动物学报,2005,51(4):640-649.
    12 李济宸,李桂珍,高立起,李青松.灰飞虱发生规律的研究.北京农业科学,1998,16(6):25-28.
    13 刘向东,翟保平,刘慈明.灰飞虱种群暴发成灾原因剖析.昆虫知识,2006,43(2):141-146.
    14 刘浩官,刘振杰,王乾超,江智才.东海网捕褐稻虱研究初报.昆虫知识,1980,5:193-196.
    15 马恩沛,沈兆鹏,陈熙文,黄良炉.中国农业螨类.上海:上海科学技术出版社,1984.
    16 牛成伟,张青文,叶志华,罗礼智.不同地区甜菜夜蛾种群的遗传多样性分析.昆虫学报,2006,49(5):867-873.
    17 全国白背飞虱科研协作组.白背飞虱迁飞规律的初步研究.中国农业科学,1981(5):25-31.
    18 谌有光.警惕二斑叶螨在我国果产区蔓延为害。植保技术与推广,1997,17(5):24-25.
    19 万由衷,曲志才,曹清玉,沈大棱.不同种群灰飞虱(Laodelphax striatellus)的RAPD分析。复旦学报(自然科学版),2001,40(5):535-538+543.
    20 王冬生.蔬菜害虫治理技术 第二讲 害螨的发生与防治.上海蔬菜,2001(4),41-42.
    21 王慧芙.中国经济昆虫志.螨目:叶螨总科.1981,科学出版社.
    22 王维屯,李毅,徐宗进,苏兴智,冒布厂,于松溪,刘广豪.越冬代灰飞虱发生规律及综合 防治措施.现代农业科技,2007(20):96-97.
    23 吴孔明.朱砂叶螨为害对棉花生理活动的影响.植物保护学报,1989,16(2):99-106.
    24 张增翠,侯喜林.2004.SSR分子标记开发策略及评价.遗传,6(5):763-768.
    25 周玉书,朴春树,刘池林.警惕二斑叶螨在北方果区为害蔓延.植物保护,1996(5):51-52.
    26 Araki K, Lian C, Shimatani K, Ohara M. Development of microsatellite markers in a clonal perennial herb, Convallaria keiskei. Molecular Ecology Notes,2006,6:1144-1146.
    27 Armour J A L, Neumann R, Gobert S, Jeffreys A. J. Isolation of human simple repeat loci by hybridization selection. Human Molecular Genetics,1994,3:599-605.
    28 Asahina S, Tsuroka Y. Record of the insects which visited of a weather ship located at the Ocean Weather Station "Tango" on Pacific. Japan Journal of Entomology,1968,36:190-202.
    29 Avise J C, Arnold J, Ball R M, Bermingham E. Lamb T, Neigel J E, Reeb C A, Saunders N C. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics,1987,18:489-522.
    30 Awadalla, P., Eyre-Walker, A., Smith, J. M., Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science,1999,286:2524-2525.
    31 Bailly X, Migeon A, Navajas M. Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari:Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biological Journal of the Linnean Society,2004,82: 69-78.
    32 Baker A. J, Tavares E S, Elbourne R F. Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources,2009,9:257-268.
    33 Ballard J W O. When one is not enough:introgression of mitochondrial DNA in Drosophila. Molecular Biology and Evolution,2000,17:1126-1130.
    34 Ballard J W O, Melvin R G, Miller J T, Katewa S D. Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging cell,2007,6:699-708.
    35 Bazin E, Glemin S, Galtier N. Population size does not influence mitochondrial genetic diversity in animals. Science,2006,312:570-572.
    36 Bensasson D, Zhang D X, Hartl D L, Hewitt G M. Mitochondrial pseudogenes:evolution's misplaced witnesses. Trends in Ecology & Evolution,2001,16:314-321.
    37 Berlin S, Tomaras D, Charlesworth B. Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity,2007,99:389-396.
    38 Bininda-Emonds O R P. Fast genes and slow clades:comparative rates of molecular evolution in mammals. Evolutionary bioinformatics online,2007,3:59-85.
    39 Boudreaux H B. Revision of the two-spotted spider mite (Acarina:Tranychidae) complex Teranychus telarius (Linnaeus). Annals of the Entomology Society of America,1956,75: 595-603.
    40 Brandenburg R L, Kennedy G G. Differences in doreal integumentatry lobe densities between Tranychus urticae Koch and T.cinnabarinus (Borsduval) (Acarina:Tranychidae) from Northeastern Carrolina. International Journal of Acarology,1981,7:231-235.
    41 Brown W M, George M, Wilson A C. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America,1979,76: 1967-1971.
    42 Budar F, Pelletier G. Male sterility in plants:occurrence, determinism, significance and use. Comptes Rendus de l'Academie des Sciences-Series Ⅲ-Sciences de la Vie,2001,324:543-550.
    43 Bulut Z, McCormick C, Gopurenko D, Williams R, Bos D, De Woody J. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica,2009,136:501-504.
    44 Carbonnelle S, Hance T, Migeon A., Baret P, Cros-Arteil S, Navajas M. Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari:Tetranychidae) populations along a latitudinal gradient in Europe. Experimental and Applied Acarology,2007,41:225-241.
    45 Castoe T A, De Koning A, Kim H M, Gu W, Noonan B P, Naylor G, Jiang Z J, Parkinson C L, Pollock D D. Evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America,2009,106: 8986-8991.
    46 Castoe T A, Jiang Z J, Gu W, Wang Z O, Pollock D D. Adaptive evolution and functional redesign of core metabolic proteins in snakes.2008, PLoS One,3:e2201.
    47 Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis. Models and estimation procedures. The American Journal of Human Genetics,1967,19:233.
    48 Chapuis M P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution,2007,24:621-631.
    49 Chapuis M P, Loiseau A, Michalakis Y, Lecoq M, Franc A, Estoup A. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria:a regional-scale comparative survey. Molecular Ecology,2009,18:792-800.
    50 Charlat S, Duplouy A, Hornett E A, Dyson E A, Davies N, Roderick G K, Wedell N, Hurst G D D. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evolutionary Biology,2009,9:64.
    51 Coates B S, Sumerford D V, Miller N J, Kim K S, Sappington T W, Siegfried B D, Lewis L C. Comparative Performance of Single Nucleotide Polymorphism and Microsatellite Markers for Population Genetic Analysis. Journal of Heredity,2009,100:556-564.
    52 Collins F S, Brooks L D, Chakravarti A.. A DNA polymorphism discovery resource for research on human genetic variation. Genome Research,1998,8:1229-1231.
    53 Cronn R, Liston A, Parks M, Gernandt D S, Shen R, Mockler T. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 2008,36:e122-e122.
    54 D Botstein R L W, Skolnick M, Davis R W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. The American Journal of Human Genetics, 1980,32:314-332.
    55 De Boer R.1985. Reproductive barriers. In:Spider Mites:Their Biology, Natural Enemies and Control (W. Helle and M. W. Sabelis eds.). Elsevier, Amsterdam.
    56 Delmotte F, Leterme N, Gauthier J P, Rispe C, Simon J C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Molecular Ecology,2002,11:711-723.
    57 Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological).1977,1-38.
    58 Di Rienzo A, Peterson A C, Garza J C, Valdes A M, Slatkin M, Freimer N B. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America,1994,91:3166-3170.
    59 Dieringer D, Schlotterer C. Microsatellite analyser (MSA):a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes,2003,3:167-169.
    60 Dupont L M. On gene flow between Tetranychus urticae Koch,1836 and Tetranychus cinnabarinus (Boisduval) Boudreaux,1956 (Acari:Tetranychidae):synonomy between the two species. Entomologia Experimentalis et Applicata,1979,25:297-303.
    61 Dyer K A, Jaenike J. Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila. Genetics,2004,168:1443-1455.
    62 Edwards, K., Barker, J., Daly, A., Jones, C., Karp, A. Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques,1996,20:758-760.
    63 Elias M, Hill R I, Willmott K R, Dasmahapatra K K, Brower A V Z, Mallet J, Jiggins C D. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B:Biological Sciences,2007,274:2881-2889.
    64 Ellegren H. DNA typing of museum birds. Nature.1991,354:113-113.
    65 Ellegren H. Microsatellites:simple sequences with complex evolution. Nature Reviews Genetics, 2004,5:435-445.
    66 Ellison C K, Burton R S. Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution,2008,62:631-638.
    67 Elmer K R, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A. Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America,2009,106:13404-13409.
    68 Estoup A, Jarne P, Cornuet J M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology,2002,11:1591-1604.
    69 Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theoretical and Applied Genetics,2002, 104:399-407.
    70 Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology,2005,14:2611-2620.
    71 Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):an integrated software package for population genetics data analysis.2005, Evolutionary bioinformatics online,1:47.
    72 Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics,1992,131:479-491.
    73 Fazekas A J, Kesanakurti P R, Burgess K S, Percy, D M., Graham S W, Barrett S C H, Newmaster S G, Hajibabaei M, Husband B C. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources,2009,9: 130-139.
    74 Field D, Magnasco, M O, Moxon E R, Metzgar D, Tanaka M M, Wills C, Thaler D S. Contingency Loci, Mutator Alleles, and Their Interactions:Synergistic Strategies for Microbial Evolution and Adaptation in Pathogenesisa. Annals of the New York Academy of Sciences,1999, 870:378-381.
    75 Gaggiotti O E, Vetter R D. Effect of life history strategy, environmental variability, and overexploitation on the genetic diversity of pelagic fish populations. Canadian Journal of Fisheries and Aquatic Sciences,1999,56:1376-1388.
    76 Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K. Mutation hot spots in mammalian mitochondrial DNA. Genome Research,2006,16:215-222.
    77 Galtier N, Jobson R W, Nabholz B, Gldmin S, Blier P U. Mitochondrial whims:metabolic rate, longevity and the rate of molecular evolution. Biology Letters.2009,5:413-416.
    78 Geng Q, Lian C, Goto S, Tao J, Kimura M, Islam M D S, Hogetsu, T. Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Molecular Ecology,2008,17:4724-4739.
    79 Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity,2008,101:301-320.
    80 Gissi C, Reyes A, Pesole G, Saccone C. Lineage-specific evolutionary rate in mammalian mtDNA. Molecular Biology and Evolution,2000,17:1022-1031.
    81 Gotoh T, Bruin J, Sabelis M W, Menken S B J. Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomologia Experimentalis et Applicata,1993,68:171-178.
    82 Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3) [http://www.unil.ch/izea/softwares/fstat.html].2001.
    83 Grossman L I, Wildman D E, Schmidt T R, Goodman M. Accelerated evolution of the electron transport chain in anthropoid primates. Trends in Genetics,2004,20:578-585.
    84 Gupta P, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics,2003,270:315-323.
    85 Hagelberg E, Goldman N, Lio P, Whelan S, Schiefenhoel W, Clegg J, Bowden D. Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proceedings of the Royal Society of London. Series B:Biological Sciences,1999,266:485-492.
    86 Hickerson M J, Meyer C P, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology,2006,55:729-739.
    87 Hickey A. Avian mtDNA diversity?:An alternate explanation for low mtDNA diversity in birds: an age-old solution? Heredity,2008,100:443-443.
    88 Hinomoto N, Takafuji, A. Genetic changes in the population structure of the two-spotted spider mite, Tetranychus urticae Koch (Acari:Tetranychidae), on vinyl-house strawberries. Applied Entomology and Zoology,1995,30:521-528.
    89 Hoshizaki S. Allozyme polymorphism and geographic variation in the small brown planthopper, Laodelphax striatellus (Homoptera:Delphacidae). Biochemical Genetics,1997,35:383-393.
    90 Huang X A M. CAP3:a DIVA sequence assembly program. Genome Research,1999,9:868-877.
    91 Hurst G D D, Jiggins F M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies:the effects of inherited symbionts. Proceedings of the Royal Society B:Biological Sciences,2005,272:1525-1534.
    92 Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature,2000,408:708-712.
    93 Innan H, Nordborg M. Recombination or mutational hot spots in human mtDNA? Molecular Biology and Evolution,2002,19:1122-1127.
    94 Islam M S, Lian C, Geng Q, Kameyama N, Hogetsu T. Chloroplast microsatellite markers for the mangrove tree species Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa, and cross-amplification in other mangrove species. Conservation Genetics,2008,9:989-993.
    95 Isomura N, Hidaka M. Microsatellite loci isolated from the scleractinian coral, Acropora nobilis. Molecular Ecology Resources,2008,8:587-589.
    96 Jarve M, Zhivotovsky L A, Rootsi S. Help H, Rogaev E I, Khusnutdinova E K, Kivisild T, Sanchez J J. Decreased Rate of Evolution in Y Chromosome STR Loci of Increased Size of the Repeat Unit. PLoS ONE,2009,4:e7276.
    97 Jakobsson M, Rosenberg N A. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics,2007,23:1801-1806.
    98 Jeffreys A J, Wilson V, Thein S L. Hypervariable'minisatellite'regions in human DNA. Nature, 1985,314:67-73.
    99 Jeppson L. R., Keifer, H. H., Baker, E. W.,1975. Mites injurious to economic plants. University of California.
    100 Jiggins, F M. Male-killing Wolbachia and mitochondrial DNA:selective sweeps, hybrid introgression and parasite population dynamics. Genetics,2003,164:5-12.
    101 Fernando J, Vazquez, T P, Albornoz J, Dominguez A. Estimation of microsatellite mutation rates in Drosophila melanogaster:Genetical Research,2000,76:323-326.
    102 Kandpal R P, Kandpal G, Weissman, S M. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proceedings of the National Academy of Sciences of the United States of America,1994,91:88-92.
    103 Kantety R V, La Rota, M, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology,2002,48:501-510.
    104 Karagyozov L, Kalcheva I D, Chapman V M. Construction of random small-insert genomic libraries highly enriched for simple seqence repeats. Nucleic Acids Research,1993,21: 3911-3912.
    105 Keh B. Mating experiments with the two-spotted spider mite complex. Journal of Economic Entomology,1952,45.
    106 Keyghobadi N, Roland J, Strobeck C. Influence of landscape on the population genetic structure of the alpine butterfly parnassius smintheus (Papilionidae). Molecular Ecology.1999,8: 1481-95.
    107 Kijas J, Fowler J, Garbett C, Thomas M. Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques,1994,16:656-662.
    108 Kimura M, Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the United States of America, 1978,75:2868-2872.
    109 Li G, Xue X F, Zhang K, Hong X Y. Identification and molecular phylogeny of agriculturally important spider mites (Acari:Tetranychidae) based on mitochondrial and nuclear ribosomal DNA sequences, with an emphasis on Tetranychus. Zootaxa,2010,2647:1-15.
    110 Li T, Chen X L, Hong X Y. Population genetic structure of Tetranychus urticae and its sibling species Tetranychus cinnabaribus (Acari:Tetranychidae) in China as inferred from microsatellite data. Annals of the Entomological Society of America,2009,102:674-683.
    111 Li Y C, Korol A B, Fahima T, Beiles A, Nevo E. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review. Molecular Ecology,2002,11:2453-2465.
    112 Lian C L, Wadud M A, Geng Q, Shimatani K, Hogetsu, T. An improved technique for isolating codominant compound microsatellite markers. Journal of Plant Research,2006,119:415-417.
    113 Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics.1989,44:397-401.
    114 Llewellyn K, Loxdale H, Harrington R, Brookes C, Clark S, Sunnucks, P. Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Molecular Ecology,2003,12:21-34.
    115 MacAlpine D M, Kolesar J, Okamoto K, Butow R. A, Perlman P S. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. The EMBO Journal,2001,20: 1807-1817.
    116 Manel S, Poncet B, Legendre P, Gugerli F, Holderegger R. Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Molecular Ecology,2010,19: 3824-3835.
    117 Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research,1967,27:209.
    118 Markert J A, Danley P D, Arnegard M E. New markers for new species:microsatellite loci and the East African cichlids. Trends in Ecology & Evolution,2001,16:100-107.
    119 Martin A P. Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Molecular Biology and Evolution,1995,12:1124-1131.
    120 Matsuoka Y, Mitchell S, Kresovich S, Goodman M, Doebley J. Microsatellites in Zea-variability, patterns of mutations, and use for evolutionary studies. Theoretical and Applied Genetics,2002, 104:436-450.
    121 McDonald J H, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature, 1991,351:652-654.
    122 Meglecz E, Anderson S J, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, Acier A C, Dawson D A, Faure N, Fauvelot C, Franck P, Harper G., Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Part A, Petenian F, Silvain J F, Wilcock H R. Microsatellite flanking region similarities among different loci within insect species. Insect Molecular Biology, 2007,16:175-85.
    123 Meng X F, Shi M, Chen X X. Population genetic structure of Chilo suppressalis (Walker)(Lepidoptera:Crambidae):strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Molecular Ecology,2008,17:2880-2897.
    124 Metzker M L. Sequencing technologies-the next generation. Nature Reviews Genetics,2009,11: 31-46.
    125 Meyer C P, Paulay G. DNA barcoding:error rates based on comprehensive sampling. PLoS Biology,2005,3:e422.
    126 Morin P A, Martien K K, Taylor B L. Assessing statistical power of SNPs for population structure and conservation studies. Molecular Ecology Resources,2009,9:66-73.
    127 Moritz C, Cicero C. DNA barcoding:promise and pitfalls. PLoS biology.2004,2:e354.
    128 Nabholz B, Glemin S, Galtier N. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Molecular Biology and Evolution,2008a,25:120-130.
    129 Nabholz B, Glemin S, Galtier N. The erratic mitochondrial clock:variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evolutionary Biology, 2009,9:54.
    130 Nabholz B, Mauffrey J F, Bazin E, Galtier N, Glemin S. Determination of mitochondrial genetic diversity in mammals. Genetics,2008b,178:351-361.
    131 Navajas M, Fournier D, Lagnel J, Gutlerrez J, Boursot P. Mitochondrial COI sequences in mites: evidence for variations in base composition. Insect Molecular Biology,1996,5:281-285.
    132 Navajas M, Lagnel J, Fauvel G, De Moraes G Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Experimental and Applied Acarology,1999,23:851-859.
    133 Navajas M, Lagnel J, Gutierrez J, Boursot P. Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity,1998a,80:742-752.
    134 Navajas M, Perrot-Minnot M, Lagnel J, Migeon A, Bourse T, Cornuet J. Genetic structure of a greenhouse population of the spider mite Tetranychus urticae:spatio-temporal analysis with microsatellite markers. Insect Molecular Biology,2002,11:157-165.
    135 Navajas M, Thistlewood H, Lagnel J, Hughes C. Microsatellite sequences are under-represented in two mite genomes. Insect Molecular Biology,1998b,7:249-251.
    136 Nei M. Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences of the United States of America,1973,70:3321-3323.
    137 Oddou-Muratorio S, Vendramin G G, Buiteveld J, Fady B. Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci? Conservation Genetics, 2009,10:1343-1347.
    138 Oliveira, E J, Padua J G, Zucchi M I., Vencovsky R, Vieira M L C. Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology,2006,29:294-307.
    139 Osakabe M, Komazaki S. Differences in esterase isozymes between Panonychus citri populations infesting citrus and Osmanthus. Experimental and Applied Acarology,1996,20:113-119.
    140 Osakabe M, Sakagami Y. RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari:Tetranychidae). Insect Molecular Biology,1994,3:63-66.
    141 Otuka A, Matsumura M, Sanada-Morimura S, Takeuchi H, Watanabe T, Ohtsu R., Inoue, H. The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan, Applied Entomology and Zoology, 2010,45:259-266.
    142 Packer L, Gibbs J, Sheffield C, Hanner R. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources,2009,9:42-50.
    143 Page R D M. TreeView:An application to display phylogenetic trees on personal computers. Bioinformatics,1996,12.
    144 Passos D, Ferreira C, Da Silva S, Richter M, Ozaki L. Detection of genomic variability in different populations of the cattle tick Boophilus microplus in southern Brazil. Veterinary Parasitology,1999,87:83-92.
    145 Peakall R, Smouse P E. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes,2006,6:288-295.
    146 Piganeau G, Eyre-Walker A. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity,2004,92:282-288.
    147 Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959.
    148 Rach J, DeSalle R, Sarkar I N, Schierwater B, Hadrys H. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings of the Royal Society B:Biological Sciences,2008,275:237-247.
    149 Rand D M. The units of selection of mitochondrial DNA. Annual Review of Ecology and Systematics,2001,415-448.
    150 Ratnasingham S, Hebert P D N. BOLD:The Barcode of Life Data System (http://www. barcodinglife. org). Molecular Ecology Notes,2007,7:355-364.
    151 Raymond M, Rousset F. GENEPOP (version 1.2):population genetics software for exact tests and ecumenicism. Journal of Heredity,1995,86:248-249.
    152 Rice W R. Analyzing tables of statistical tests. Evolution,1989,43:223-225.
    153 Roe A D, Sperling F A H. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution,2007,44: 325-345.
    154 Rosenberg N A. DISTRUCT:a program for the graphical display of population structure. Molecular Ecology Notes,2004,4:137-138.
    155 Rosenkranz R, Borodina T, Lehrach H, Himmelbauer H. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics,2008,92:187-194.
    156 Rousset F, Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proceedings of the National Academy of Sciences of the United States of America,1995,92:6389.
    157 Saba F. Comparative studies of species formating two tetranychid complexes in Morocco. Annals of the Entomology Society of America,1975,68:797-800.
    158 Saha M C, Mian M A R, Eujayl I, Zwonitzer J C, Wang L, May G D. Tall fescue EST-SSR markers with transferability across several grass species. Theoretical and Applied Genetics,2004, 109:783-791.
    159 Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425.
    160 Sanada-Morimura S, Sakumoto S, Ohtsu R, Otuka A, Huang S H, Thanh D V, Matsumura M. Current status of insecticide resistance in the small brown planthopper, Laodelphax striatellus, in Japan, Taiwan, and Vietnam. Applied Entomology and Zoology,2010,46:65-73.
    161 Saumitou-Laprade P, Cuguen J, Vernet P. Cytoplasmic male sterility in plants:molecular evidence and the nucleocytoplasmic conflict. Trends in Ecology & Evolution,1994,9:431-435.
    162 Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992,20:211-215.
    163 Schlotteroer C, Amos B, Tautz D. Conservation of polymorphic simple sequence loci in cetacean species. Nature,1991,354:63-65.
    164 Schmidt B C, Sperling F A H. Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera:Noctuidae). Systematic Entomology,2008,33:613-634.
    165 Schug M D, Wetterstrand K A, Gaudette M S, Lim R H, Hutter C M, Aquadro C F.1998. The distribution and frequency of microsatellite loci in Drosophila melanogaster. Molecular Ecology, 7:57-70.
    166 Schulenburg J H G, Hurst G D D, TetzlaffD, Booth G. E, Zakharov I A, Majerus M E N. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics,2002,160:1075-1086.
    167 Shoemaker D, Keller G, Ross K G. Effects of Wolbachia on mtDNA variation in two fire ant species. Molecular Ecology,2003,12:1757-1771.
    168 Shoemaker D D W, Dyer K A, Ahrens M, McAbee K, Jaenike J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics,2004,168:2049-2058.
    169 Shoemaker D D W, Machado C A, Molbo D, Werren J H, Windsor D M, Herre E A. The distribution of Wolbachia in fig wasps:correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society of London. Series B:Biological Sciences,2002,269: 2257-2267.
    170 Shoubridge E A, Wai T. Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology,2007,77:87-111.
    171 Strand M, Prolla T A, Liskay R M, Petes T D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature,1993,365,274-276.
    172 Streisinger G, Owen J E. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics,1985,109:633-659.
    173 Sugasawa J, Kitashima Y, Gotoh T. Hybrid affinities between the green and the red forms of the two-spotted spider mite Tetranychus urticae (Acari:Tetranychidae) under laboratory and semi-natural conditions. Applied Entomology and Zoology,2002,37:127-139.
    174 Sundaramoorthi J, Babu C, Ganesh Ram S. Molecular diversity in the primary and secondary gene pools of genus Oryza. Plant Systematics and Evolution,2009,279:115-123.
    175 Toth G., Gaspari Z, Jurka J. Microsatellites in Different Eukaryotic Genomes:Survey and Analysis. Genome Research,2000,10:967-981.
    176 Tautz D. Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research,1989,17:6463-6471.
    177 Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature,1986,322:652-656.
    178 Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley(Hordeum vulgare L.). Theoretical and Applied Genetics,2003,106:411-422.
    179 Thuillet A C, Bru D, David J, Roumet P, Santoni S, Sourdille P, Bataillon T. Direct Estimation of Mutation Rate for 10 Microsatellite Loci in Durum Wheat, Triticum turgidum (L.) Thell. ssp durum desf. Molecular Biology and Evolution,2002,19:122-125.
    180 Tsagkarakou A, Navajas M, Lagnel J, Pasteur N. Population structure in the spider mite Tetranychus urticae (Acari:Tetranychidae) from Crete based on multiple allozymes. Heredity, 1997,78:84-92.
    181 Tsagkarakou A, Navajas M, Papaioannou-Souliotis P. Gene flow among Tetranychus urticae (Acari:Tetranychidae) populations in Greece. Molecular Ecology,1998,7:71-79.
    182 Tsagkarakou A, Navajas M, Rousset F, Pasteur N. Genetic differentiation in Tetranychus urticae (Acari:Tetranychidae) from greenhouses in France. Experimental and Applied Acarology,1999, 23:365-378.
    183 Turelli M, Hoffmann A, McKechnie S W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics,1992,.132:713-723.
    184 Uesugi R, Kunimoto Y, Osakabe M. The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Experimental and Applied Acarology,2009a,47:99-109.
    185 Uesugi R, Osakabe M. Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari:Tetranychidae). Molecular Ecology Notes,2007,7: 290-292.
    186 Uesugi R, Sasawaki T, Osakabe M. Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Experimental and Applied Acarology,2009b,49:281-90.
    187 Van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. micro-checker:software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 2004,4:535-538.
    188 Vos P, Hogers R, Bleeker M, Reijans M, Lee T V D, Homes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research, 1995,23:4407-4414.
    189 Wang X, Kaga A, Tomooka N, Vaughan D. The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theoretical and Applied Genetics,2004,109:352-360.
    190 Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics,1994,88:1-6.
    191 Wei G, Zuorui S, Zhihong L, Ling G Migration and population genetics of the grain aphid Macrosiphum miscanti (Takahashi) in relation to the geographic distance and gene flow. Progress in Natural Science,2005,15:1000-1004.
    192 Weinreich D M, Rand D M. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics,2000,156:385-399.
    193 Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millasseau P, Vaysseix G, Lathrop M. A second-generation linkage map of the human genome. Nature,1992,359:794-801.
    194 Welch J J, Bininda-Emonds O R P, Bromham L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology,2008,8:53.
    195 Weng Y, Azhaguvel P, Michels J G, Rudd J. Cross-species transferability of microsatellite markers from six aphid (Hemiptera:Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Molecular Biology,2007,16:613-622.
    196 Whitworth T, Dawson R, Magalon H, Baudry E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera:Calliphoridae). Proceedings of the Royal Society B:Biological Sciences,2007,274:1731-1739.
    197 Wiemers M, Fiedler K. Does the DNA barcoding gap exist?-a case study in blue butterflies (Lepidoptera:Lycaenidae). Frontiers in Zoology.2007,4:16.
    198 Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18: 6531-6535.
    199 Wright S. Evolution in Mendelian populations. Genetics,1931,16:97-159.
    200 Wright S. The genetical structure of populations. Annals of Human Genetics,1951,15:323-354.
    201 Xie,L, Miao H, Hong X Y. The Two-Spotted Spider Mite Tetranychus Urticae Koch and the Carmine Spider Mite Tetranychus Cinnabarinus(Boisduval) in China Mixed in Their Wolbachia Phylogenetic Tree. Zootaxa,2006,1165:33-46.
    202 Xu J. The inheritance of organelle genes and genomes:patterns and mechanisms. Genome,2005, 48:951-958.
    203 Xu W, Jameson D, Tang B, Higgs P G. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Journal of Molecular Evolution,2006,63:375-392.
    204 Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Molecular Ecology,2002,11:1-16.
    205 Zhang A, Sikes D, Muster C, Li S. Inferring species membership using DNA sequences with back-propagation neural networks, Systematic Biology.2008,57:202-215.
    206 Zhang D X, Yan L N, Ji Y J, Hewitt G. M, Huang Z S. Unexpected relationships of substructured populations in Chinese Locusta migratoria. BMC Evolutionary Biology,2009,9:144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700