用户名: 密码: 验证码:
基于弧形电机拼接的大型望远镜驱动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于研制新一代大型光电望远镜,传统的有刷直流力矩电机已经不能满足望远镜尺寸的需求,且该类型电机有电刷和换向器,存在换向电火花和电磁干扰大的问题。目前,国外现役的大型望远镜采用了一种基于弧形直线电机拼接的驱动方式,该种驱动方式由多块弧形单元电机拼接构成,尺寸可以做的任意大,且该类型电机属于永磁同步电机,不存在电刷和换向装置,电磁干扰小。因此,研究基于弧形直线电机的驱动方式对于研制新一代大型望远镜具有重要意义。但是由于结构的原因,该种电机力矩波动较大,直接影响到影响望远镜的跟踪精度,在低速情况下更加明显。本文以减小该类型电机的力矩波动为核心研究内容,通过从电机设计、优化,控制系统硬件设计、控制算法研究等多个角度来减小该种电机的力矩波动问题,从而达到提高望远镜的跟踪精度的目的。
     由于该类型电机在国内望远镜的应用还属空白,本文结合普通旋转电机和直线电机的知识设计了一台弧形直线电机试验样机。主要包括电磁设计和机械结构设计,如永磁体工作点的选取、定子绕组分析与设计、空载漏磁系数的分析与计算、单元电机连接方式的分析与选取。
     针对该类型电机存在较大力矩波动的缺点,本文对电机结构进行优化。首先对齿槽效应进行理论分析与有限元分析验证,并通过采用分数槽结构的方法减小了试验样机的齿槽力;然后对边端效应进行进行理论分析与有限元分析验证,并通过优化电机定子铁心长度和本文提出的单元电机边端力相互抵消两种方法来减小试验样机的边端力;接着对该种电机三相绕组不对称形成原因和造成的力矩波动进行了深入分析,并提出不同单元电机绕组换相位相连的方法来解决三相绕组不对称问题;最后对现有永磁同步电机的永磁体形状进行分析,并提出一种通过优化永磁体形状参数的方法来得到理想的反电动势,从而减小反电动势谐波,达到进一步减小电机的力矩波动的目的。
     在此基础上,本文建立了基于DSP+IPM的电机控制与驱动硬件平台。对弧形永磁直线同步电机驱动系统的关键技术进行了深入分析,主要包括矢量控制技术和空间矢量调制方式。建立了弧形永磁直线同步电机的仿真系统,在此基础之上完成了系统电流环和速度环的设计。并针对影响位置伺服系统性能的相关因素进行了深入分析。
     另外,本文从控制策略的角度进一步提高弧形永磁直线同步电机伺服系统的跟踪精度。首先为了解决传统控制方法由于相位延迟而造成较大的跟踪误差的问题,本文研究了复合控制算法,通过仿真和实验测试该方法可以在很大程度上提高伺服系统的跟踪精度;然后为了减小电机的边端力造成的力矩波动,本文提出了电流补偿控制方法,该方法通过在电机控制系统的电流环加入补偿电流可以在一定程度上减小电机由于边端力造成的力矩波动,从而可以进一步提高系统的跟踪精度。最后为了研究大型望远镜的抗外界干扰能力,如风阻力矩等外界力矩对望远镜跟踪精度的影响,本文研究了滑模控制算法,通过仿真和实验,测试结果表明该类算法在外界干扰存在情况下,可以使伺服系统具有较强的鲁棒性。
     为了衡量弧形永磁直线同步电机及其控制系统的性能,本文对电机和控制系统的各项指标进行测试。主要包括电机设计参数、力矩波动系数、伺服系统带宽、伺服系统跟踪精度等。通过与现有的国内外伺服系统对比,测试结果表明该系统的各项指标比较先进,达到预期研制目的。
Because the traditional rotary motor can’t meet the dimension of the the nextgeneration large telescope, at the beginning of21st century, a new driving system forlarge telescope based on Arc permanent magnetic linear synchronous motors (ArcPMLSM) was developed. Compared with other traditional drive systems, Arc PMLSMsare manufactured piecewise and assembled on site, which can reduce the cost ofmachining and transportation. And the Arc PMLSM is a kind of brushless motor, whichcan avoid the commutation spark and the serious electromagnetic interference.But thisking of motor has disadvantage of large torque ripple. It induces a disturbance for thepositioning precision at low speed, which will affect the tracking accuracy for telescope.This paper focus on how to weaken the torque ripple of this motor, and then proposesome methods from the point of motor design and control methods to reduce the torqueripple.
     In this paper, a test model of Arc PMSLM used on the next generation largetelescope of China was designed, which was based on the theory of rotary motor andlinear motor. The work mainly include the mechanical design and electromagneticdesign, such as the analysis and calculation of the work point of the magnet,the designof the winding of the stator, the analysis and calculation of the coefficient of magneticdispersion, the mode of connection of the uint stator wingding, and so on.
     In order to decrease the torque ripple, some methods were adopted to optimize thestructure of the motor. Firstly, the slot effect was analysed and verified by the finiteelement method (FEM) analysis, and the slot force was decreased by adoptingfractional-slot structure. Secondly, the end effect was analysed and verified by the FEManalysis, and the end force was decreased by optimizing the length of the stator core andthe angle between the two stators, which was firstly proposed. Thirdly, the problem ofunbalanced three-phase winding was analysed, and by connecting different phasewindings of different stators, the problem of unbalanced three-phase winding wassolved. Compared with the primary three-phase winding, there were less harmonics inthe current. At last, the shape of the magnet was optimized, and compared with the traditional magnet, there were less harmonics in the back-EMF.
     On this basis, an Arc PMLSM servo system including hardware platform andsoftware algorithms was established based on DSP+IPM. The key technology includethe vector control method and the space vector pulse width modulation(SVPWM) werestudied. Based on the simulation model, the current loop and the speed loop of thecontrol system were developed. At last the disvantages of the M and T speed measuremethods were analysed, and the M/T speed measure method was adopt in this paper.
     In addition, some control methods were studied in this paper to improve thetracking accuracy of the servo system. Firstly, the forward feed control(FFC) methodwas studied, this method can decrease the phase delay of the control system. And thesimulation and test result show that this method can improve the tracking accuracy ofthe servo system to a large extent. Secondly in order to decrease the end force, a currentcompensator was added in the control system to compensate the torque ripple. After thismethods was adopted, the torque ripple of the motor was decreased. At last, in order toimprove the robustness of the servo system, the the slide mode control(SMC) methodwas studied. Compared with other control methods, the simulation and test result showthat this method can improve the ability of anti-interference for the servo system.
     To validate the optimization results and control methods, the parameters of the testmodel of Arc PMSLM were test, such as the torque ripple, the bandwidth of system, thetracking accuary and so on. And the test result show that the Arc PMLSM can satisfythe requirement of tracking accuracy for large telescope.
引文
[1]王国民.天文光学望远镜轴系驱动方式发展概述[J].天文学进展,2007,25(4):364-374
    [2] Bely P Y.The design and construction of large optical telescopes[C]. New York: Springer,2003,273-278.
    [3] Gutierrz P. Large Ground-based Telescopes[C]. Oschmann J M, stepped LM. Bellingham: SPIE,2003,325-335
    [4]徐欣圻,徐灵哲,罗秋凤.当代光学天文望远镜控制系统新技术[J].天文学进展,2003,21(3):195-203
    [5] Takeshi N, Wataru T, ToshiyuKi S. Telescope control Systems III[C]. Hilton l. Bellingham:SPIE,1998,361-366
    [6] Jore P, Consolacion A, Alfredo O. Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commission[C]. Sebring T, Andersen T. Bellingham: SPIE,2000,92-103
    [7] T Erm, P Gvtierrez.Integration and tuning of the VLT drive systems[C]. New York: Springer,2003,490-499
    [8] M.svarez.The GTC main axes servos and control system[C]. New York: Springer,2008,1-12.
    [9] T. M. Erm, A. Seppey. A cost effective direct drive option for the Thirty Meter Telescope[C]. Optmechanical Technologies for Astronomy. Bellingham: SPIE,2006,1-8
    [10] Gabriele Gilardi, Kei Szeto, Steve Huard, and Edward J. Park. Finite element analysis of thecogging force in the linear synchronous motorarray for the Thirty Meter Telescope[J]. Mechatronics,2011,21(3):116–124
    [11] Martin Ravensbergen.Main axes servo systems of the VLT[C]. New York: Springer,2009,997-1005
    [12] M.Venturini, A Vismara.Design and test of very large diameter brushless permanent magnettorque motors for the very large telescope[C]. Power systems,1996,1-8.
    [13] F.Leonardi, M.Venturini and A.Vismara. PM Motors for Direct Driving Optical Telescope[J].IEEE Industry Applications Magazine,1996,20(7):10-16
    [14]陈伯时.电机拖动自动控制系统[M].北京:北京机械工业出版社,2003,70-89
    [15]唐任远.现代永磁电机[M].北京:机械工业出版社,1997,25-35
    [16]姬伟,李奇.精密光电跟踪转台的设计与伺服控制[J].光电工程,2006,33(3):11-16
    [17] Claudio Bianchini, Fabio Immovilli, Alberto Bellini and Paolo Mignano. Arc linear motors fordirect drive robots: Galileo sphere[C].Proceedings of the2008IEEE Industry Applications SocietyAnnual Meeting,2008,1–7.
    [18]Jiujian Chang, Wenli Ma, Jinlong Huang. Design and Optimization of Arc Permanent MagnetSynchronous Motor Used on Large Telescope[J].IEEE Transactions on Magnetics,2012,48(5):1943-1947.
    [19]Jiujian Chang, Wenli Ma, yongkun Fan, hui Yang. New methods for arc permanent magnetlinear synchronous motor to decrease torque ripple[J].IEEE Transactions on Magnetics,2012,48(10):2659-2663.
    [20]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,1997,10-26
    [21]周旺平,徐欣圻.大型天文望远镜超低速跟踪控制[J].光电工程,2007,34(1):2-4
    [22] Tao Sun, Ji Min Kim, and Geun Ho Lee. Effect of pole and slot combination on noise andvibration in permanent magnet synchronous motor[J]. IEEE Transactions on Magnetics,2011,47(5):1038–1041
    [23] Faiz J., Ebrahimi-Salari M., and Shahgholian G.. Reduction of cogging force in linearpermanent-magnet generators[J]. IEEE Transactions on Magnetics,2010,46(1):135–140
    [24] Yu-wu Zhu, and Yun-Hyun Cho. Thrust ripples suppression of permanent magnet linearsynchronous motor[J]. IEEE Transactions on Magnetics,2007,43(6):2537–2539
    [25] J. P. Jastrzembski and B. Ponick. Different methods for reducing cogging force in a permanentmagnet linear synchronous motor[C]. Proceedings of the2010IEEE IECON,2010,823–828
    [26] Masaya Inoue, and Kenji Sato. An approach to a suitable stator length for minimizing the detentforce of permanet magnet linear synchronous motors[J]. IEEE Transactions on Magnetics,2000,46(7):1890–1893
    [27] Yu Wu Zhu, Sang Gun Lee, Koon Seok Chung and Yun Hyun Cho. Investigation of auxiliarypoles design criteria on reduction of end effect of cogging force for PMLSM[J]. IEEE Transactionson Magnetics,2009,45(6):2863–2866
    [28] Dorrell D.G., and Popescu M.. Odd stator slot numbers in brushless DC machines—an aid tocogging torque reduction[J]. IEEE Transactions on Magnetics,2011,47(10):3012–3015
    [29] Ashabani M., Milimonfared J., and Shokrollahi-Moghani. Mitigation of cogging force in axiallymagnetized tubular permanent-magnet machines using iron pole-piece slotting[J]. IEEE Transactionson Magnetics,2008,44(9):2158–2162
    [30] Sadegh Vaez zadeh.Multiobjective design optimization of air-core linear permanent magnetsynchronious motors for improve thrust and low magnet consumption[J]. IEEE Transactions onMagnetics,2006,42(3):496–502
    [31]秦忆.现代交流伺服系统[M].武汉:武汉理工大学出版社,1995,55-80
    [32]张雄伟. DSP芯片的原理与开发应用[M].北京:电子工业出版社,1997,45-72
    [33]范祝霞,欧阳红.基于旋转变压器的PMSM驱动系统位置反馈的研究[M].电气传动,2010,9(3):25–28
    [34]邓方,陈杰.一种高精度的光电编码器检测方法及其装置[J].北京理工大学学报,2007,11(9):37–40
    [35]朱名日,蒋存波.高分辨率磁性编码器的磁鼓研究[J].桂林工学院学报,2004,5(9):13–16
    [36]林伟杰.永磁同步电机伺服系统控制策略的研究[D],浙江:浙江大学,2005,40-65
    [37]吕晓莉,王海.D-FSMC在快速跟踪望远镜直接驱动系统中的应用.机电工程[J],2008,25(3):20-23
    [38]包辉.同步电机变频调速系统的研究[D],浙江:浙江大学,2003,60-68
    [39] Utkin A, Guldner J, Shi J X. Sliding Mode Control in electromechanical systems[J].Taylor&Francis,1999,33(2):48-52
    [40]孙宜标,郭庆鼎.交流直线伺服控制系统的模糊滑模变结构控制[J].沈阳工业大学学报,2002,24(3):317-321
    [41]黄佳佳.滑模控制永磁同步电机伺服系统的研究[D],南京:南京航空航天大学,2008,28-38
    [42] F.F.M. El-Sousy. Robust wavelet-neural-network sliding-mode control system for permanentmagnet synchronous motor drive[J]. IET Electr. Power Appl.,2011,5(1):13–132
    [43]窦汝振.高性能永磁交流伺服系统及其新型控制策略的研究[D],天津:天津大学,2002,22-54
    [44]夏怡.永磁同步电机H∞控制策略的研究[D],无锡:江南大学,2006,45-56
    [45] M. Chadli, A. El Hajjaji, A. Rabhi. H∞Observer-based robust multiple controller design forvehicle lateral dynamics[C].2010American Control Conference Marriott Waterfront,2010,1508-1513
    [46] Yao B, Xu L. Adaptive robust motion control of linear motors for precision manufacturing[J].Mechatronics,2002,12(4):595–616
    [47]覃海涛.交流伺服系统自调整技术研究[D],武汉:华中科技大学,2011,42-56
    [48] Wei Zhe Qian. Speed ripple minimization in PM synchronous motor using iterative learningcontrol[J]. IEEE Transactions on Magnetics,2005,20(1):53–61
    [49]邹积浩.永磁直线同步电机控制策略的研究[D],浙江:浙江大学,2005,10-24
    [50]黄国治,傅丰礼.中小型旋转电机设计手册[M].北京:中国电力出版社,2007,15-72
    [51]王秀和.永磁电机漏磁系数的确定[J].微特电机,1999,32:48-50
    [52]王海峰,任章. ANSYS在永磁电机设计中的应用[J].中小型电机,2003,30(2):1-3
    [53] Filgueira, J.M. Architectural design of the GTC control system[C], Bellingham: SPIE,2000,35-45
    [54]潘开林.永磁直线同步电机的磁阻力分析及最小化研究[J].中国电机工程学报,2004,24(4):112-115
    [55]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1989,20-62
    [56] G. Krebs, A.Tounzi, and B.Pauwels. Modeling of a linear and rotary permanent magnet actuator.IEEE Transactions on Magnetics[J],2008,44(11):4357–4360
    [56] Lee DY, Kim GT. Design of thrust ripple minimization by equivalent magnetizing currentconsidering slot effect[J]. IEEE Transactions on Magnetics,2006,42(4):1367–70
    [57]罗宏浩,吴峻,常文森.动磁式永磁无刷直流直线电机的齿槽力最小化[J].中国电机工程学报,2007,27(6):12-16
    [58] Chang-Chou Hwang, Ping-Lun Li, and Cheng-Tsung Liu. Optimal design of a permanentmagnet linear synchronous motor with low cogging force[J]. IEEE Transactions on Magnetics,2012,48(2):1039–1042
    [59]曹永娟.高性能永磁同步电机性能分析与设计[D],南京:东南大学,2005,52-64
    [60]穆海华,周云飞.直线电机齿槽力波动的标定与补偿方法[J].电机与控制学报,2009,13(5):721-727
    [61]罗宏浩,廖自力.永磁电机齿槽力矩的谐波分析与最小化设计[J].电机与控制学报,2010,14(4):36-41
    [62]杨玉波,王秀和.一种消弱永磁同步电动机齿槽转矩的方法[J].电机与控制学报,2008,12(5):520-523
    [63]王道涵,王秀和.不等宽永磁体削弱表面永磁电机齿槽转矩的方法[J].电机与控制学报,2008,12(4):380-381
    [64]张颖.永磁同步直线电机磁阻力分析及控制策略研究[D],武汉:华中科技大学,2008,77-84
    [65] Yu Wu Zhu, Dae Hyun Koo and Yun Hyun Cho. Cogging force minimization of permanentmagnet linear synchronous motor by means of two different methods[J]. IEEE Transactions onMagnetics,2008,44(11):4345-4348
    [66]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究[D],浙江:浙江大学,2003,24-32
    [67] Yu Wu Zhu, Sang Gun Lee, Koon Seok Chung and Yun Hyun Cho. Investigation of auxiliarypoles design criteria on reduction of end effect of detent force for PMLSM[J]. IEEE Transactions onMagnetics,2009,45(6):2863–2866
    [68] K.C.Lim, J.K.Woo, and G.H. Kang. Cogging force minimization techniques in permanentmagnet linear synchronous motors[J]. IEEE Transactions on Magnetics,2002,38(3):1157–1160
    [69] Zhu Z Q.Reduction of cogging force in slotless linear permanent magnet motors[J]. IEEETransactions on Magnetics,1997,144(4):277–282
    [70]夏加宽.高精度永磁直线电机端部效应推力波动及补偿策略研究[D],沈阳:沈阳工业大学,2006,32-41
    [71]Khwaja M, Silva H. Identification of machineparameters of a synchronous motor[J]. IEEETrans.on Industry Applications,2005,41(2):557-565.
    [72]任雷,崔芮华,等.永磁同步电机绕组电感的饱和效应[J].电工技术学报,2000,15(1):21-25.
    [73]吴茂林,黄声华.永磁同步电机非线性参数辨识[J].电工技术学报,2004,24(8):65-68.
    [74] Stumberger B, Stumberger G, Hamler A. Evaluation of saturation and cross-magnetizationeffects ininterior permanent-magnet synchronous motor[J].IEEE Transactions on IndustryApplications,2003,39(5):1264-1271.
    [75] Nariman Roshandel Tavana, Abbas Shoulaie. Pole-shape optimization of permanent-magnetlinear synchronous motor for reduction of thrust ripple[J]. Energy Conversion and Management,2011,52(1):349-354
    [76] Jang SM, Lee SH, Yoon IK. Design criteria for detent force reduction of permanent magnetlinear synchronous motors with Hallbach array[J]. IEEE Transactions on Magnetics,2002,38(5):3261–3263.
    [77] Y. Li, J. Zou. Optimum design of magnet shape in permanent-magnet synchronous motors[J].IEEE Transactions on Magnetics,,2003,39(4):3523-3526
    [78] M.S. Islam, S. Mir, T. Design considerations of sinusoidally excited permanent magnetmachines for low torque ripple applications[C]. The39th IEEE IAS Annu. Meeting,2004,10:1723–1730
    [79] Zyl AV, Landy CF. Reduction of cogging forces in a tubular linear synchronous motor byoptimizing the secondary design[C]. IEEE6th Africon conference in Africa,2002,689–692
    [80]Min Fu Hsieh, Yu Sheng Hsu. An investigation on influence of magnet arc shaping upon backelectromotive force waveforms for design of permanent magnet brushless motors[J]. IEEETransactions on Magnetics,2005,41(6):3949-3951
    [81]Z. Q. Zhu.Prediction of open-circuit air gap field distribution in brushless machine having aninset permanent magnet rotor topology[J]. Magnetics,IEEE Transactions on Magnetics,1994,21(6):7-9
    [82]刘培英. PMSM直接转矩控制方法及实验研究[D],天津:天津大学,2010,30-55
    [83]陈永军.低速大转矩永磁同步电机直接力矩控制研究[D],武汉:华中科技大学,2008,14-20
    [84]尚喆.永磁同步电动机磁场定向控制的研究[D],浙江:浙江大学,2007,33-42
    [85]徐艳平,钟彦儒.永磁同步电机矢量控制和直接转矩控制的研究[J].电力电子技术,2008,42(1),60-62
    [86]刘卫俊.基于DSP的异步电机SVPWM矢量控制系统的研究[D],浙江:浙江工业大学,2010,28-36
    [87]屈丽丽,杨振坤,杨兆华.三相电压型PWM整流器空间矢量脉宽调制研究[J].电工技术,2004,48(7):729-732
    [88]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D],浙江:浙江大学,2006,10-30
    [89]郭庆鼎,王成元.交流伺服系统[M].北京:机械工业出版社,1994,83-122
    [90]胡浩军,毛耀,马佳光.稳定转台摩擦参数的测量及其对稳定精度的影响[J].光电工程,34(5):5-9
    [91]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程,1989,3(6):1-42
    [92]刘鸿文.材料力学[M].北京:高等教育出版社,2003,183-202
    [93]周金柱,段宝岩,黄进. LuGre摩擦模型对伺服系统的影响与补偿.控制理论与应用[J],2008,25(6):990-994
    [94]宋刚,秦月霞,张凯.基于普通编码器的高精度测速方法[J].上海交通大学学报,2002,21(8):1169-1172
    [95]张恒.基于DSP滑模控制的PMSM伺服系统的设计[D],湖南:湖南大学,2010,94-100
    [96]林春.永磁同步直线电机伺服控制系统的研究[D],浙江:浙江大学,2005,78-89
    [97]康怡,王军芬. AD7864与TMS320LF2407的接口及应用[J].电气应用,2005,24(7):102-105
    [98]邱晓波,窦丽华.光电跟踪系统自抗扰伺服控制器的设计[J].光学精密工程,2010,18(1):220-226
    [99]史婷娜.低速大转矩永磁同步电机及其控制系统[D],天津:天津大学,2008,33-42
    [100]张侨.永磁同步电机参数辨识的研究[D],武汉:华中科技大学,2010,65-78
    [101]王建立,陈涛.提高光电经纬仪跟踪快速运动目标能力的一种方法[J].光电工程,2002,29(1):34-37
    [102]吴盛林,刘春芳.超低速高精度转台中摩擦力矩的动态补偿[J].南京理工大学学报,2002,26(4):393-396
    [103]马佳光.复合控制及等效复合控制原理及应用[J].光学工程,1988,5(10):1-16
    [104]郝双晖,郑伟峰.基于前馈控制的交流伺服系统高速定位控制[J].机械设计与制造,2011,4(4):179-181
    [105]李文军,陈涛.基于卡尔曼滤波器的等效复合控制技术研究[J].光学精密工程,2006,14(2):279-286
    [106]邢启江,吴绍勇.脱靶量累加前馈补偿电视跟踪器的跟踪误差[J].光电工程,2006,33(12):5-8
    [107]王成元,刘莉莉,夏加宽.基于学习前馈控制的高精度直线伺服系统跟踪控制研究[J].电工技术学报,2004,l(10):27-31
    [108] Mu HH, Zhou YF, Wen X, Zhou YH. Calibration and compensation of cogging force effect ina permanent magnet linear motor[J]. Mechatronics,2009,19(4):577-585
    [109] Hany M. Hasanien.Torque ripple minimization of permanent magnet synchronous motor usingdigital observer controller[J]. Energy Conversion and Management,2010,51(1):98-104
    [110] Yu Wu Zhu, Sang Min Jin.Control based reduction of detent force for permanent magnet linearsynchronous motor[J]. IEEE Transactions on Magnetics,2009,45(6):2827–2836
    [111]孙宜标.基于滑动模态的永磁直线同步电动机鲁棒速度控制[D],沈阳:沈阳工业大学,2007,32-56
    [112]王芙蓉.PMSM伺服系统滑模变结构控制研究[D],武汉:武汉理工大学,2006,24-35
    [113]吴靖.电机传动系统参数辨识方法的研究[D],浙江:浙江大学,2008,41-56
    [114] K.M. Rahman, S. Hiti. Identification of machine parameters of a synchronous motor[J]. IEEETrans. on Industry Applications,2005,41(2):557-565
    [115]汤斯.永磁同步电机参数辨识研究[D],武汉:华中科技大学,2009,12-35
    [116]张晓峰.大行程超精密工作台关键技术研究[D],天津:天津大学,2008,10-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700