用户名: 密码: 验证码:
超重力强化臭氧高级氧化技术处理模拟苯酚废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的迅猛发展和人民生活水平的提高,如何解决日益严峻的环境问题越来越成为全社会关注的焦点。有机废水污染是水环境日益恶化的重要原因之一,其中含酚废水是一类比较典型,且排放量和危害都较大的有机废水。化学氧化法预处理后接生物处理是一种经济高效的酚类废水处理方法。目前,臭氧高级氧化技术(如O3/H2O2工艺、均相催化臭氧化等)因其高氧化能力、无二次污染等优点被应用于水处理领域,但该类方法普遍存在臭氧在水中的溶解性差,利用效率低等缺陷。
     本文引入超重力技术对臭氧高级氧化工艺进行强化,将其与O3/H2O2、 O3/Fe(Ⅱ)、O3/H2O2/Fe(Ⅱ)(O3/Fenton)三种高级氧化工艺结合,考察了超重力环境下操作条件对苯酚降解的影响规律,通过响应面实验设计方法对操作条件进行优化,比较了不同高级氧化工艺下羟基自由基相对浓度及苯酚的降解机理,为酚类废水的快速处理提供新的处理工艺,主要研究内容及成果总结如下:
     (1)在使用旋转填充床作为反应器,以O3/Fe(Ⅱ)体系处理苯酚废水的单因素研究中发现,当超重力环境从2g(g为地球重力加速度)增加至175g时,O3和O3/Fe(Ⅱ)体系的传质系数提高了约1倍,苯酚降解率提高了约0.7倍。在酸性条件下,在O3体系中添加少量亚铁(0.4mM)即可提高苯酚降解率约10%。利用响应面法对操作条件进行进一步优化时发现,在亚铁浓度为0.58mM、臭氧浓度为60mg/L、液体流量为10L/h、旋转填充床转速为1500rpm时,03/Fe(Ⅱ)体系的苯酚降解率达70%;在亚铁浓度为0.5mM、臭氧浓度为30mg/L、液体流量为30L/h、旋转填充床转速为1500rpm时,03/Fe(Ⅱ)体系的臭氧利用率可达0.096mol/mol (phenol/O3)。苯酚溶液经过03/Fe(Ⅱ)体系处理之后可生化性指标(五日生物需氧量与化学需氧量之比,BOD5/COD)从处理前的0.2增加至0.56,大大高于生化处理所需的0.3。
     (2)通过对旋转填充床强化03/H202体系降解苯酚废水的反应动力学研究发现,当超重力环境从8g增加至200g时,苯酚和COD降解的表观反应速率常数分别增加了1倍和0.6倍。研究表明,适宜的操作条件为:过氧化氢浓度为1.3mM、初始pH值为9、臭氧浓度为55mg/L、反应温度为25℃、转速为1000rpm,此时苯酚和COD降解率分别可达96%和75%。
     (3)通过对超重力强化O3/Fenton (O3/Fe(II)/H2O2)体系处理苯酚废水的研究发现,苯酚降解率在O3/Fenton体系比03体系要高出大约20%,并且在过氧化氢浓度为1.4mM时达98%。当超重力环境从8g增加至200g时,03体系和O3/Fenton体系的苯酚降解率分别提高了0.6和0.3倍。在亚铁浓度为0.17mM、臭氧浓度为50mg/L、过氧化氢浓度为1.1mM、pH为6、旋转填充床转速为1000rpm时,O3/Fenton体系的苯酚降解率达98.6%, BOD5/COD值由0.2增加至0.58。
     (4)通过比较O3、O3/Fe(Ⅱ)、O3/H2O2以及O3/Fenton四种氧化体系的羟基自由基浓度与臭氧浓度之比(羟基自由基相对浓度)发现,催化剂的加入可提高羟基自由基相对浓度,氧化性催化剂H2O2的加入能同时提高羟基自由基相对浓度及自由基总存在量∫[·OH]dt;还原性催化剂Fe(Ⅱ)的加入能提高羟基自由基相对浓度,但同时会消耗氧化剂并降低自由基总存在量∫[·OH]dt。O3/Fenton体系的羟基自由基相对浓度是O3体系的近80倍,其∫[·OH]dt提升约3倍。在臭氧浓度相同时,添加催化剂使之转变为高级氧化体系能显著提高氧化速率和降低选择性,对于羟基自由基浓度也有明显提升,高级氧化工艺的应用可提高水处理过程效率、减小水处理设施的体积。
     (5)在pH=2时,在O3体系中添加Fe(Ⅱ)使部分苯酚降解中间产物苯醌被还原成对苯二酚,从而使对苯二酚在中间产物中所占比例上升;同时由于Fe(Ⅱ)加入使体系苯氧自由基等活跃的自由基增多,使O3/Fe(Ⅱ)体系中产生少量邻苯二甲酸二甲酯和一些聚合物。当pH在7左右时,与酸性条件下相比,O3体系中苯酚降解中间产物,中间产物浓度有明显下降,O3体系中只检测到残留的苯酚和少量的1,2-苯二酚、邻苯二甲酸二甲酯和乙酸苯酯;O3/Fenton体系中除了少量残留苯酚外几乎没有检测到中间产物,这表明苯酚在O3/Fenton体系降解相对更为彻底,产物大多为小分子有机酸等,这也解释了苯酚溶液经O3/Fenton体系处理后BOD5/COD值相对于O3体系有大幅提升的现象。
The organic wastewater becomes a big problem in petrochemical industry, printing and dyeing industry and pharmaceutical industry with the rapid development of China's economy. Phenolic wastewater is a typical organic wastewater with significant impact on environment. Chemical oxidation followed by biotreatment is an efficient method for phenolic wastewater treatment. Ozone-based advanced oxidation processes, such as O3/H2O2process and homogeneous catalytic ozonation, have been used in wastewater treatment field due to the high oxidizability and no secondary pollution. However, the low solubility and utilization rate of ozone limit the application of ozone-based advanced oxidation processes.
     In this study, the high-gravity technology (rotating packed bed, RPB) was used to intensify the ozone-based advanced oxidation processes, including O3/H2O2, O3/Fe(II) and O3/H2O2/Fe(II)(O3/Fenton) processes. The effects of different operation conditions on phenol degradation were investigated and the operation conditions in high gravity environment were optimized using response surface method (RSM). The relative concentrations of hydroxyl radicals and phenol degradation mechanisms in different oxidation processes were compared, with an attempt to provide a new process for the rapid treatment of phenolic wastewater. This study has reached the following conclusions:
     (1) Single-factor method was used to investigate the catalytic ozonation of phenol with O3/Fe(Ⅱ) process in RPB. In acidic environment, the phenol degradation rate in O3/Fe(Ⅱ) process was about10%higher than that in O3process. The mass transfer coefficient was doubled and the phenol degradation rate increased0.7times in O3and O3/Fe(Ⅱ) processes when the high gravity level in RPB increased from2g to175g. According to the result of the RSM experiments, the phenol degradation rate in O3Fe(Ⅱ) process reached70%at the Fe(Ⅱ) concentration of0.58mM, O3concentration of60mg/L, liquid flow rate of10L/h, rotating speed of1500rpm respectively. The ozone utilization rate of O3/Fe(Ⅱ) process reached0.096mol/mol (phenol/O3) at the Fe(Ⅱ) concentration of0.5mM, O3concentration of30mg/L, liquid flow rate of30L/h, rotating speed of1500rpm respectively. After the phenol solution was treated by O3/Fe(Ⅱ) process, the BOD5/COD value (biodegradability) of the phenol solution increased significantly from0.2to0.56which is much higher than the requirement of biochemical treatment (>0.3).
     (2) The kinetics of the phenol degradation in O3/H2O2-RPB process was investigated in this study. The apparent reaction rate constant of phenol degradation and COD degradation increased1times and0.6times respectively when the high gravity level in RPB increased from8g to200g. Experimental results indicated that the phenol and COD removal rate reached96%and75%under the suitable operation conditions:H2O2concentration of1.3mM, O3concentration of60mg/L, initial pH of9, reaction temperature of25℃, and rotating speed of1500rpm.
     (3) The ozonation of phenol in03/Fenton process intensified by an RPB was investigated in this study. It was found that the phenol degradation in03/Fenton process was about20%higher than that in O3process and reached98%at the H2O2concentration of1.4mM. The phenol degradation rate of O3and03/Fenton processes increased0.6times and0.3times respectively when the high gravity level in RPB increased from8g to200g. The phenol degradation rate in O3/Fenton process reached98.6%under the operation conditions:Fe(II) concentration of0.17mM, H2O2concentration of1.1mM, O3concentration of50mg/L, initial pH of6, and rotating speed of1000rpm. The BOD5/COD value of the phenol solution increased from0.2to0.58after the phenol solution was treated by03/Fenton process.
     (4) The ratios of hydroxyl radicals concentration to ozone concentration (Ret) in O3, O3/Fe(II), O3/H2O2and03/Fenton processes were studied. It was found that the addition of catalyst could improve the formation of hydroxyl radicals; addition of H2O2and Fenton reagent could increase both the formation efficiency and amount of hydroxyl radicals, addition of Fe(II) could increase the formation efficiency of hydroxyl radicals but decrease oxidant amount (∫[·OH]dt) The Rct value in O3/Fenton process was about80times higher than that in O3process, but the total hydroxyl radical amount in03/Fenton process was only3times higher than that in O3process. Therefore, advanced oxidation processes have higher oxidation rate and low selectivity but could not increase the oxidation amount. The application of advanced oxidation processes will increase the treatment efficiency and decrease the equipment size in wastewater treatment.
     (5) The addition of Fe(Ⅱ) increased the amount of hydroquinone in O3/Fe(Ⅱ) process due to the reduction of benzoquinone by Fe(Ⅱ) at pH=2. There were more free radicals such as phenoxy radicals in O3/Fe(Ⅱ) process leading to the formation of some dimethyl phthalate and polymers. The intermediates concentration in O3process was lower in neutral environment than that in acidic environment. Only residual phenol and a small amount of1,2-benzodiazepines, dimethyl phthalate, and phenylacetate were determined in O3process under neutral environment. A relatively thorough phenol degradation was attained in O3/Fenton process and most intermediates were degraded to small organic acids. So there were almost no intermediates found in O3/Fenton process. It also explained why phenol solution had a significantly higher BOD5/COD after treated by O3/Fenton process than by O3process.
引文
[1]焦庆周,柴多里,鲍远志.高级氧化技术与含酚废水处理[J].现代化工,2013,33(1):40-44.
    [2]孙志斌,武巧仙.含酚废水处理方法及进展[J].精细与专用化学品,2012,20(8):49-53.
    [3]Belaid C, Khadraoui M, Mseddi S, et al. Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools[J]. J. Environ. Sci.,2013,25(1):220-230.
    [4]Maike R, Teixeira M A, Carneiro A E, et al. Performance of constructed wetlands in the treatment of aerated coffee processing wastewater:Removal of nutrients and phenolic compounds[J]. Ecol. Eng.,2012,49:264-269.
    [5]El-Abbassi A, Khayet M, Kiai H, et al. Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation[J]. Sep. Purif. Technol.,2013,104:327-332.
    [6]Fan C, Lu A, Li Y, et al. Pretreatment of actual high-strength phenolic wastewater by manganese oxide method[J]. Chem. Eng. J.,2010,160(1):20-26.
    [7]Kallel M, Belaid C, Mechichi T, et al. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron[J]. Chem. Eng. J.,2009, 150(2-3):391-395.
    [8]Yu P, Huang K, Zhao J, et al. A novel separation technique:Gas-assisted three-liquid-phase extraction for treatment of the phenolic wastewater[J]. Sep. Purif. Technol.,2010,75(3): 316-322.
    [9]Xu J, Duan W, Zhou X, et al. Extraction of phenol in wastewater with annular centrifugal contactors[J]. J. Hazard. Mater.,2006,131(1-3):98-102.
    [10]Santos S A O, Villaverde J J, Silva C M, et al. Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark[J]. J. Supercrit. Fluids,2012,71:71-79.
    [11]朱金城.俄罗斯含酚废水处理技术概述[J].辽宁城乡环境科技,1998,18(1):82-84.
    [12]张会平,钟辉.苯酚在活性炭上的吸附与脱附研究[J].化工科技,1999,7(004):35-38.
    [13]李丽敏,彭学伟.焦木素对苯酚吸附性能的研究[J].化学研究与应用,2001,13(002):205-207.
    [14]Sharma N K, Philip L, Murty Bhallamudi S. Aerobic degradation of phenolics and aromatic hydrocarbons in presence of cyanide[J]. Bioresour. Technol.,2012,121:263-273.
    [15]Nakada N, Tanishima T, Shinohara H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment[J]. Water Res.,2006,40(17):3297-3303.
    [16]Diez M C, Castillo G, Aguilar L, et al. Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater[J]. Bioresour. Technol.,2002,83(2): 131-138.
    [17]Galapate R P, Agustiani E, Baes A U, et al. Effect of HRT and MLSS on THM precursor removal in the activated sludge process[J]. Water Res.,1999,33(1):131-136.
    [18]夏北成.环境污染物生物降解[M],化学工业出版社,2002.
    [19]Dhaouadi H., Marrot B. Olive mill wastewater treatment in a membrane bioreactor:Process feasibility and performances [J]. Chem. Eng. J.,2008,145(2):225-231.
    [20]杨平,王彬,石炎福,等.生物流化床A-A-O工艺处理焦化废水中试研究[J].化工学报,2002,53(10):1085-1088.
    [21]劳善根,童永忠.活性炭厌氧滤池处理含酚废水小型试验[J].水处理技术,1994,20(4):241-244.
    [22]雷晓玲,张晓健.焦化废水中有机物的生物处理特性及处理工艺改进对策[J].环境科学学报,1995,15(4):385-391.
    [23]郑笑彬.焦化废水的厌氧-好氧生物处理[J].化工环保,1993,13(4):203-205.
    [24]耿新华,黄伟娜,李晓,等.沉淀法回收陶瓷业废水中酚类物质的研究[J].山东化工,201 1,40(7):13-15.
    [25]陶洁.金属离子沉淀法处理含酚废水及回收酚类物质的研究[J].科技咨询导报,2007,23:116-117.
    [26]王美玉.浅谈含酚废水的控制与治理[J].化学工程与装备,2010,(7):190-191,159.
    [27]李水明.酚氰污水焚烧在华坪焦化厂中的应用[J].有色金属设计,2000,27(2):53-54,65.
    [28]胡文伟,高亚岳.焚烧法处理含酚废水[J].工业用水与废水,2000,31(4):28-29.
    [29]林齐平.含酚废水治理技术的进展[J].水处理技术,1993,(3):174-180.
    [30]Nakamura A, Inui T, Kinomura N, et al. Effect of chlorine treatment on adsorption properties of phenol-formaldehyde resin-derived char[J]. Carbon,2000,38(9):1361-1367.
    [31]Hoigne J, Bader H. Kinetics of reactions of chlorine dioxide in water—I. Rate constants for inorganic and organic compounds[J]. Water Res.,1994,28(1):45-55.
    [32]Neelamegam R, Palatnik M T, Fraser-Rini J, Fraser-Rini James, et al. Dimerization of phenols and naphthols using an aqueous sodium hypochlorite[J]. Tetrahedron Lett.,2010,51(18): 2497-2499.
    [33]Michalowicz J, Duda W, Stufka-Olczyk J. Transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite[J]. Chemosphere,2007,66(4):657-663.
    [34]Turhan K, Uzman S. Removal of phenol from water using ozone[J]. Desalination,2008, 229(1-3):257-263.
    [35]Sano N, Yamamoto T, Yamamoto D, et al. Degradation of aqueous phenol by simultaneous use of ozone with silica-gel and zeolite[J]. Chem. Eng. Process.,2007,46(6):513-519.
    [36]Park J N, Wang J, Choi K Y, et al. Hydroxylation of phenol with H2O2 over Fe2+and/or Co2+ ion-exchanged NaY catalyst in the fixed-bed flow reactor[J]. J. Mol. Catal. A:Chem.,2006, 247(1-2):73-79.
    [37]Maurya M R. Titinchi S J J, Chand Shri. Oxidation of phenol with H2O2 catalysed by Cu(II), Ni(II) and Zn(II) complexes of N,N'-bis-(salicylidene)diethylenetriamine (H2saldien) encapsulated in Y-zeolite[J]. J. Mol. Catal. A:Chem.,2003,201(1-2):119-130.
    [38]Herrera-Melian J A, Tello R E, Dona R J M, et al. Incidence of pretreatment by potassium permanganate on hazardous laboratory wastes photodegradability[J]. Water Res.,2000,34(16): 3967-3976.
    [39]刘杰,于超英,赵培庆,等.催化湿式氧化法降解水中的β-萘酚[J].环境科学,2012,33(11):3826-3832.
    [40]卫皇矍,何松波,乔瑞平,等.五氯酚催化湿式氧化降解反应及动力学研究[J].环境化学,2011,30(7):1297-1302.
    [41]陈拥军,窦和瑞,杨民,等.催化湿式氧化法在苯酚废水预处理中的应用用研究[J].工业水处理,2002,22(6):19-22.
    [42]张秋波,李忠,胡克源.酚水及煤气化废水的湿式氧化处理[J].环境科学学报,1987,7(3):305-312.
    [43]谢光炎,梁开文.废水净化的电化学方法进展[J].给水排水,1998,24(1):64-68.
    [44]Chen G, Hung Y T. Electrochemical wastewater treatment processes[J]. Adv. Physicochem Treat. Technol,2007,5:57-106.
    [45]Comninellis C, Pulgarin C. electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. J. Appl. Electrochem.,1993,23(2):108-112.
    [46]Wu D L, Yang Z Z, Wang W, et al. Ozonation as an advanced oxidant in treatment of bamboo industry wastewater[J]. Chemosphere,2012,88(9):1108-1113.
    [47]Schaar H, Clara M, Gans O, et al. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step[J]. Environ. Pollut,2010,158(5):1399-1404.
    [48]Fajardo A S, Martins R C, Quinta-Ferreira Rosa M. Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al2O3[J]. Environ. Tech.2013,34(3):301-311.
    [49]Martins R C, Lopes R J G, Quinta-Ferreira Rosa M. Lumped kinetic models for single ozonation of phenolic effluents[J]. Chem. Eng. J.,2010,165(2):678-685
    [50]Sangave P C., Gogate P R., Pandit A B. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment[J]. Chemosphere,2007,68(1):32-41.
    [51]Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review[J]. Appl. Catal., B,2004,47(4):219-256.
    [52]Buhler R, Staehelin J, Hoigne J. Ozone decomposition in water studied by pulse radiolysis.1.HO2/O2- and HO3/O3- as intermediates.[J]. J. Chem. Phys.,88(12):2560-2564.
    [53]Tomiyasu H, Fukutomi H, Gordon G. Kinetics and mechanism of ozone decomposition in basic aqueous solution [J]. Inorg. Chem.,19(24):2962-2966.
    [54]Joshi M G, Shambaugh R L. The kinetics of ozone-phenol reaction in aqueous solutions[J]. Water Res.,1982,16(6):933-938.
    [55]Chedeville O, Debacq M, Porte C. Removal of phenolic compounds present in olive mill wastewaters by ozonation[J]. Desalination,2009,249(2):865-869.
    [56]Azevedo E B., Neto F R. A, Dezotti M. Lumped kinetics and acute toxicity of intermediates in the ozonation of phenol in saline media[J]. J. Hazard. Mater.,2006,128(2-3):182-191.
    [57]Chiang Y P, Liang Y Y, Chang C N, et al. Differentiating ozone direct and indirect reactions on decomposition of humic substances[J]. Chemosphere,2006,65(11):2395-2400.
    [58]李芳蓉.饮用水中微污染物净化技术[J].江苏教育学院学报:自然科学版,2007,24(1):20-23.
    [59]Leal L H, Temmink H, Zeeman G, et al. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon[J]. Water Res.,2011,45(9):2887-2896.
    [60]Esplugas S, Gima N J, Contreras S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res.,2002,36(4):1034-1042.
    [61]Hoign E J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water--Ⅱ::Dissociating organic compounds[J]. Water Res.,1983,17(2): 185-194.
    [62]Hammad K M, Jung J Y. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase[J]. Chemosphere,2008,72(4):690-696.
    [63]Wu C H, Kuo C Y, Chang Chung-Liang. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. J. Hazard. Mater.,2008,154(1-3): 748-755.
    [64]Beltran F J, Rivas F J, Montero-De-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts.1. Homogeneous catalytic ozonation[J]. Ind. Eng. Chem. Res. 2003,42(14):3210-3217.
    [65]Chang C C, Chiu C Y, Chang C Y, et al. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed[J]. J. Hazard. Mater.,2009,168(2-3):649-655.
    [66]Prieto-Rodriguez L., Oller I, Klamerth N, et al. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents[J]. Water Research,2013,47(4):1521-1528.
    [67]Chang C C, Chiu C Y, Chang C Y, et al. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed[J]. J. Hazard. Mater.,2009,161(1): 287-293.
    [68]Lan B Y, Huang R H, Li L S, et al. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst[J]. Chemical Engineering Journal,2013,219:346-354.
    [69]Keykavoos R, Mankidy R, Ma H, et al. Mineralization of bisphenol A by catalytic ozonation over alumina[J]. Sep. Purif. Technol.,2013,107:310-317.
    [70]Zeng Y F, Liu Z L, Qin Z Z. Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation[J]. J. Hazard. Mater.,2009,162(2-3):682-687.
    [71]Moiseeva N I, Gekhman A E, Moiseev I I. Metal complex catalyzed oxidations with hydroperoxides:Inner-sphere electron transfer[J]. J. Mol. Catal. A:Chem,1997,117(1-3): 39-55.
    [72]Andreozzi R, Insola A, Caprio V, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution[J]. Appl. Catal., A,1996,138(1):75-81.
    [73]Wu C H, Kuo C Y, Chang C L. Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes[J]. J. Hazard. Mater.,2008,153(3):1052-1058.
    [74]Wang X J, Hu X X, Wang H B, et al. Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water[J]. Water Res.,2012,46(4):1225-1232.
    [75]Ruppert G, Bauer R, Heisler G. UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment[J]. Chemosphere,1994,28(8):1447-1454.
    [76]Prengle Jr H. W. Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation[J]. Environ. Sci. Technol.,1983,17(12):743-747.
    [77]钟理,陈建军,张浩.臭氧氧化降解苯酚的动力学研究[J].中国给水排水,2002,18(9):8-11.
    [78]Kepa U, Stanczyk-Mazanek E, Stepniak L. The use of the advanced oxidation process in the ozone + hydrogen peroxide system for the removal of cyanide from water[J]. Desalination, 2008,223(1-3):187-193.
    [79]Lee C, Yoon J, Von Gunten U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide[J]. Water Res.,2007,41(3):581-590.
    [80]Pamela C A, El-Din M G, Smith D W, et al. Oxidation kinetics of two pesticides in natural waters by ozonation and ozone combined with hydrogen peroxide[J]. Water Res.,2011,45(8): 2517-2526.
    [81]Yu Y H, Ma J, Hou Y J. Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process[J]. J. Environ. Sci.-China,2006,18(6):1043-1049.
    [82]Barbara K H, Maria Z E, Jacek N. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Appl. Catal., B,2003,46(4):639-669.
    [83]Katsoyiannis I A, Canonica S, von Gunten U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2[J]. Water Res., 2011,45(13):3811-3822.
    [84]Stefan M I., Mack J, Bolton J. R. Degradation pathways during the treatment of Mehytl-tert-buytlether by the UV/H2O2 proeess[J]. Environ. Sci. Technol.,2000,34(4): 650-658.
    [85]Glaze W H., Knag J W. Advnaced Oxidation Processes:Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor[J]. Ind. Eng. Chem. Res.,1989,28(11):1573-1580.
    [86]克里斯蒂安-戈特沙克,尤迪,利比尔,等.水和废水臭氧氧化[M],中国建筑工业出版社,2004.
    [87]Kurbus T, Le M A M, Voncina D B. Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes[J]. Dyes Pigments,2003,58(3): 245-252.
    [88]Glaze W H, Kang J W. Chapin D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Sci. Eng.,1987,9(4):335-352.
    [89]Im J K, Cho I H, Kim S K, et al. Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design[J]. Desalination, 2012,285:306-314.
    [90]Vivian J E, Brian P, Krukonis V J. The influence of gravitational force on gas absorption in a packed column[J]. Aiche J.,1965,11(6):1088-1091.
    [91]Ramshaw C. Higee' distillation-an example of process intensification[J]. Chem. Eng.,1983, 389(2):13-14.
    [92]Burns J R, Ramshaw C. Process intensification:Visual study of liquid maldistribution in rotating packed beds[J]. Chem. Eng. Sci.,1996,51(8):1347-1352.
    [93]Tung H H, Mah R S H. Modeling Lquid Mass Transfer in Higee Separation Process[J]. Chem. Eng. Commun.,1985,39(1-6):147-153.
    [94]王玉红,郭锴.超重力技术及其应用[J].金属矿山,1999,(4):25-29.
    [95]欧阳朝斌,刘有智,祁贵生.一种新型反应设备——旋转填料床技术及应用[J].化工科技,2002,(4):50-53.
    [96]谢爱勇,李育敏,徐之超,等.两种动折流圈折流式超重力旋转床气相压降的实验研究[J].浙江工业大学学报,2010,(1):23-25.
    [97]王玉红.超重力反应结晶法合成纳米碳酸钙过程及中试放大研究[D].北京:北京化工大学,1998.
    [98]贾志谦.超重力反应结晶法合成纳米碳酸钙及表面改性研究[D].北京:北京化工大学,1997.
    [99]Sun B C, Wang X M, Chen J M, et al. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed[J]. Chem. Eng. J.,2011,168(2): 731-736.
    [100]Lin C C, Liu W T. Ozone oxidation in a rotating packed bed[J]. J. Chem. Technol. Biotechnol., 2003,78(2-3):138-141.
    [101]Ko C H, Guan C Y, Lu P J, et al. Ozonation of guaiacol solution in a rotating packed bed[J]. Chem. Eng. J.,2011,171(3):1045-1052.
    [102]Shang N C, Chen Y H, Yang Y P, et al. Ozonation of dyes and textile wastewater in a rotating packed bed[J]. J. Environ. Sci. Heal. A,2006,41(10):2299-2310.
    [103]Chen Y H, Chang C Y, Su W L, et al. Ozonation of CI Reactive Black 5 using rotating packed bed and stirred tank reactor[J]. J. Chem. Technol. Biotechnol.,2005,80(1):68-75.
    [104]Chiu C Y, Chen Y H, Huang Y H. Removal of naphthalene in Brij 30-containing solution by ozonation using rotating packed bed[J]. J. Hazard. Mater.,2007,147(3):732-737.
    [105]Chang C C, Chiu C Y, Chang C Y, et al. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed[J]. J. Hazard. Mater.,2009,168(2-3):649-655.
    [106]周绪美,郭错,王玉红,等.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994,23(12):807-812.
    [107]师彬,王俊芳,陈建峰,等.旋转填充床吸收模拟工业废气中SO2的研究[J].环境工程学报,2011,5(1):141-145.
    [108]孙志斌,祁贵生,刘有智,等.超重力氨法烟气脱硫工艺实验研究[J].天然气化工,2012,6):
    [109]陈昭琼,熊双喜.螺旋型旋转吸收器烟气脱硫[J].环境工程,1996,14(2):21-23.
    [110]Zeng Z Q, Zou H K, Li X, et al. Ozonation of Phenol with O3/Fe(II) in Acidic Environment in a Rotating Packed Bed[J], Ind. Eng. Chem. Res.2012,51(31)10509-10516.
    [111]Zeng Z Q, Zou H K, Li X, et al. Baochang Sun, Jianfeng Chen, Lei Shao. Ozonation of acidic phenol wastewater with O3/Fe(II) in a rotating packed bed reactor:Optimization by response surface methodology[J], Chem. Eng. Process,2012(60) 1-8.
    [112]Guo F, Zheng C, Guo K, et al. Hydrodynamics and mass transfer in cross-flow rotating packed bed[J]. Chem. Eng. Sci.,1997,52(21-22):3853-3859.
    [113]申乃坤,王青艳,陆雁,等.响应面法优化耐高温酵母生产高浓度乙醇[J].生物工程学报,2010,(1):42-47.
    [114]Mohajeri S, Aziz H A, Isa M H, et al. Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique[J]. J. Hazard. Mater.,2010,176(1-3): 749-758.
    [115]Monteagudo J M, Dura N A, Aguirre M, et al. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process[J]. J. Hazard. Mater.,2011,185(1):131-139.
    [116]Miguel R E, Shahin N, Dura N-De-B C, et al. Optimization of the heterogeneous Fenton-oxidation of the model pollutant 2,4-xylidine using the optimal experimental design methodology[J]. Sol. Energy,2004,77(5):491-501.
    [117]Muthukumar M, Sargunamani D, Selvakumar N, et al. Optimisation of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment[J]. Dyes Pigments,2004,63(2):127-134.
    [118]Von G U. Ozonation of drinking water:Part I. Oxidation kinetics and product formation. Water Res.2003,37 (7),1443-1467.
    [119]Ormad P, Cortes S, Puig A, et al. Degradation of organochloride compounds by O3 and O3-H2O2[J]. Water Res.,1997,31(8):
    [120]Huang C R, Shu H Y. The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2 processes[J]. J. Hazard. Mater.,1995, 41(1):47-64.
    [121]Liu H, Liang M Y, Liu C S, et al. Catalytic degradation of phenol in sonolysis by coal ash and H2O2/O3[J]. Chem. Eng. J.,2009,153(1-3):131-137.
    [122]Guedes M M, Maia B D, Dezotti M. Degradation and estrogenic activity removal of 17β-estradiol and 17a-ethinylestradiol by ozonation and O3/H2O2[J]. Sci. Total Environ.,2008, 407(1):105-115.
    [123]Kamenev S, Kallas J, Munter R, et al. Chemical oxidation of biologically treated phenolic effluents[J]. Waste Manage.,1995,15(3):203-208.
    [124]Elovitz M S., von Gunten U. Hydroxyl RadicalOzone Ratios During Ozonation Processes. I. The Rct Concept[J]. Ozone Sci. Eng.,1999,21:239-260.
    [125]Mvula E, Von S C. Ozonolysis of phenols in aqueous solution[J]. Org. Biomol. Chem.,2003, 1(10):1749-1756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700