用户名: 密码: 验证码:
海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是人类生存与发展的希望所在,也是我国未来发展的最重要的方向之一。在海洋开发过程中,大量使用钢铁材料,必须对其腐蚀行为和规律进行深入研究以保证各种工程设备的安全使用。锈层下碳钢腐蚀行为和规律由于受到锈层的影响变得复杂而难以分析,特别是带锈碳钢的腐蚀速率难以使用传统腐蚀电化学方法进行准确测定。
     本论文首先对在静止海水和模拟流动海水两种实验条件下的不同浸泡周期的Q235碳钢的腐蚀行为进行了探讨,结果表明在两种体系海水中,经过一段时间的浸泡后,由于受到表面锈层的影响,长期浸泡后电化学方法得到的腐蚀速率明显偏离失重法结果。成分分析及理化性质研究表明这一影响主要来自于长期浸泡后锈层中大量积累的β-FeOOH的还原反应所产生的阴极还原电流。碳钢在海水中长时间浸泡后,碳钢的自腐蚀电位处于β-FeOOH的还原反应区,因此在电化学测试过程中会作为去极化剂参与还原反应,导致电化学方法测定的腐蚀速度偏离失重数据,并且浸泡时间越长,β-FeOOH含量越多,锈层还原在阴极反应中所占的比例也越来越大,两种方法间的偏差也越来越大。
     恒电位极化实验证明阴极叠加的锈层还原反应可以通过外加阴极电流的预处理方式加以消除,为了有效校正电化学方法与失重法结果间的偏差,实现对碳钢腐蚀速率的快速准确测量,对静止海水和流动海水两种体系中长期浸泡的碳钢电极采取先阴极极化预处理对锈层还原电流进行补偿后再进行相关电化学测试的方法,结果表明分别对静止体系和流动体系施加-25μA/cm2和-35μA/cm2的恒电流极化预处理后,电化学方法测得的碳钢极化电阻Rp都比处理前大幅增加,电化学测试的腐蚀速率结果与失重法变化规律相似且数值接近(误差均小于10%),说明这一预处理方法可以对二者间的偏差起到良好的校正作用。
     同时发现随浸泡时间的延长电极所需要的极化预处理时间也逐渐增加,表明随着浸泡时间的增加,锈层还原反应电流也逐渐增大,极化时间随浸泡时间的变化规律与锈层还原电流在总表观腐蚀电流中的比例变化形式相似。对静态海水中浸泡48周碳钢电极恒电流极化处理前后锈层成分的XRD分析发现,对长期浸泡的碳钢电极极化预处理前后黄色外锈层组成没有明显变化,而内锈层中的活性物质β-FeOOH含量大大减少,同时电化学方法与失重法之间的偏差也大幅减小,进一步证明了内锈层中的β-FeOOH的还原反应是造成两种方法结果偏差的主要因素。
Sea is the human survival and the development in future, and also blue economyand marine resources exploitation is one of the most important development directionfor China in the future. The corrosion of carbon steel which was widely used in themarine industrial development process will directly affect the safety of all kinds ofengineering equipment such as ships, offshore oil platform, bulidings and so on, so itneeds to make deepgoing research on the corrosion behaviors and laws of carbonsteel. Rust/metal structure is one of the multiphase and multiple interface complexsystems. The corrosion under rust is the uppermost and longest form of carbon steel’scorrosion evolution process. But the corrosion behaviors and laws are toocomplicated to obtain precisely analysis results due to the influence of the rust layer,especially, when attention focused on the corrosion rate of carbon steel under rust bytraditional electrochemical method. However, the corrosion rate is the most importantcorrosion electrochemical parameter to examine materials’ corrosion behavior. Solooking for an accurate and efficient corrosion velocity measurement method forcarbon steel has siginificant meaning to corrosion research field.
     In this paper, the corrosion morphologies of the Q235carbon steel withindifferent immersing period under two different experiment conditions, meaning staticseawater and simulated flowing seawater, were carefully observed firstly throughtaking pictures. The result shows that in both systems, the corrosion products formedon the surface of the carbon steel stratified apparently after a spell of immersion. Theouter rust layer was yellow and relatively loose, while the inner layer was black andcompact, the thickness of which gradually thickened with the extension of theimmersing time, resulting in an increasing proportion of the inner black corrosionproducts of the whole corrosion products. After that, weight-loss method and severalelectrochemical methods (such as electrochemical impedance spectroscopy, linearpolarization resistant method, polarization curve) were carried out to study the corrosion behavior of the carbon steel in long-term immersing experiment under twoconditions. The result has been discovered that in both static and flowing systems,the short-term corrosion rate measured by electrochemical methods was consistentwith that measured by weight-loss method (8weeks in still seawatersystems and2weeks in flowing system); with the extension of immersing time, the weight-lossmethod measured corrosion rate of both systems decreased and gradually stabilized,while the corrosion current density detected by electrochemical methods showed anincreasing trend, and the longer the time extends, the more conspicuously thedeviation between them becomes, which might be explained by the reduction currentpeak appearing at the potential about-950mV in the cathodic polarization curve.
     The constituent analysis and the physical chemical property study of rust layersshow that the rust layer on carbon steel surface has a great effect on its corrosionbehavior, especially the measurement of the corrosion rate. For piled corrosionproducts on the surface of carbon steel, the outer rust layer is mainly consisted ofγ-FeOOH, and a mass of reductive β-FeOOH and magnetic Fe3O4appeared in theblack inner products besides γ-FeOOH and α-FeOOH. After a long-term immersionin seawater, the Ecorr of carbon steel is in the reduction reaction potential range ofβ-FeOOH, so plenty of β-FeOOH accumulated in the rust layer after long-time soakwill act as depolarizer and participate in cathodic reduction reaction, making adeviation of the corrosion rates measured by electrochemical methods from thatdetected by weight-loss method, and the longer the immersion time is, the moreβ-FeOOH formed, which leads to the proportion of the rust reduction increasing inthe cathodic reaction, coming along with the larger deviation between the twomethods.
     Potentiostatic polarization experiments prove that the cathodic reaction of rustlayers during the electrochemical tests can be eliminated by additional pretreatmentway of cathodic current. In order to efficiently calibrate this deviation and achievethe fast and accurate measurement of carbon steel corrosion rate by electrochemicalmethods, cathodic polarization pretreatment were carried out on long-term immersedcarbon steel electrode in both still and flowing seawater condition before electrochemical measurement tested. The results indicated that, after-25μA/cm2and-35μA/cm2pre-polarization for static and flowing seawater system respectively, thepolarization resistant Rp of carbon steel increased obviously than that ofno-polarization, and then the corrosion current density obtained by electrochemicalmethod showed an analogous variation tendency and similar value with weight-lossmeasurement results (the error is minished to less than10%), which means thepre-polarization treatment has good correction effect on calibration of the deviationbetween electrochemical measurement and weight-loss method.
     Meanwhile, the longer immersed term, the pre-polarization time got longer,demonstrates that rust reduction current also increased gradually with theimmersion-term prolonged, and the variation law of pre-polarization time showed asimilar pattern with the proportion of rust layer reduction current in the total apparentcorrosion current. This means this pre-polarization treatment can obtain a goodcalibration roles as we have did by deaerated method. Moreover, XRD analysis wasapplied on the carbon steel electrode of immersed in still seawater for48weeks withand without pre-polarization, the results indicate that the outer rust layer have littlevariation no matter pre-treat or not; but the active component β-FeOOH in inner rustlayer almostly disappeared completely after pre-polarization, and the deviationbetween two measurement results decreased greatly at the same time. This fatherlyproved the reduction of β-FeOOH during the electrochemical test procedure is theprimary cause for the deviation of the corrosion rate between electrochemicalmeasurement and weight-loss method.
引文
[1]世界联合国环境与发展大会,《里约热内卢宣言》,巴西:世界联合国环境与发展大会,1992,32-24.
    [2]世界海岸大会宣言,美国,1993,10-14.
    [3]倪国江.基于海洋可持续发展的中国海洋科技创新战略研究:中国海洋大学[博士学位论文].青岛:中国海洋大学管理学院,2010,16.
    [4]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2005.1.
    [5] Emi H, Kumano A, Yamamoto N, Nakamura Y, Baba N, Shihara H. A recent study on lifeassessment of ships and offshore structures. Tech Bull Nippon Kaiji Kyokai,1991,9:27-49
    [6]魏刚,熊蓉春.绿色化学与防腐蚀技术的发展方向.腐蚀科学与防护技术.2001,13(l):33-36
    [7]颜民,黄桂桥.中国水环境腐蚀试验站网工作回顾与展望.海洋科学,2005,29(7):73-76
    [8]柯伟.中国腐蚀调查报告.北京:化学工业出版社,2003.2.
    [9] Munger C G, Marine C G. and offshore corrosion control-past,present,and future. MaterialsPerformance.1993,9(32):37-41
    [10]托马晓夫.金属腐蚀及其保护理论(华保定等译).北京:中国工业出版社,1965.271-308.
    [11] Evans U R.金属的腐蚀与氧化(华保定等译).北京:机械工业出版社,1976.71.
    [12]张三平.美、日环境腐蚀研究技术考察.材料保护,1999,32(11):34-35.
    [13] Pourbaix M. The linear Bilogarithmic Law for Atmospheric Corrosion. New York: Weily,1982,107-112
    [14] Feilu S, Morcillo M, Feilu S Jr. The prediction of atmospheric corrosion frommeteorological and pollution parameters—I. Annual corrosion, Ⅱ. Long Term Forecast.Corrosion Science,1993,34(3):403-422.
    [15]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2005.11-14.
    [16]夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状.中国铸造装备与技术,2002,6:1-4
    [17]莱因哈特.金属和合金在不同海洋深度下的腐蚀.舒马赫编.李大超等译.海水腐蚀手册.北京:国防工业出版社,1985.265
    [18] Dexter S C, Culberson C. Global variability of natural sea water. Material Performance.1980,19(9):16-28
    [19]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2005,220
    [20]朱相荣,王相润.金属材料的海洋腐蚀与防护.北京:国防工业出版社,1999,76-78,126-130.
    [21]朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨.腐蚀科学与防护技术,1995,7(3):246-248
    [22]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护.北京:冶金工业出版社,2003.10
    [23]林志坚,宋文桑.潮差区钢锈层对钢润湿态阴极过程的影响.腐蚀与防护,1994,4:193-196
    [24]张明洋,郭云增,郑子林.低合金钢在不同海区挂片初步结果.见国家科委腐蚀科学组和中国海洋湖沼学会,1979年腐蚀与防护学术报告会议论文集.北京:科学出版社,1982.19-24
    [25]苏方滕.低合金钢在海水中的氧浓差腐蚀电流计算.中国腐蚀与防护学报,1981,1(1):25-36.
    [26]戴明安,黄挂桥,朱相荣.海水中钢的局部腐蚀与海域环境的相关性.腐蚀科学与防护技术,1999,11(5):309-310
    [27]郭琦龙,辜志俊,张志刚,苏方腾.碳钢在海泥中的电化学行为.中国腐蚀与防护学报,1999,19(5):315-318
    [28]马士德.海洋沉积物腐蚀环境研究的基本观点.见:中国腐蚀与防护学会,中国腐蚀与防护学会15周年学术报告论文集,北京:1994.225-226.
    [29] Kuang F, Wang J, Li Y, Zhang D. Effects of sulfate-reducing bacteria on the corrosionbehavior of carbon steel. Electrochimica Acta,2007,52:6084-6088.
    [30] D.V. Vasquez Moll, C.A. Acosta, R.C. Salvarezza, H.A. Videla, A.J. Arvia. Kinetics ofpassivation and pitting corrosion of polycrystalline copper in borate buffer solutions containingsodium chloride.Corrosion Science,1985,30(11):1501-1511.
    [31] F. C. Rlesenfeld, C. L. Blohm. Corrosion Problems in Gas Purification Units EmployingMEA Solutions. Petroleum refiner,1950,29(4):141-150.
    [32]朱卫东,陈范才.智能化腐蚀监测仪的发展现状及趋势.腐蚀科学与防护技术,2003,15(1):29-32
    [33]化学工业部化工机械研究院.腐蚀与防护手册—腐蚀理论·试验及检测.北京:化学工业出版社,1989.492.
    [34]左慧军,金文房.电阻探针MS3500E在线腐蚀监测应用.腐蚀与防护,2000,21(12):557~558
    [35] George R P, Marshall D, Newman R C. Mechanism of a MIC probe. Corrosion Science,2003,45(9):1999~2015
    [36] Xu Songbo, Zhu Yongda, Huang Xing. Corrosion resistance of the intermetallic compoundNiAl in a molten carbonate fuel cell environment. Journal of Power Sources,2002,103(2):230~236.
    [37] Lohr K R, Rose J L. Ultrasonic guided wave and acoustic impact methods for pipe foulingdetection. Journal of Food Engineering,2003,56(4):315~324
    [38] Mark J, Bergander. EMAT thickness measurement for tubes in coal-fired boilers. AppliedEnergy,2003,74(3):439~444.
    [39] Baby S, Balasubramanian T, Pardikar R J. Ultrasonic study for detection of inner diametercracking in pipeline girth welds using creeping waves. International Journal of Pressure Vesselsand Piping,2003,80(2):139~146
    [40] Yeih W, Huang R. Detection of the corrosion damage in reinforced concrete members byultrasonic testing. Cement and Concrete Research,1998,28(7):1071~1083
    [41] Cullington D W, MacNeil D, Paulson P. Continuous acoustic monitoring of groutedpost-tensioned concrete bridges. NDT&E International,2001,34(2):95~105
    [42] Stern M, Geary A L. Electrochemical polarization-i. a theoretical analysis of the shape ofpolarization curves. Journal of the Electrochemical Society,1957,104(1):56-63.
    [43] Ahmad S, Bhattacharjee B. A Simple arrangement and procedure for insitu measurement ofcorrosion rate of rebar embedded in concrete. Corrosion Science,1995,37(5):781-791
    [44] Millard S G, Law D, Bungey J H, Cairns J. Environmental influenced on linear polarizationcorrosion rate measurement in reinforced concrete. NDT&E International,2001,34:409-417.
    [45] Gamal A, EL-Mahdy. Atmospheric corrosion of copper under wet/dry cyclic conditions.Corrosion Science,2005,47(6):1370-1383.
    [46] Cole I S, Ganther W D, Sinclair J D, Lau D, Paterson, D A. A Study of the Wetting of MetalSurfaces in Order to Understand the Processes Controlling Atmospheric Corrosion. Journal of theElectrochemical Society,2004,151:627-635.
    [47]马家骤,滕凤云.十二烷基-二甲基(2-羟基)乙基氯化铵系列季铵盐的缓蚀性能.南京化工大学学报,1994,16:89-96.
    [48] Huang Chiyuan, Mo Wenwei. The effect of attached fragments on dense layer of electrolessNi/P deposition on the electromagnetic interference shielding effectiveness of carbonfibre/acrylonitrile–butadiene–styrene composites.Surface and Coatings Technology,2002,154(1):55-62.
    [49]雍兴跃,刘景军,林玉珍.金属在流动氯化物体系中流动腐蚀的EIS研究.金属学报,2005,41(8):871-875.
    [50]张万灵,刘建蓉.交流阻抗法对耐候钢腐蚀行为的研究.钢铁研究,1996,25(5):39-43
    [51] Atsushi Nishikata, Fumiyuki Suzuki, Tooru Tsuru. Corrosion monitoring ofnickel-containing steels in marine atmospheric environment. Corrosion Science,2005,47:2578~2588.
    [52]张伟,王佳,李玉楠,王伟. WBE联合EIS技术研究缺陷涂层下金属腐蚀.物理化学学报,2010,26(11):2941-2950.
    [53] Bousselmi L, Fiaud C, Tribollet B, Triki E. Impedance spectroscopic study of a steelelectrode in condition of scaling and corrosion Interphase model. Electrochimica Acta1999;44:4357-4363.
    [54] Barnartt S. Two-point and three-point methods for the investigation of electrode reactionmechanisms. Electrochimica Acta,1970,15(8):1313-1324.
    [55]杜俊杰,魏敏,张元龙,李汝彪,魏状.接地网腐蚀速率测定方法的几点思考.科技通报,2011,27(4):566-570.
    [56]郑立群一种交流阻抗和弱极化相结合的腐蚀速度测量方法.腐蚀科学与防护技术,2006,18(6):457-460.
    [57]冯业铭,耿小兰,郑立群.弱极化法腐蚀速度测试仪的研制.传感器技术,1999,18(5):38-40.
    [58]李露,靳惠明,时军,张骥群,高吉成.有机杂环化合物对铝合金在3.5%NaCl介质中的缓蚀作用.化工学报,2012,63(11):3632-3638.
    [59] Khramova A N, Voevodin N N, Balbyshev V N, Donely M S. Hybrid organo-ceramiccorrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films,2004,447-448:549-557.
    [60] GAarrigues L, Pebere N, Dabosi F. An investigation of the corrosion inhibition of purealuminum in neutral and acidic chloride solutions. Electrochimica Acta,1996,41(7-8):1209-1215.
    [61]李晓丹,翟玉春,邱峰,刘涛涛.纳米SiC颗粒强化7075铝合金在NaCl溶液中的电化学腐蚀行为.腐蚀科学与防护技术,2012,24(2):139-143.
    [62] Saremi M, Mahallati E. A study on chloride-induced de-passivation of mild steel insimulated concrete pore solution. Cement and Concrete Research,2002,32(12):1915-1921.
    [63]周婉秋,单大勇,韩恩厚.镁合金无铬化学转化膜的耐蚀性研究.材料保护,2002,35(2):12-14.
    [64]刘光洲,王建明,张鉴清,曹楚南.电解法处理压载水对316L不锈钢腐蚀行为的影响.金属学报,2011,47(12):1600-1604.
    [65]刘文霞,陈永利,孙成.盐渍土壤湿度变化对碳钢腐蚀的影响.全面腐蚀控制,2005,19(1):26-29.
    [66] Jones D A, Greene N D. Electrochemical measurement of low corrosion rates. Corrosion,1966,22(7):198-205
    [67] Govers K R, Millard S G. Pulse mapping techniques for corrosion monitoring of reinforcedconcrete structures. In: Swamy, R N,(eds). Corrosion and Corrosion Protection of Steel inConcrete (Vol.1). U K: Schefield Academic Press,1994,186-199.
    [68]阎培渝,崔路,游轶.用电流阶跃法测定钢筋混凝土中钢筋的锈蚀速率.工业建筑,1999,29(5):50-53
    [69]蒋忠锦,赵常就.用恒电量法测定耐蚀金属的腐蚀速度.材料保护,1990,23(8):14-15
    [70]赵永韬,赵常就.模拟混凝土孔隙液中钢筋腐蚀行为的恒电量法监测.材料开发与应用,2000,15(1):9-12
    [71]彭天剑.恒电量微扰法对钝态金属小孔腐蚀的探讨:[硕士学位论文].长沙:湖南大学化学化工学院,1990
    [72]刘务华.18-8不锈钢表面膜分析及其小孔腐蚀过程的研究:[硕士学位论文].长沙:湖南大学化学化工学院,1992
    [73] Sato Y, Hamada T, Owa T, Sugiyama S, Kobayakawa K. Evaluation of Iron Corrosion Ratein Solution Containing Inhibitors by Using Coulostatic Method. Zairyo-to-Kankyo (CorrosionEngineering),1991,40(1):3-7
    [74]文建国,周家茵,周世光.恒电量微扰法研究在含Cl-介质Ce3+对航空铝材的缓蚀作用.国防科技大学学报,1998,19(6):118-122
    [75]郭兴蓬,俞敦义,叶康民.缓蚀剂研究中的电化学方法-某些问题与新方法.材料保护,1992,10:24-27
    [76]宋诗哲.腐蚀电化学研究方法.北京:化学工业出版社,1988.215.
    [77] Isaac J W, Hebert K R. Electrochemical current noise on aluminum microelectrodes.Electrochemical Society,1999,146:502-509
    [78] Mansfeld F. Use of Electrochemical impedence spectroscopy for the study of corrosionprotection by polymer coatings. Journal of Applied Electrochemistry,1995,25(3):187-202.
    [79]张鉴清,张昭,王建明等.电化学噪声的分析与应用—Ⅰ.电化学噪声的分析原理.中国腐蚀与防护学报,2001,5(10):310-317.
    [80]曹楚南,常晓元,林海潮.孔蚀过程中的电化学噪声特征.中国腐蚀与防护学报,1989,9(1):21-28.
    [81] Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbedelectrolyte layers—A new experimental technique. Corrosion Science,1987,27(8):869-872.
    [82] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered withthin electrolyte layers-I. Verification of the experimental technique. Corrosion Science,1990,30(6-7):681-696.
    [83] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered withthin electrolyte layers—II. Experimental results. Corrosion Science,1990,30(6-7):697-714.
    [84] Stratmann M, Streckel H, Kim K T, Crockett S. On the atmospheric corrosion of metalswhich are covered with thin electrolyte layers-iii. the measurement of polarisation curves onmetal surfaces which are covered by thin electrolyte layers. Corrosion Science,1990,30(6-7):715-734.
    [85] Tahara A, Kodama T. Potential distribution measurement in galvanic corrosion of Zn/Fecouple by means of Kelvin probe. Corrosion Science,2000,42(4):655-673.
    [86]王佳.气相环境中无机盐微粒沉积金属表面的电位分布.中国腐蚀与防护学报,2004,24(1):1-5.
    [87]王燕华,张涛,王佳,王福会. Kelvin探头参比电极技术在大气腐蚀研究中的应用.中国腐蚀与防护学报,2004,24(1):59-64.
    [88] Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part1:Calibration of the Kelvin probe and basic delamination mechanism. Corrosion Science,1998,41(3):547-578
    [89] Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part2:First stage of delamination, effect of type and concentration of cations on delamination, chemicalanalysis of the interface. Corrosion Science,1998,41(3):579-597.
    [90] Leng A, Streckel H, Hofmann K, Stratmann M. The delamination of polymeric coatingsfrom steel Part3: Effect of the oxygen partial pressure on the delamination reaction and currentdistribution at the metal/polymer interface. Corrosion Science,1998,41(3):599-620.
    [91]王佳,水流彻.使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响.中国腐蚀与防护学报,1995,15(3):180-188.
    [92] Graundmeier G, Stratmann M. Influence of oxygen and argon plasma treatments on thechemical structure and redox state of oxide covered iron. Applied Surface Science,1999,144(1-2):43-56.
    [93] Veleva L, Quintana P, Ramanauskas R, Pomes L, Maldonado L. Mechanism of copper patinaformation in marine environments. Electrochmica Acta,1996,41(10):1641-1646.
    [94] Elbeik S, Tseung A C C, Mackay A L. The formation of calcareous deposits during thecorrosion of mild steel in sea water. Corrosion Science,1986,26(9):669-680.
    [95] Stoffyn-Egli Patricia, Buckley Dale E, Clyburne Jason A C. Corrosion of brass in a marineenvironment: mineral products and their relationship to variable oxidation and reductionconditions. Applied Geochemistry,1998,13(5):643~650.
    [96] Han Z, Zhao H. Effect of β martensite transformation on dealuminification behavior ofCu-9Al-2Mn alloy in a marine environment. Materials Science and Engineering,2003, A345:8~13.
    [97] Poupard O, L Hostis V, Catinaud S, Petre-Lazar I. Corrosion damage diagnosis of areinforced concrete beam after40years natural exposure in marine environment. Cement andConcrete Research,2006,36:504~520
    [98] Zhang Q C, Wu J S, Wang J J, Zheng W L, Chen J G, Li A B. Corrosion behavior ofweathering steel in marine atmosphere. Materials Chemistry and Physics,2002,77:603–608.
    [99]张恒,李文朝,孙斌.钢在海水中不同腐蚀带点蚀行为的研究.生产实践,2012,26(8):34-38.
    [100] Venkatesan R, Venkatasamy M A, Bhaskaran T A, Dwarakadasa E S, Ravindran M.Corrosion of ferrous alloys in deep sea environments. British Corrosion Journal,2002,37(4):257-266.
    [101]林飞,李琴.碳钢在模拟海水中腐蚀行为的研究.江西化工,2011,4:72-73.
    [102] Copson H R. Effects of velocity on corrosion. Corrosion,1960,16(2):86.
    [103] Shalaby H M, Attari S, Riad W T, Gouda V K. Erosion-Corrosion Behavior of Some CastAlloys in Seawater. Corrosion Science,1992,48(3):206-217.
    [104] Ne i S, Solvi G T, Enerhaug J. Comparison of the rotating cylinder and pipe flow tests forflow-sensitive carbon dioxide corrosion. Corrosion,1995,51(10):773-787.
    [105]黄桂桥.铸铁在海水中的腐蚀行为.腐蚀与防护,2001,22(9):384-386.
    [106] Martinez S. Inhibitory mechanism of mimosa tannin using molecular modeling andsubstitutional adsorption isotherms. Materials chemistry and physics,2003,77(1):97-102.
    [107] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater. Corrosion Science,2005,47(7):1678-1693.
    [108] Melchers R E. Mathematical modelling of the diffusion controlled phase in marineimmersion corrosion of mild steel. Corrosion Science,2003,45:923–940.
    [109] Jeffrey R, Melchers R E. Bacteriological influence in the development of iron sulphidespecies in marine immersion environments. Corrosion Science,2003,45:693–714.
    [110] Melchers R E. Effect of small compositional changes on marine immersion corrosion oflow alloy steels. Corrosion Science,2004,46:1669–1691.
    [111] Melchers R E. Modelling of marine immersion corrosion for copper-bearing steels.Corrosion Science,2003,45:2307–2323.
    [112] Melchers R E, Wells T. Models for the anaerobic phases of marine immersion corrosion.Corrosion Science,2006,48:1791–1811
    [113] Chernov B B, Ponomarenko S A. Physico-chemical modeling for the predication of seawater metal corrosion.14th ICC. Cape Town:1999,215
    [114] Melchers R E. A new interpretation of the corrosion loss processes for weathering steels inmarine atmospheres. Corrosion Science,2008,50(12):3446–3454.
    [115] Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys.Desalination,2008,228:61–67
    [116]张杰,蔡庆伍,武会宾,樊学华,张明洁. E690海洋平台用钢力学性能和海洋大气腐蚀行为.北京科技大学学报,2012,34(6):657-665.
    [117]邓春龙,李文军,孙明先. BP神经网络在碳钢、低合金钢海水腐蚀中的应用.腐蚀科学与防护技术,2006,18(1):54-57.
    [118]孔涛,王佳,钟莲.组合人工神经网络模型预测海水腐蚀速度的研究.腐蚀科学与防护技术,2008,20(1):58-61.
    [119]刘威,赵选民,邓春龙,李文军.灰色神经网络模型在海水腐蚀预测中的应用.中国腐蚀与防护学报,2008,28(4):201-204.
    [120]朱相荣,张启富.灰关联分析法探讨环境因素与海水腐蚀性的关系.中国腐蚀与防护学报,2000,20(1):29-34.
    [121]朱相荣,张启富.海水中钢铁腐蚀与环境因素的灰关联分析.海洋科学,2000,24(5):37-40.
    [122]唐晓,王佳.软测量方法评价区域海水腐蚀性的研究:非平衡态软测量模型.高技术通讯,2004,10:90-93
    [123] Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transition inrust layers.Corrosion Science,1983,23(9):969-985.
    [124] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. The long term growth of theprotective rust layer formed on weathering steel by atmospheric corrosion during a quarter of acentury. Corrosion Science,1994,36(2):283-299.
    [125]高新亮,付贵勤,朱苗勇,邓志银.低合金耐候钢在含氯离子环境中的腐蚀行为.北京科技大学学报,2012,34(11):1282-1287.
    [126] Paulo A, De Souza Jr, De macêdo M C S, De Queiroz R S, Klingelh fer G. AtmosphericCorrosion Investigation in Industrial, Marine and Rural Environments in South-East Brazil.Hyperfine Interactions,2002,139/140:183–191.
    [127] T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, The mechanism of atmosphericrusting and the protective amorphous rust on low alloy steel. Corrosion Science,1974,14(4):279-289.
    [128]贾书君,刘清友,王向东,汪兵,陈红桔.拉曼光谱法分析低碳钢模拟大气腐蚀锈层.腐蚀与防护,2006,27(12):620-623.
    [129] Shiotani K, Tanimoto W, Maeda C, Kawabata F, Amano K. Structural analysis of the rustlayer on a bare weathering steel bridge exposed in a coastal industrial zone for27years.Corrosion Engineering,2000,49(2):99-109.
    [130] Ma Yuan Tai, Li Ying, Wang Fu Hui. The effect of β-FeOOH on the corrosion behavior oflow carbon steel exposed in tropic marine environment. Materials Chemistry and Physics,2008,112(3):844-852.
    [131] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments ofdifferent chloride content. Corrosion Science,2009,51(5):997-1006
    [132] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. The long term growth of theprotective rust layer formed on weathering steel by atmospheric corrosion during a quarter of acentury. Corrosion Science,1994,36(2):283-299
    [133]Yamashita M, Miyuki H, Nagano H. Corrosion resistance of weathering steel and itsapplication. Sumitomo Search,1995,57:12-17.
    [134] Yamashita M, Misawa T. Moessbauer Spectroscopic Study on X-ray Amorphous Substancein Rust Layer of Weathering Steel Subjected to Long-Term Exposure in North America.Corrosion Engineering,2000,49(2):159-163.
    [135] Yamashita M, Maeda A, Uchida H, Kamimura T, Miyuki H. Crystalline rust compositionsand weathering properties of steels exposed in nation-wide atmospheres for17years. Journal ofthe Japan Institute of Metals,2001,65(11):967-971.
    [136]邹妍,郑莹莹,王燕华,王佳.低碳钢在海水中的阴极电化学行为.金属学报,2010,46(1):123-128.
    [137] Refait P, Memet J-B, Bon C, Sabot R, Génin J–M R. Formation of the Fe (II)–Fe (III)hydroxysulphate green rust during marine corrosion of steel. Corrosion Science,2003,45(4):833–845.
    [138] Nishimura T, Katayama H, Noda K, Kodama T. Electrochemical Behavior of Rust Formedon Carbon Steel in a Wet/Dry Environment Containing Chloride Ions. Corrosion,2000,56(9):935-941.
    [139] Yamashita M, Konishi H, Kozakura T, Mizuki J, Uchida H. In situ observation of initialrust formation process on carbon steel under Na2SO4and NaCl solution films with wet/dry cyclesusing synchrotron radiation X-rays. Corros. Sci.2005,47(10):2492-2498.
    [140] Deliyanni E A, Bakoyannakis D N, Zouboulis A I, Matis K A, Nalbandian L.Akaganéite-type β-FeO(OH) nanocrystals: preparation and characterization. Microporous andMesoporous Materials,2001,42:49-57.
    [141] Refait P, Génin J–M R. The mechanisms of oxidation of ferrous hydroxychlorideβ-Fe2(OH)3Cl in aqueous solution: the formation of akaganeite vs goethite. Corrosion Science,1997,39:539-553.
    [142] Rémazeilles C, Refait Ph. On the formation of β-FeOOH (akaganéite) inchloride-containing environments. Corrosion Science,2007,49:844–857.
    [143] Santana Rodriguez J J, Santana Hernandez F J, Gonzalez Gonzalez J E. XRD and SEMstudies of the layer of corrosion products for carbon steel in various different environments in theprovince of Las Palmas (The Canary Islands, Spain). Corrosion Science,2002,44:2425–2438.
    [144] Génin J-M R, Dhouibi L, Refait Ph, Abdelmoula M, Triki E. Influence of phosphate oncorrosion products of iron in chloridepolluted-concrete-simulating solutions: ferrihydrite vs.green rust. Corrosion,2002,58:467–478.
    [145] Génin J-M R, Rézel, Bauer Ph, Olowe A A, Beral A. M ssbauer spectroscopycharacterization and electrochemical study of the kinetics of oxidation of iron in chlorinatedaqueous media: structure and equilibrium diagram of green rust one. Material Science Forum,1986,8:477–490.
    [146] Refait Ph, Génin J-M R. The oxidation of ferrous hydroxide in chloride-containing aqueousmedia and pourbaix diagrams of green rust one. Corrosion Science,1993,34(5):797-819.
    [147]张全成,王建军,吴建生,郑文龙,陈家光,李爱柏.锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响.金属学报,2001,37(02):193-196.
    [148]曹国良,李国明,陈珊,常万顺,陈学群. Cu对低合金钢耐海水腐蚀的影响.材料工程,2011,9:62-67.
    [149] Ishikawa T, Katoh R, Yasukawa A, Kandori K, Nakayama T, Yuse F. Influences of metalions on the formation of β-FeOOH particles. Corrosion Science,2001,43(9):1727-1738.
    [150] Ishikawa T, Nagashima A, Kandori K. Structure of nickel-doped α-FeOOH. Journal ofMaterials Science,1991,26(22):6231-6236.
    [151] Ishikawa T, Motoyoshi N, Yasukawa A, Kandori K, Nakayama T, Yuse F. Influences ofmetal ions on formation of α-FeOOH rust-Single and multiple additions of Cu (II), Ni (II) andTi (IV). Zairyo-to-Kankyo,2001,50(4):155-161.
    [152] Ishikawa T, Nakazaki H, Yasukawa A, Kandori K, Seto M. Influences of Co2+, Cu2+andCr3+ions on the formation of magnetite. Corrosion Science,1999,41(8):1665-1680.
    [153] Inouye K, Ishii S, Kaneko K, Ishikawa T. Effect of copper (II) on the crystallization ofα-FeOOH. Zeitschrift für anorganische und allgemeine Chemie,1972,391:86-96.
    [154] Inouye K, Ichimura K, Kaneko K, Ishikawa T. The effect of copper (II) on the formation ofγ-FeOOH. Corrosion Science,1976,16(8):507-517.
    [155] Inouye K, Imamura H, Kaneko K, Ishikawa T. The Effect of Copper (II) on the Formationand Thermal Change of Synthetic β-FeOOH. Bulletin of the Chemical Society of Japan,1974,47(3):743-744.
    [156] Schultze W A, van der Wekken C J. Influence of alloying elements on the marine corrosionof low alloy steels determined by statistical analysis of published literature data. BritishCorrosion Journal,1976,11(1):18-24
    [157]黄桂桥. Cr对钢海水腐蚀性的影响.腐蚀科学与防护技术,2000,12(2):86-89.
    [158] Pineau S, SabotL R,Quillet. Formation of the Fe (II–III) hydroxysulphate green rust duringmarine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase.Corrosion Science,2008,50(4):1099-1111.
    [159] Dillmann P, Mazaudier F, HoerléS. Advances in understanding atmospheric corrosion ofiron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corrosion Science,2004,46:1401-1429.
    [160]郑莹莹.海水全浸下碳钢表面电化学状态分布特征研究:[硕士学位论文].青岛:中国海洋大学化学化工学院,2010.
    [161] Weckler B, Lutz H D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studieson the iron oxide hydroxides goethite (α), akagankite (β), lepidocrocite (γ), and feroxyhite (δ).European Journal of Solid State and Inorganic Chemistry,1998,35:531-544.
    [162] Post J E, Buchwald V F. Crystal structure refinement of akaganéite. American Mineral,1991,76:272-277.
    [163] Forsyth J B, Hedley I G, Johnson C E. The magnetic structure and hyperfine field ofgoethite (α-FeOOH). Journal of Physics C,1968,1:179-188.
    [164]都有为,陆怀先,杜德安,廖秉良.电子显微镜研究FeOOH的结晶形态.南京大学学报,1980,2:20-25.
    [165]熊慧欣,周立祥.不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用.岩石矿物学杂志,2008,27(6):559-566.
    [166] Majzlan J, Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy oflepidocrocite (γ-FeOOH). Geochimica et Cosmochimica Acta,2007,71:615-623.
    [167]李晓飞,祝一锋,李小年,刘化章. Fe3O4和Fe1-xO的性质及其在氨合成催化剂中的应用.化工生产与技术,2005,12(4):17-22
    [168] Gusmano G, Montesperelli G, Nunziante P, Traversa E. Study of the conductionmechanism of MgAl2O4at different environmental humidities. Electrochimica Acta,1993,38:2617-2621.
    [169] Toshiaki Ohtsuka, Tomohiro Komatsu. Enhancement of electric conductivity of the rustlayer by adsorption of water. Corrosion Science,2005,47:2571–2577.
    [170] Antony H, Legrand L, Maréchal L, Perrin S, Dillmann Ph, Chauss′A. Study oflepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at25℃. Electrochimica Acta,2005,51:745–753.
    [171] Stratmann M, Hoffmann K. In situ M βbauer spectroscopic study of reactions within rustlayers. Corrosion Science,1989,29(11-12):1329-1352.
    [172] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered withthin electrolyte layers—II. Experimental results. Corrosion Science,1990,30(6-7):697-714
    [173] Stratmann M, Müller J. The mechanism of the oxygen reduction on rust-covered metalsubstrates. Corrosion Science,1994,36(2):327-359.
    [174] Hoerlé S, Mazaudier F, Dillmann Ph, Santarini G. Advances in understanding atmosphericcorrosion of iron II. Mechanistic modelling of wet–dry cycles. Corrosion Science,2004,46(6):1431-1465.
    [175]宋诗哲,雒娅楠,金威贤,尹立辉.海水腐蚀试验站碳钢低合金钢全浸试片的现场腐蚀检测.中国腐蚀与防护学报.2007,27(6):321-325.
    [176] Evans U R, Taylor C A J. Mechanism of atmospheric rusting. Corrosion Science,1972,12(3):227-246.
    [177]邹妍,王佳,郑莹莹.锈层下碳钢的腐蚀电化学行为特征.物理化学学报,2010,26(9):2361-2368.
    [178] Andrade C, Keddam M, Nóvoa X R, Pérez M C, Rangel M C, Takenouti H.Electrochemical behaviour of steel rebars in concrete: influence of environmental factors andcement chemistry. Electrochimica Acta,2001,46:3905–3912.
    [179] Ketil Videm. Phenomena disturbing electrochemical corrosion rate measurements for steelin alkaline environments. Electrochimica Acta,2001,46:3895–3903.
    [180] González J A, Miranda J M, Otero E, Feliu S. Effect of electrochemically reactive rustlayers on the corrosion of steel in a Ca(OH)2solution. Corrosion Science,2007,49(2):436–448.
    [181] Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate ofrusted steel in seawater. Corrosion Science,2011,53:208-216.
    [182] Panda B, Balasubramaniam R, Dwivedi G. On the corrosion behaviour of novel highcarbon rail steels in simulated cyclic wet–dry salt fog conditions. Corrosion Science,2008,50(6):1684–1692.
    [183] Bousselmi L, Fiaud C, Tribollets B, Triki E. The Characterisation of the coated layer at theinterface carbon steel-natural salt water by impedance spectroscopy. Corrosion Science,1997,39(9):1711-1724.
    [184]宋诗哲.腐蚀电化学研究方法.北京:化学工业出版社,1987.100-150.
    [185] Song G L. Theoretical analysis of the measurement of polarization resistance in reinforcedconcrete. Cement&Concrete Composites2000,22(6):407-415.
    [186]邹妍.海水中锈层覆盖碳钢的腐蚀电化学行为研究:[博士学位论文].青岛:中国海洋大学化学化工学院,2010.
    [187] Zou Y, Wang J, Bai Q, Zhang L L, Peng X, Kong X F. Potential distribution characteristicsof mild steel in seawater. Corrosion Science,2012,57:202-208.
    [188] Evans U R. Electrochemical mechanism of atmospheric rusting. Nature,1965,206:980–982.
    [189] Antony H, Perrin S, Dillmann Ph, Legrand L, Chaussé A. Electrochemical study of indooratmospheric corrosion layers formed on ancient iron artefacts. Electrochimica Acta,2007,52(27):7754-7759
    [190] Lair V, Antony H, Legrand L, ChausséA. Electrochemical reduction of ferric corrosionproducts and evaluation of galvanic coupling with iron. Corrosion Science,2006,48:2050–2063.
    [191]黄永昌.电化学保护技术及其应用.腐蚀与防护,2000,21(3):140-142.
    [192]火时中.电化学保护.北京:化学工业出版社,1988.27-91.
    [193]吴建华,温秀忭,刘光洲,陈光章.阴极保护对海水间浸低碳钢的防蚀作用.中国腐蚀与防护学报,1998,18(2):131-135.
    [194]林玉珍,雍兴跃,徐瑞芬,孙汝宏,李焕文.碳钢在液/固双相流动盐水中的腐蚀与阴极保护.全面腐蚀控制,1995,9(1):19-22.
    [195]孙兆栋.316L和410不锈钢在海水中阴极极化行为的研究:[硕士学位论文].青岛:中国海洋大学化学化工学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700