用户名: 密码: 验证码:
钛合金应力诱导马氏体相变影响因素及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金是继钢铁、铝合金之后又一种重要的结构金属材料。钛合金以其优异性能,广泛应用于航空航天、航海、石油化工、冶金、机械、能源、冶金及医疗卫生等领域。钛合金中相变和组织的多样化决定了其力学性能能在宽广范围内变化。如何通过组织最佳化获得综合性能良好的合金一直是研究工作者追求的目标。有研究表明应力诱导马氏体相变在提高材料强度的同时,塑性也能保持在一个较高的水平,其综合力学性能十分优异,应用前景十分广阔。
     本文以一种商业钛合金Ti-10V-2Fe-3Al为初始研究对象,通过对其进行一系列的热处理和力学性能测试,运用X射线衍射、金相显微镜、扫描电子显微镜、透射电子显微镜、电子探针显微分析等先进表征技术,结合热力学理论计算软件Thermo-calc,对合金中的应力诱导马氏体相变等一系列相变进行了研究,并以此为理论基础,对合金的成分进行了调制,并对其进行系统的表征和研究。得到以下主要结论:
     (1) Ti-10V-2Fe-3Al合金双态组织样品具有较高的塑性,经过(α+β)相区固溶处理后,针状α的消失导致合金塑性下降。相较于单一β相区固溶处理样品,经过β+(α+β)相区固溶处理后的样品塑性有所增加。球状α相的含量对应力诱导马氏体相变的临界诱发应力有较大影响,对普通样品的屈服强度影响不大,而在β+(α+β)相区固溶处理后析出的针状α相对临界诱发应力影响较小,对普通样品屈服强度影响较大。变形后α相中一直有{1011}<012>孪晶,而β相则随着稳定性的增加,变形机制由应力诱导马氏体相变逐渐变为{112}<111>孪晶。对于Ti-10V-2Fe-3Al合金来说,单级时效与双级时效所得的显微组织相似,都是由以相促进形核而生长的细小α相组成,时效时间虽然很短,但α相含量较高。它们的力学性能也相似。
     (2)在Ti-10V-2Fe-3Al合金中,当α相的含量超过一定临界值时(约为50%),应力诱导马氏体相变都将趋于消失。应力诱导马氏体相变行为主要受两个因素的影响:β相尺寸和β相稳定性。对于含球状α相的样品,由于其β相区域尺寸变化很小,因此其马氏体相变临界诱发应力主要受β相稳定性影响,随着α相含量的上升应力值也上升。对于含针状α相样品,其相变临界诱发应力同时受两个因素的影响,使得应力值随α相含量的上升变化不明显。应力诱导马氏体相变临界诱发应力值的大小可用一个线性叠加公式来进行计算:σ_(SIM)(Mo_(eq)=σ_(si)(d)|_(Mo_(eq0))+△σ_(st)(Mo_(eq)-Mo_(eq0))且应力诱导马氏体相变临界诱发应力值随β相区域尺寸的增加而增加。
     (3)从Ti-10V-2Fe-3Al合金中得出的应力诱导马氏体相变临界诱发应力计算公式在一定条件下的Ti-10V-1Fe-3Al合金中仍然适用,但是对于Ti-10V-2Cr-3Al合金,计算应力值与实验应力值有一定的差距。在Ti-10V-2Cr-3Al合金中,由于Cr元素扩散速度较慢,在α相析出过程中容易在α/β相界面偏聚集,形成了马氏体无析出带,同时使得远离α/β相界面的β相容易产生淬火马氏体,对应力诱导马氏体相变产生了阻碍作用。当β相钼当量低于9时,合金会析出大量淬火马氏体;当钼当量在9与16之间时,能产生应力诱导马氏体相变;当钼当量高于16时,应力诱导马氏体相变消失。
     (4) Ti-10V-2Cr-3Al合金与Ti-10V-1Fe-3Al合金经过β相区固溶处理后形成的淬火马氏体为六方α'相,不同应变速率压缩变形后(10~(-4)s~(-1)<ε<10~(-1)s~(-1)),都发生了应力诱导马氏体相变。Ti-10V-2Fe-3Al、Ti-10V-2Cr-3Al与Ti-10V-1Fe-3Al三种合金经过β相区固溶处理后,随着应变速率的增加,样品中应力诱导马氏体相变逐渐弱化,温度逐渐升高,三种合金的屈服应力(即临界诱发应力)增加;断裂应变上升,压缩强度先升高后降低。
     (5)β+(α+β)相区固溶处理时,Ti-10V-2Cr-3Al合金中α相的析出速度比Ti-10V-1Fe-3Al合金慢;随着α相含量的增加,两合金的压缩强度逐渐下降,断裂应变保持稳定。经过单级时效后,Ti-10V-2Cr-3Al合金的组织比Ti-10V-1Fe-3Al合金细小,因此屈服应力与压缩强度较高,而断裂应变较低。经过双级时效后,Ti-10V-2Cr-3Al合金显微组织与力学性能变化不大,而Ti-10V-1Fe-3Al合金组织稍有细化,屈服强度与压缩强度有所提高,断裂应变降低。
Titanium and its alloys start to gain a unique position amongst other structuralmaterials, like Fe, Al-based alloy. Titanium alloys are attractive for a variety ofapplications such as aerospace, marine, petroleum, chemical, metallurgy, machinery,energy and health care due to their excellent properties. Titanium alloys offer manyopportunities to tailor the microstructure and the resulting deformation behavior andresulting application fields, because of their wide range of complex microstructuresand phase transformations. Phase transformation resulting from the deformation isintentiona lly used to improve properties. Previous studies sho wed that thestress-induced martensite (SIM) transformation starting from a metastable β phase canindeed result in an improved balance of strength and ductility and has a good potentialapplication.
     An initia l investigation on an existing commercial titanium alloy Ti-10V-2Fe-3Alwas conducted. A variety of different heat treatments and mechanical tests wereperformed. A series of phase transformations including stress-induced martensitictransformation were studied by X-ray diffraction, optical microscopy, scanningelectron microscopy, transmission electron microscopy, electron probe microanalysis,combined with the Thermo-calc software. Based on the theoretical foundation, twocertain kinds of new alloys were designed and manufactured; characterization andevaluation were also carried out. The obtained results are summarized as follows:
     (1) In Ti-10V-2Fe-3Al alloy, the bi-modal microstructures possess a betterplasticity. After α+β phase field solution treatment, the failure strain was largelydecreased due to the disappearance of α laths in bi-modal microstructures. Comparewith β phase field solution treatment, samples under β+(α+β) conditions have higherfailure strain. Globular α phase has a great influence on triggering stress for SIMeffect, but does not show too much effect on mechanical properties for sampleswithout SIM. Acicular α phase has a weak influence on triggering stress for SIMtransformation, but shows some effect on samples without SIM. The deformationmechanism of α phase always contains {1011}<012> type twin. With increase the αphase volume fraction (both globular and acicular), the deformation mechanism of βphase varies from stress induced martensitic transformation to {112}<111> t ype twins.After single aging or dual aging treatments, alloys exhib it almost identical microstructures and thus similar mechanical properties, and age hardening is quiteeffective. The main deformation mode is slip.
     (2) In Ti-10V-2Fe-3Al, no SIM was observed for specimens with the α volumefraction higher than a critical value (50%). The triggering stress of SIM in this alloy ismainly independently affected by these two factors: the β grain (or domain) size andthe stability (Moeq) of the β phase. For globular α samples, the β matrix stability has adominating effect on the triggering stress, but in samples containing acicular α, thesize of the retained β domains is also important. These two factors compete with eachother, and eventually decide the triggering stress. A linear super-position of the twoeffects was found to describe the data very well in the formula below:σ_(SIM)(Mo_(eq)=σ_(si)(d)|_(Mo_(eq0))+△σ_(st)(Mo_(eq)-Mo_(eq0))An increase in the β grain size linearly increases the triggering stress for SIM.
     (3) The proposed relation between the occurrence of SIM formation upon roomtemperature compression of metastable titanium alloys derived for Ti-10V-2Fe-3Alwas found to apply also to the Ti-10V-1Fe-3Al, albeit that the actual triggering stresswas affected by the presence of thermal martensite already present prior to thecompression experiment. The formation of a martensite free zone‘around the α phasein the Ti-10V-2Cr-3Al due to a very limited diffusion distance for Cr atoms upon αformation during intercritical annealing, prevented the wider validation of theproposed relation between the chemical and microstructural β stability. However,based on the results obtained so far SIM martensite transformation is predicted tooccur for β phase fractions with a Mo equivalence between9and16. For Moequiva lences lower than9, thermal martensite may be present prior to deformation.For that higher than16, the β stability is such that even upon deformation the β phasefraction does not transform martensitically.
     (4) α' martensite was observed in Ti-10V-2Cr-3Al alloy and Ti-10V-1Fe-3Alalloy after quenching from β phase fie ld. All heat treated samples researched showedstress-induced martensitic transformation for all strain rates (10~(-4)s~(-1)<ε<10~(-1)s~(-1))explored. The SIM triggering stress increases linearly with the logarithm of the strainrate. The rate of increase is the same as that for the yield stress of the grade notshowing SIM transformation. The failure strain increases linearly with the logarithmof the strain rate, irrespective of the occurrence of SIM transformation.
     (5) After phase field solution treatment, the phase precipitation rateof Ti-10V-2Cr-3Al alloy is lower than Ti-10V-1Fe-3Al alloy. With increasing phase content, the compressive strength of both alloys decreased, but the fracture strainremained stable. After single aging, the microstructure of Ti-10V-2Cr-3Al alloy isfiner than Ti-10V-1Fe-3Al alloy, and results in a higher yield stress, a highercompressive strength and a lower fracture strain. After dual aging, the microstructuresand mechanical properties of Ti-10V-2Cr-3Al alloy change little, but forTi-10V-1Fe-3Al alloy, microstructures was slightly refined and thus increases in yie ldstrength and compressive strength, and reduces fracture strain.
引文
[1] Leyens C, Peters M.钛与钛合金.陈振华.2.北京:化学工业出版社,2006,1-49
    [2]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005,21-305
    [3]赵永庆.国内外钛合金研究的发展现状及趋势.中国材料进展,2010,29(5):1-24
    [4] Devaraj A. Phase separation a nd second phase precip itation in beta tita niumalloys:[dissertation]. Texas: Univ. of North Texas,2011,5-18
    [5] Lütjering G, Willia ms J C. Titanium. Berlin: Springer,2007,15-46
    [6] Neelakantan S. Ta iloring the mec hanica l properties of titanium allo ys viaplasticity ind uced trans formatio ns:[dissertatio n]. Delft: De lft Univers ity o fTechno logy,2010,11-57
    [7] Liu Z, Welsch G. Literature survey o n diffus ivities of oxygen, a luminum, andvanadium in alpha titanium, beta tita nium and in rutile. Metallrugica lTransactions A,1988,19A(4):1121-1125
    [8] Zhang X D, Bommiwe ll P, Fraser H L, et a l. Effect of heat treatment and silico nadditio n on the microstructrure develop ment of Ti-6Al-2Cr-2Mo-2Sn-2Zr allo y.Materia ls Scie nce and Engineering A,2003,343(1-2):210-226
    [9]吴晓东,杨冠军,葛鹏,等.钛合金及其固态相变的归纳.钛工业进展,2008,25(5):1-6
    [10]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(I)—同素异构转变.钛工业进展,2007,24(5):23-28
    [11]张廷杰.钛合金相变的电子显微镜研究(V)—亚稳相时效分解中的两类α相沉淀.稀有金属材料与工程,1989,6:76-80
    [12] Bein S, Béchet J. Phase transformation kinetics and mechanis ms in tita niumalloys Ti-6.2.4.6,-CEZ and Ti-10.2.3. Journal de Phys iq ue Ⅳ,1996,6(C1):99-108
    [13] Ahmed T, Rack H J. Phase trans formations during cooling in tita niumalloys. Materia ls Sc ience and Engineering A,1998,273(1-2):206-211
    [14] Ivasis hin O M, Ustino A I, Skorodzievs hii V S, et al. Structura l andcompos itiona l cha nges during isotherma l annea ling o f "-martens ite inTi-8wt%Mo alloy. Scripta Materia ls,1997,37(6):883-888
    [15] Wang J, Wang Y, Schaub lin R, et al. The effect of point defects on themartens itic phase trans formatio n. Materia ls Science and Engineering A,2006,438-440(25):102-108
    [16] Mantani Y, Tajima M. Phase trans format ion o f quenc hed martens ite by aging inTi-Nb allo y. Materia ls Science and Engineering A,2006,438-440(25):315-319
    [17]邓安华.钛合金的马氏体相变.上海有色金属,1999,20(4):196-199
    [18]常辉. Ti-B19合金固态相变动力学及其组织演变规律:[西北工业大学博士学位论文].西安:西北工业大学,2006,5-11
    [19] Duerig T W, Terlinde G T, Willia ms J C. Phase trans formations and tens ileproperties of Ti-10V-2Fe-3Al. Metallurgica l Transactions A,1980,11A(12):1987-1998
    [20] Neelakantan S, Rivera-Díaz-de l-Castillo P E J, Zwaag van der S. Predictio n ofthe martens ite start temperature for tita nium a lloys as a funct io n ofcompos ition. Scripta Materia la,2006,60(8):611-614
    [21]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2006,394-396
    [22] Davis R, Flower H M, West D R F. Martensitic trans formatio ns in Ti-Mo alloys.Journa l of Materia ls Science,1979,14(3):712-722
    [23]胡宇鹏.具有低温马氏体转变的新型亚稳β钛合金的设计及组织性能研究:
    [河北工业大学硕士学位论文].河北:河北工业大学,2008,24-25
    [24] Jacques P, Furne mont Q, Mertens A, et al. On the sources of work hardening inmultiphase steels ass isted by transformation induced plastic ity. Philosophica lMagazine A,2001,81(7):1789-1812
    [25] Fischer F D, Sun Q P, Tanaka K. Trans formatio n-ind uced Plastic ity (TRIP).App lied Mechanics Reviews,1996,49(6):317-364
    [26] Greenwood G W, Johnson R H. The deformation o f metals under sma ll stressesduring phase transformations. Proceed ings of the Roya l Society A,1965,283(1394):403-422
    [27] Fischer F D, Reis ner G. A criterio n for the martens itic trans formation o f amicroregion in an e lastic plastic material. Acta Materia lia,1998,46(6):2095-2102
    [28] Fischer F D, Reisner G, Werner E, et a l. A new view o n trans formatio n inducedplasticity (TRIP). Intermationa l Journa l of Platic ity,2000,16(7-8):723-748
    [29] Sugimoto K, Kobayashi M, Hashimtoto S. Ductility and strain inducedtransformation in a high strength trans formatio n induced plasticity aided dua lphase steel. Metallurgical Transactio ns A,1992,23A(11):3085-3091
    [30] Matsumura O, Sakuma Y, Takechi H. Trip and its kinetics aspects inaustempered0.4C-1.5Si-0.8Mn steel. Scripta Meta llurgica,1987,21(10),1301-1306
    [31]康永林,王波. TRIP钢板的组织、性能与工艺控制.钢铁研究学报,1999,11(3):62-66
    [32]张维娜,刘振宇,王国栋.高锰TRIP钢的形变诱导马氏体相变及加工硬化行为.金属学报,2010,46(10):1230-1236
    [33] Otsuka K, Kakeshita T. Science and techno logy o f s hape me mory a lloys: newdeve lopme nts. Materia ls Research Society Bulletin,2002,27(2):91-100
    [34] Otsuka K, Ren X. Phys ica l meta llurgy of Ti-Ni-based shape memeory a lloys.Progress in Materia ls Scie nce,2005,50(5):511-678
    [35] Zheng Y F, Cai W, Zha ng J X, et al. Microstructura l deve lopme nt ins ide thestress induced martens ite variant in a Ti-Ni-Nb shape me mory a lloy. ActaMateria lia,2000,48(6):1409-1425
    [36] Duerig T W, Albrecht J, Richiter D, et al. Formation and revers ion of stressinduced martens ite in Ti-10V-2Fe-3Al. Acta Metallurgica,1982,30(12):2161-2172
    [37] Neelakantan S, Martin D S, Rivera-Díaz-del-Castillo P E J, et al. Plastic ityinduced transformation in a metastable β Ti-1023allo y by controlled heattreatments. Materia ls Sc ience and Technolo gy,2009,25(11):1351-1358
    [38] Cotton J D, Bingert J F, Dunn P S, et al. Microstructure and mec hanica lproperties of Ti-40Wt Pct Ta (Ti-15At. Pct Ta). Metallurgica l and Materia lsTransactions A,1994,25(3):461-472
    [39] Margevic ius R W, Cotton J D. Stress-assited transformation in Ti-60wt pct Taalloys. Metallurgica l and Materia ls Tra nsactions A,1998,29(1):139-147
    [40] Sarath Kumar Menon E, Kris hna n R. Phase trans formations in Ti-V alloys.Journa l of Materia ls Science,1983,18(2):365-374
    [41] Ohyama H, Nishmura T. Effects of a llo ying e leme nts on deformation mode inTi-V based alloy syste m. Iron and Steel Institute of Japan,1995,35(7):927-936
    [42] Zhou T, Aindow M, Alpay S P, et a l. Pseduo-elastic deformatio n behavior in aTi/Mo-based alloy. Scripta Materia lia,2004,50(3):343-348
    [43] Maeshima T, Nishida M. Shape me mory properties of bio medica l Ti-Mo-Agand Ti-Mo-Sn allo ys. Materia ls Tra nsactio ns,2004,45(4):1096-1100
    [44] Kim H Y, Ohmats u Y, Kim J I, et al. Mechanica l properties and shape me meorybehavior of Ti-Mo-Ga a lloys. Materials Tra nsactio ns,2004,45(4):1090-1095
    [45] Zhang L C, Zhou T, M indow M. Nucleation o f stress-induced martens ites in aTi/Mo-based alloy. Journa l of Materia ls Science,2005,40(11):2833-2836
    [46] Sakaguchi N, Niinomi M, Akahori T, et al. Relationship s between tens iledeformation beha vior and microstructure in Ti-Nb-Ta-Zr syste m a lloys.Materia ls Scie nce and Engineering C,2005,25(3):363-369
    [47] Kim H Y, Ikehara Y, Kim J I, et al. Martensitic trans formation, shape memoryeffect and superelastic ity of Ti-Nb binary alloys. Acta Materialia,2006,54(9):2419-2429
    [48] Hao Y L, Li S J, Sun S Y, et al. Elastic deformatio n behavior ofTi-24Nb-4Zr-7.9Sn for biomed ica l applications. Acta Bio materia lia,2007,3(2):277-286
    [49] Inamura T, Fukui Y, Hosoda H, et al. Relationship between texture andmacroscopic trans formatio n strain in severe ly co ld ro lled Ti-Nb-Al superelasticalloy. Materia ls Transactions,2004,45(4):1083-1089
    [50] Sembosh S, Shira i T, Konno T, et a l. In-suit trans miss ion e lectron microscopyobservatio n on the phase trans formation o f Ti-Nb-Sn s hape me mory a lloys.Meta llurgical and Materia ls Transactions A,2008,39A(12):2820-2829
    [51] Ishiya ma S, Hanada S, Izumi O. Effect of Zr, Sn and Al additions ondeformation mode and beta phase stability of metastable beta Ti a lloys. Ironand Stee l Inst itute of Japan,1991,31(8):807-813
    [52] Grosdid ier T, Combres Y, Gautier E, et a l. Effect o f microstructure variatio nson the formatio n of deformation induced marte ns ite and associated tens ileproperties in a β metastable Ti a lloy. Metallurgica l and Materia ls Transactio nsA,2000,31A(4):1095-1106
    [53] Xu W, Kim K B, Das J, et al. Phase stability and its effect on the deformatio nbehavior of Ti-Nb-Ta-In/Cr alloys. Scripta Materia lia,200654(11):1943-1948
    [54] Grosdid ier T, Philippe M J. Deforamtio n induced martens ite and superelastic ityin a-metastable tita nium a lloy. Materia ls Science and Engineering A,2000,281(1-2):218-223
    [55] Paradkar A, Kamat S V, Gogia A K, et al. Effect of volume fractio n of primary2on the trigger stress of stress ind uced martens itic trans formation in twophase Ti-Al-Nb alloys. Metallurgica l and Meteria ls Transactions A,2008,39A(9):2086-2094
    [56] Bhattacharjee A, Bharga va S, Varma V K, et al. Effect of gra in s ize on stressinduced martens itic trans formation in so lutio n treated Ti-10V-2Fe-3Al a lloy.Scripta Materia lia,2005,53(2):195-200
    [57] Paradkar A, Kamat S V, Gogia A K, et al. Trigger stress for stress inducedmartens itic trans formatio n during tens ile deformation in Ti-Al-Nb alloys: effectof grain size. Metallurgical and Meteria ls Transactions A,2008,39A(3):551-558
    [58] Paradkar A, Kamat S V, Gogia A K, et al. Effect of Al a nd Nb on the triggerstress for stress-induced martens itic trans formatio n during tens ile loading inTi-Al-Nb allo ys. Materia ls Scie nce and Engineering A,2008,487(1-2):14-19
    [59] Nemat-Nasser S, Choi J Y. Strain rate dependence of deformatio n mecha nis msin a Ni-Ti-Cr shape-memory alloy. Acta Materia lia,2005,53(2):449-454
    [60] Paradkar A, Kamat S V. The effect of stra in rate on trigger stress forstress-induced martens itic trans formation and yie ld strength in Ti-18Al-8Nballoy. Journa l of Allo ys and Compounds.2010,496(1-2):178-182
    [61] Zhang X D, Wie zorek J M K, Baeslack W A, et al. On the stability of phasein Ti-6-22-22S and Ti-6-4allo ys. Scripta Materia lia,1999,41(6):659-665
    [62] Devaraj A, Nag S, Srinivasan R, et al. Experime nta l evidence of concurre ntcompos itiona l and structura l instabilities lead ing to prec ipitatio n intita nium-molybdenum a lloys. Acta Materia lia,2012,60(2):596-609
    [63] Shao G, Tsakiropoulos P. On the phase formation in Cr-Al a nd Ti-Al-Cralloys. Acta Materia lia,2000,48(14):3671-3685
    [64] Sikka S K, Vohra Y K, Chida mbaram R. Ome ga phase in materia ls. Progress inMateria ls Scie nce,1982,27(3-4):245-310
    [65] Sukedai E, Yoshimits u D, Matsumoto H, et a l. to phase trans formatio n dueto aging in a Ti-Mo alloy de formed in impact compressio n. Materia ls Scienceand Engineering A,2003,350(1-2):133-138
    [66] Lin D J, Lin C, Ju C P. Effect of ome ga phase on deformation behavior ofTi-7.5Mo-xFe alloys. Materia ls Che mistry and Phys ics,2002,76(2):191-197
    [67] Min X H, Emura S, Zha ng L, et al. Effect of Fe and Zr additions on phaseformation in-type Ti-Mo alloys. Materials Science and Engineering A,2008,497(1-2):74-78
    [68] Ng H P, Devaraj A, Nag S, et al. Phase separation and formatio n of ome gaphase in beta matrix o f a Ti-V-Cu allo y. Acta Materialia,2011,59(8):2981-2991
    [69] Dutta J, Ana nthakrishna G, Banerjee S. On the atherma l nature of the β totransformation. Acta Materia lia,2012,60(2):556-564
    [70] Devaraj A, Willia ms R E A, Nag S, et al. Three-dime ns iona l morpho logy andcompos ition o f ome ga prec ipitates in a b inary titanium-mo lybdenum a lloy.Scripta Materia lia,2009,61(7):701-704
    [71] Wang Y B, Zhao Y H, Lian Q, et al. Grain size and reversib le beta-to ome gaphase trans formation in a Ti alloy. Scripta Materialia,2010,63(8):613-616
    [72] Yano T, Murakami Y, Shindo D, et al. Tra nsmiss io n electron microscopystudies on na no meter-sized phase produced in Gum Metal. Scripta Materia lia,2010,63(5):536-539
    [73] Willia ms J C, Fonta ine D, Paton N E. The-phase as an exa mp le of an unus ua lshear trans formatio n. Metallurgical Transactio ns,1973,4(12):2701-2708
    [74] IIIarionov A G, Popov A A, Grib S V, et al. Specia l features of formation o fomega-phase in titanium a lloys due to hardening. Metal Scie nce and HeatTreatme nt,2010,52(9-10):493-498
    [75] Prima F, Vermaut P, Gloria nt T, et al. Experimenta l evidence of elasticinteraction between nanopartic les embedded in a metastable titanium a lloy.Journa l of Materia ls Science Letters,2002,21(24):1935-1937
    [76] Moffat D L, Larbalestier D C. The competitio n between the alp ha and ome gaphase in aged Ti-Nb alloys. Meta llurgical Tra nsactions A,1988,19A(7):1687-1694
    [77] Prima F, Debuligne J, Bolivea u M, et al. Control of o mega phase volumefraction precip itated in a beta tita nium a llo y: develop ment o f an e xperime nta lmethod. Journa l of Materia ls Science Letters,2000,19(24):2219-2221
    [78] Sukedai E, Kitano Y, Ohnis hi A. Investigation of initia l structures of aged-phase crystal in-titanium alloys using high resolution electron microscopy.Micron,1997,28(4):269-277
    [79] Sukedai E, Liu W, Awaji M, et al. Investigation of atomic structure of-phasecrystals in Ti-Mo alloys us ing high-resolution e lectron microscopy.Ultra microscopy,1994,54(2-4):192-200
    [80] Azimzadeh S, Rack H J. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al.Meta llurgical and Materia ls Transactions A,1998,29A(10):2455-2467
    [81] Ohmori Y, Ogo T, Nakai K, et al. Effects of-phase precip itatio n on→,"transformations in a metastable tita nium allo y. Materia ls Scie nce andEngineering A,2001,312(1-2):182-188
    [82] Prima F, Vermaut P, Texier G, et al. Evidence of-nanophase heterogeneousnuc leation fro m particles in a-metastable Ti-based alloy by high-reso lutio nelectron microscopy. Scripta Materialia,2006,54(4):645-648
    [83] Afonso C R M, Ferrandini P L, Ramirez A J, et al. High resolution trans miss io nelectron microscopy study of the hardening mechanis m through phaseseparation in a β-Ti-35Nb-7Zr-5Ta alloy for imp la nt applications. ActaBio materia lia,2010,6(4):1625-1629
    [84]王美娇,孟祥军,廖志谦,等. Ti-1023合金的研究现状.材料开发与应用.2009,24(5):66-69
    [85]周玉,武高辉.材料分析测试技术.哈尔滨:哈尔滨工业大学出版社,1997,198
    [86] Malino v S, Markovsky P, Sha W. Resistivity stud y and comp uter mode ling o fthe isotherma l transformation kinetics of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si a lloy. Journa l of Allo y and Compounds,2001,314(1-2):181-192
    [87]张磊,郭莲英. MATLAB实用教程.北京:人民邮电出版社,2008,1
    [88] Weiss I, Semitatin S L. Thermomec hanica l processing o f beta tita niumalloys-an overview. Materia ls Science and Engineering A,1998,243(1-2):46-65
    [89] Wang B, Liu Z Q, Gao Y, et al. M icrostructura l e volution during a ging o fTi-10V-2Fe-3Al tita nium alloy. Journa l of Univers ity of Scie nce andTechno logy Be ijing,2007,14(4):335-340
    [90] Bao R Q, Hua ng X, Cao C X. Deformatio n behavior and mec hanis ms ofTi-1023alloy. Transactions of Nonferrous Metals Society of China,2006,16(2):274-280
    [91] Laheurte P, Eberhardt A, Philippe M J. Influence of the microstructure on thepseudoelastic ity o f a metastab le beta titanium allo y. Materia ls Scie nce andEngineering A,2005,396(1-2):223-230
    [92]钟群鹏,赵子华.断口学.北京:高等教育出版社,2005:131-164
    [93]梁思祖,梁耀能,刘正义.55SiM nMo钢断口微坑形成过程的研究.金属学报,1992,28(10):461-464
    [94] Sato K, Matsuo mto H, Kodaira K, et a l. Phase trans formatio n and age-hardenging o f hexa gona l ' martens ite in Ti-12mass%V-2mass%Al allo ysstudied by trans formatio n electron microscopy. Journal o f Alloys andCompounds,2010,506(2):607-614
    [95] Grosdid ier T, Roubaud C, Philippe M J, et al. Structure/De formatio nrelations hip in a β matastable Ti-alloy. Journal de Phys iq ue Ⅵ,1996,6(C1):435-444
    [96] Cai M H, Lee C Y, Lee Y K. Effect o f gra in s ize on te ns ile properties o ffine-grianed metastable β tita nium a lloys fabricated by stress-inducedmartens ite and its revers trans formatio n. Scripta Materia lia,2012,66(8):606-609
    [97] Eno moto M, Yoshida T. Solute partitio ning during the proeutectoid atransformation in Ti-X1-X2alloys. ISJI Internationa l,1991,31(8):767-774
    [98] Appola ire B, Heric her L, Aeby-Gautier E. Modelling of phase trans formatio nkinetics in Ti a lloys-Isotherma l treatments. Acta Materia lia,2005,53(10):3001-3011
    [99] Liu Y, Yang H. The concern of elastic ity in stress-induced martens itictransformation in NiTi. Materia ls Science and Engineering A,1999,260(1-2):240-245
    [100] Sakamoto.H. Distinctio n between Therma l and Stress-Induced Martens iticTrans formations and Inho moge ne ity in Interna l Stress. Materials Transaction,2002,43(9):2249-2255
    [101] Olson G B. New d irections in martens ite theory. Materia ls Science andEngineering A,1999,273-275:11-20
    [102] Olson G B, Cohen M. A genera l mechanis m o f martens itic nuc leation: Part1.General conceptes and FCC→HCP transformation. Meatllurgical Transactio nsA,1976,7A(12):1897-1904
    [103] Olson G B, Cohen M. A genera l mechanis m o f martens itic nuc leation: Part2.General conceptes and FCC→HCP transformation. Meatllurgical Transactio nsA,1976,7A(12):1905-1914
    [104]葛鹏,赵永庆,周廉.超高强结构钛合金成分设计中的钼当量选择与多组元化.见:中国科协第二届优秀博士生学术年会材料科学技术分会论文集.北京:中国科学技术出版社,2004,37-40
    [105]张旺峰,黄旭,李兴无等.钛合金的设计方法及其研究进展.材料导报,2005,3:1-4
    [106] Guo Z, Malinov S, Sha W. Modelling beta transus te mperature of tita niumalloys us ing artific ia l ne ura l network. Computationa l Materia ls Scie nce,2005,32(1):1-12
    [107] Chen S K, Wan C M, Byrne J G. The formation of marte ns ite-free zones induplex Fe-Mn-Al-C allo ys. Materia ls. Research. Bulletin,1990,25(10):1311-1316
    [108] Adharapurapu R R, Jiang F C, Vecchio K S, et al. Response of N iTi shapeme mory a lloy at high strain rate: A s ystematic investigation of te mperatureeffect on te ns ion-compress ion asymmetry. Acta Materialia,2006,54(17):4609-4620
    [109]陈威,孙巧艳,肖林,等.应变速率对固溶Ti-10V-2-Fe-3Al合金应力诱发马氏体相变的影响.中国有色金属学报.2010,20(11):2124-2129
    [110] Olson G B, Cohen M. Interphase-boundary dis locations and the concept ofcoherency. Acta Metallrugica,1979,22(12):1907-1918
    [111] Grujic ic M, Olson G B, Owen W S. Mobility of martens itic interfaces.Meta llurgical and Materia ls Transactions A,1985,16(10):1713-1722
    [112]于志伟,王亮,许晓磊,等.合金塑性变形激活体积的测量与研究.大连海运学院学报.1989,15(11):67-70
    [113] Nasser S N, Chio J Y. Strain rate dependence of deformation mecha nis m in aNi-Ti-Cr shape-me mory allo y. Acta Materia lia,2005,53(2):449-454
    [114] Talone n J, Nenonen P, Pape G, et al. Effect of strain rate on the strain-induced→' martensite transformation and mechanical properties of austensiticstainless steels. Metallurgica l and Materia ls Transactions A,2005,36A(2):421-432
    [115] Boheme n va n S M C, Siets ma J, Zwaag van der S. Experimenta l observatio nseluc idating the mechanis ms of structura l bcc-hcp transformations in β–Ti allo ys.Phys ical Re view B,2006,74(13):1-10
    [116]王晓燕,刘建荣,雷家峰,等.初生及次生相对Ti-1023合金拉伸性能和断裂韧性的影响.金属学报,2007,43(11):1129-1137
    [117] Terinde G T, Duerig T W, Willia ms J C. Microstructure, tens ile deformation andfracture in aged Ti-10V-2Fe-3Al. Metallrugica l Transactions A,1983,14A(10):2101-2115
    [118] Peters J O, Lutjering G. Comparison of the fatigue ang fracture of α+β and βtita nium a lloys. Metallurgica l and Materia ls Transactio ns A,2001,32A(11):2805-2818

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700