用户名: 密码: 验证码:
钨铌钒无限冷硬铸铁组织与性能及碳化物的力学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高镍铬无限冷硬铸铁(Indefinite Chill Double-Poured,ICDP)轧辊具有良好的耐热性、抗裂性、抗粘性、抗剥落性和耐磨性,一直用于板带钢热轧机后段作为精轧辊的首选材料。随着热轧机粗轧和精轧前架工作辊材质的改进,轧辊的在线周期延长,精轧后架的轧辊表现出耐磨性不足。提高ICDP轧辊的耐磨性,开发具有高耐磨性的改进型ICDP轧辊,成为解决板带钢热轧生产瓶颈的迫切任务。本论文在普通高镍铬无限冷硬铸铁成分的基础上,加入不同含量的钨、铌和钒三种合金元素,研究了它们对凝固过程、铸铁组织和耐磨性能的影响,深入分析了碳化物的微观结构和力学性能,为开发具有高耐磨性的ICDP轧辊提供理论和实践依据。
     在普通高镍铬无限冷硬铸铁中,添加1-5wt%的W、Nb、V合金元素,熔炼出12中不同含量的合金冷硬铸铁。采用金相显微镜、扫描电镜、X射线衍射、差热分析、摩擦磨损和Thermo-cal软件等分析方法,研究合金元素对凝固—回火组织和硬度的影响。结果表明:添加W元素为1-2wt%时,对凝固过程基本不产生影响;添加W含量大于3%时,在凝固过程中有鱼骨状碳化物(Fe_4W_2C)沿晶界析出呈网状。添加Nb后,由于NbC相的领先析出,碳化物呈断续状分布。而增加钒的含量则可使碳化物由网状沿晶间分布(1wt%V),逐渐细化(2-3wt%),最终呈球状和短棒状,在基体均匀分布。
     合金含量1-5wt%的铸铁试样在回火过程中,不同成分试样的硬度均随回火温度的升高存在二次硬化现象,其最大硬度出现在480-500℃左右。添加W、Nb、V回火最高硬度分别为HRC60,HRC59和HRC60;随合金元素含量的增加,铸铁的耐磨性提高。对于添加不同合金元素的无限冷硬铸铁,在干滑动摩擦磨损试验中,含V铸铁的耐磨性最好,含Nb铸铁次之,含W铸铁最差。钒含量为5wt%的合金铸铁,其相对耐磨性较1wt%的提高了约13倍。
     对于高V合金铸铁,随着钒含量的增加,凝固过程由亚共晶转变(4wt%V)逐渐过渡到近似共晶转变(6wt%V),再到过共晶转变(8-10wt%V)。碳化物的分布由晶间分布逐渐过渡到均匀分布。高钒合金的耐磨性受基体硬度和碳化物分布的双重影响。碳化物均匀分布的V8%试样耐磨性能最好,V6%和V10%次之,V4%最差。
     通过对8wt%V和5wt%Nb合金凝固组织中的钒/铌碳化物的提取,利用场发射扫描电镜、X射线、高分辨和纳米压痕等进行分析,发现高钒冷硬铸铁(V含量8wt%)中碳化钒呈树枝晶生长,是NaCl结构的c-VC,硬度和杨氏模量分别为33.3和436GPa;高铌冷硬铸铁(Nb含量5wt%)中的碳化铌呈不规则块体形貌;是具有NaCl结构的c-NbC;硬度和杨氏模量分别为24.5和406GPa。
     利用第一性原理计算技术,研究了具不同化学剂量比V-C、Nb-C化合物的力学特性。计算辨明,随着C含量的增加,V-C/Nb-C化合物的剪切模量、杨氏模量和硬度单调增加,而体弹模量呈不规则变化。通过计算电子结构、布局数和原子排布分析研究了V-C/NbC化合物的弹性性质变化的起因。Nb-C体系中,Pnma-Nb2C和P3_1-Nb_6C_5是Nb-C体系相图中的基态结构,预测相Fm-3m-Nb_(23)C_6,Pnma-Nb3C,C_2/c-Nb_5C_2和P6_3mc-Nb_7C_3在热力学、动力学和力学上都是稳定的。
Indefinite Chill Double-Poured (ICDP) rolls which are widely recognized as the firstchoice for the later stand of hot rolling mill (HSM) due to its superior thermostability,good resistance to adherence and thermocracking, and wear resistance. However, as theimprovement of the early stands’ materials for rough and finish rolling as well as theextended working period, the wear resistance of the later stand is becoming insufficient.Therefore, it is an urgent task to develop enhanced ICDP roller with enhanced wearresistance. In this paper, we have added W, Nb and V element into the conventionalindefinite chill cast iron (ICCI) with the aim to increase the wear resistance, and to shedlight on the effect of those alloying elements on the microstructure and solidificationprocess of ICCI. Furthermore, in view of the pivotal role played by the micro-structureand mechanical properties of carbides in defining the wear resistance behavior of cast iron,we also investigated the crystal structure and mechanical properties of the vanadium andniobium carbides. The aim of this work is to provide theoretical and experimental basicdata for the development of ICDP roller with high wear resistance.
     ICCI with12various contents of W, Nb, and V element ranges from1-5percent wereyielded by alloying. By the aid of Optical Microscopy (OM), Scanning ElectronMicroscope (SEM), X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC),wear resistance test, and Thermo-cal et al, the effect of alloying element on the solidifiedmicrostructure and properties of ICCI were investigated. Results show: the effect showsreliance on the type of alloying element. When the added W content is1-2%, there isalmost no effect on the solidified process; when the added W content is larger than3%,fishbone shape carbides (Fe_4W_2C) appears at grain boundary, but has trace influence onthe morphology of carbides that shows network shape at grain boundary. After adding Nbelement, carbides distribute in a discrete manner due to the prior precipitation of NbC.With the increase of added V alloying element, there is a gradual transformation for thecarbides from network at grain boundary (1%V), to increased refinement (2-3%), andfinally homogenously distributed in spherical and short rod-like shape.
     During the tempering of1-5%alloyed cast iron samples, the hardness showssecondary hardening with the increase of tempering temperature, and peaks at about400-500℃. The maximum hardness that corresponds to W, Nb, and V alloying is HRC60,HRC59and HRC60, respectively. The wear resistance of alloyed cast iron increases withthe content of alloying element. For the different allying element, there is a gradualdecreasing trend in the sequence of V, Nb, and W. The most significant results come to the5%V alloying by which the wear resistance is improved by13times.
     For the high-V alloyed cast iron, the solidified process changes from hypo-eutectic(4%V) to quasi-eutectic (6%V), and further to hyper-eutectic transformation (8-10%V).The distribution of carbides changes from inter-granular to chrysanthemum-likedistribution, and further to homogenous pattern. The wear resistance of heavy V alloyedcast iron depends not only on the hardness of matrix, but the distribution of the carbides.the8%V alloyed sample shows the highest wear resistance, followed by6%and10%Valloyed, and the4%alloyed sample shows the worst wear resistance enhancement.
     By extracting the V and Nb carbides from the solidified alloyed cast iron andmicrostructure analysis method including Field Emission Scanning Electron Microscopy(FE-SEM), XRD, High Resolution Transmission Electron Microscopy (HR-TEM), andNano-indentation, We found the dendritic carbides in heavy V alloyed chilled cast iron(8%V) are cubic NaCl-type vanadium carbides (VC) whose hardness and Young modulusis33.3and436GPa, respectively. The niobium carbides (NbC) in the heavy Nb alloyedcast iron (5%Nb) also share the same crystal structure with NaCl and shows irregular bulkshape, and its hardness and Young's modulus is24.5and406GPa, respectively.
     By the aid of first-principle calculation, the mechanical properties of VC and NbCwith various stoichiometries were investigated. Results show, the shear modulus, Young'smodulus and Vickers hardness increase monotonously with carbon content, but the bulkmodulus shows irregular trend. The reasons were discussed from the standpoint ofelectronic structure, Mulliken Overlap Population (MOP), and atomic configuration. In Nb-C system, pnma-Nb2C and P3_1-Nb_6C_5are found to be the ground state structures, andthe proposed phase: Fm-3m-Nb_(23)C_6, Pnma-Nb_3C, C_2/c-Nb_5C_2, and P6_3mc-Nb_7C_3areenergetically, mechanically, and dynamically stable.
引文
[1] Smith W F. Structure and Properties of Engineering Alloys[M]. New York, NY: McGraw-Hill,1993:13-14.
    [2] Molanari A, Pellizzari M, Biggi A, et al. Development of Spincast Hot Rolls throughMicrostructure Optimization[C]//The44th MWSP Conference Proceedings. Warrendale: Iron&Steel Society,2002:1233-1244.
    [3] Meers J M. The Metallurgy of Indefinite Chill Cast Iiron[C]//Rolls for the Metal WorkingIndustries. Warrendale: Iron&Steel Society,2002:41-47.
    [4] Zienberger K H, Windhager M. Carbide Enhanced High Chrome Iron and Steel Work Rolls forRolling Flat Products[C]//The45th MWSP Conference Proceedings. Warrendale: Iron&SteelSociety,2003:133-142.
    [5]王开胜.高镍铬无限冷硬铸铁轧辊在精轧前段的使用[J].山西冶金,2004,94(2):39-41.
    [6]陈守关,王建泽.45Cr4NiMoV锻钢热轧支撑辊辊身剥落分析[J].山东冶金,2006,28(3):51-53.
    [7]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002:301-323.
    [8] Spuzic S, Strafford K N, Subramanian C, et al. Wear of Hot Rolling Mill Rolls: An Overview[J].Wear,1994,176(2):261–271.
    [9] Corbett R B. Rolls for the Metalworking Industries[M]. Warrendale: Iron&Steel Society,1990:80-85.
    [10] Chekmarev A P. Proizvodstvo Oblegchennikh Projilei Prokhata[C]//Metallurgya, Moscow,1965:90-105.
    [11] Zum Gahr K H. Microstructure and Wear of Materials[M]. Amsterdam: Elsevier,1987:88-94.
    [12]张玉强.板带钢热连轧机组轧辊材质的发展和选择[J].科教文汇,2007,(20):196-197.
    [13]文铁铮,郭玉珍.冶金轧辊技术特性概论[M].石家庄:河北科学技术出版社,1995:34-60.
    [14]王久彬,李庆春.高铬铸铁轧辊的力学性能[M].北京:国防工业出版社,1995:85-99.
    [15]王殿刚,杨和林.铸铁轧辊生产[M].北京:冶金工业出版社,1998:1-3.
    [16]朴东学,齐笑冰,李慧玉等.改善高铬白口铸铁件使用性能的新工艺[J].铸造,2005,26(10):944-946.
    [17]朴东学,齐笑冰,李慧玉等.多相低合金抗磨铸钢材料的研究[J].铸造,1995,36(3):10-13.
    [18]胡斌,饶启昌,鲍永夫.残余奥氏体对高铬白口铸铁磨料磨损特性的影响[M].西安:西安交通大学出版社,1986:58-67.
    [19]王华明,张清,邵荷生.奥氏体在冲击磨料磨损过程中的作用[J].金属学报,1990,26(4):87-91.
    [20] Zum Gahr K H, William G S. Fracture Toughness of White Cast Iron[J]. Journal of Metals,2005,22(1):26-29.
    [21] Sare I R. Abrasion Resistance and Fracture Toughness of White Cast Iron[J]. Metals Technology,1995,181:342–349.
    [22] Maratray F, Poulalion A. Austenite Retention in High-Chromium White Irons[J], AFSTransactions,1982,90:795-804.
    [23] Morton P A, Gundlach R B, Dodd J. Fractors Affecting Austenite Measurements inHigh-Chromium White Cast Irons[J]. AFS Transactions,1985,93:879-884.
    [24] Fukui T, Matsuda K. The Influence of Shape and Amount of Graphite of Cast Iron on the RollingContact Fatigue Strength[J]. J. Soc. Mater. Sci. Jpn.1980,29:724–730.
    [25] Or owicz W, Opiekun Z. Non Destructive Diagnostic Investigation of Automotive Engine Parts[J].Polish Academy of Science,1999,19:123-129.
    [26] Zhang Y, Chen Y, He R, et al. Investigation of Tribological Properties of Brake ShoeMaterials–Phosphorous Cast Irons with Different Graphite Morphologies[J]. Wear,1993,166:179-186.
    [27]铸铁手册编写组编.铸铁手册[M].北京:机械工业出版社,1979:23-27.
    [28] Sugimoto S, Mizuno S. Influence of Austempering on the Fatigue Limit of Spheroidal GraphiteCast Iron[J]. J. Soc. Mater. Sci. Jpn.,1987,59:164–169.
    [29] Fujita T, Ogi K, Fukui T, et al. Rolling Contact Fatigue of Upper and Lower Bainitic SpheroidalGraphite Cast Iron[J]. J. Soc. Mater. Sci. Jpn.,1990,62:25–30.
    [30] Fujita T, Ogi K, Fukui T, et al. Rolling Contact Fatigue Properties of Austempered SpheroidalGraphite Cast Iron[J]. J. Soc. Mater. Sci. Jpn.,1990,62:107–111.
    [31] Fujita T, Ogi K, Fujita T, et al. Influences of Retained Austenite on Rolling Fatigue Strength ofAustempered Spheroidal Graphite Cast Iron[J]. J. Soc. Mater. Sci. Jpn.,1991,63:775–780.
    [32] Andersson M, Finnstrom R, Nylen T. Introduction of Enhanced Indefinite Chill and High SpeedSteel Rolls in European Hot Strip Mills[J]. Ironmaking&Steelmaking,2004,31(5):383-388.
    [33]王明家,王艳.改进型无限冷硬铸铁轧辊回火组织转变研究[J].材料热处理学报,2005,26(2):74-77.
    [34] Kambakas K, Tsakiropoulos P. Sedimentation Casting of Wear Resistant Metal MatrixComposites[J]. Mater. Sci. Eng.: A,2006,435-436:187-192.
    [35]符莉.冷硬铸铁中富Nb相形态及分布的研究[J].金属学报,1996,32(2):159-162.
    [36]姚正辉,王国良,符莉,等.铌对冷硬铸铁高温组织稳定性的影响[J].铸造技术,1998,(4):44-45.
    [37]李少南.铌对灰铸铁性能的影响[J].铸造,1990,(11):10-15.
    [38]雍岐龙,孙新军,张正延,等. Nb在铸铁中的物理冶金学作用原理[J].现代铸铁,2011,(2):15-21.
    [39] Zhai Q, Fu L, Zhai H. Effect of Nb on Structure and Mechanical Properties of Chilled Cast Iron atRoom and Elevated Temperatures[J]. J. Mater. Sci. Technol.,2004,20:301-303.
    [40] Zhi X, Xing J, Fu H, et al. Effect of Niobium on the As-Cast Microstructure of Hypereutectic HighChromium Cast Iron[J]. Materials Letters,2008,62(6-7):857–860.
    [41] Pellizzari M, Molinari A, Straffelini G. Tribological Behaviour of Hot Rolling Rolls[J]. Wear,2005,259(7-12):1281-1289.
    [42] Radulovic M, Fiset M, Peev K, et al. The Influence of Vanadium on Fracture Toughness andAbrasion Resistance in High Chromium White Cast Irons[J]. J. Mater. Sci.,1994,29(19):5085-5094.
    [43]刘少平,苏丹,孙凯,等.钒、钛对高铬铸铁中碳化物形态及耐磨性的影响[J].热加工工艺,2006,35(1):30-31.
    [44]段江涛.含钨白口铸铁共晶碳化物团球化研究[J].大型铸锻件,2006,(2):15-18.
    [45]符寒光.钨合金白口铸铁共晶碳化物团球化研究与应用[C]//2004中国铸造活动周论文集,2004:98-103.
    [46] Wang M C, Ren S Z, Wang X B, et al. Study of Sand Slurry Erosion of W2Alloy White CastIrons [J]. Wear,1993,160(2):259-264.
    [47]周继扬.铸铁彩色金相学[M].北京:机械工业出版社,2002:190-194.
    [48]徐流杰,魏世忠,韩明儒,等.高钒钢的组织与性能[M].北京:科学出版社,2010:7-13.
    [49] Odin G, Terrass J. Steels Used for Cluster Mill Work Rolls-Interest of Grades with High VanadiumContent[C]//The30thMechanical Working Steel Processsing Conferece Proc.,1988:379-389.
    [50] Ichino K, Kataota Y, Koseki T. Development of Centrifugal Cast Roll with High Wear Resistancefor Finishing Stands of Hot Strip Mill[J]. Kawasaki Steel Technical Report,1997(37):13-18.
    [51] Sano Y, Hattori T. Characteristics of High-Carbon High Speed Rolls for Hot Strip Mill[J]. ISIJ,1992,32(11):1194-1201.
    [52] Xu L, Xing J, Wei S, et al. Investigation on Wear Behaviors of High-Vanadium High-Speed SteelCompared with High-Chromium Cast Iron under Rolling Contact Condition[J]. Mater. Sci. Eng.: A,2006,434(1-2):63-70.
    [53] Wei S, Zhu J, Xu L. Effects of Vanadium and Carbon on Microstructures and Abrasive WearResistance of High Speed Steel[J]. Tribology International,2006,39(7):641-648.
    [54]子澍.含铌铸铁冶金学基础[J].铸造技术,2008,29(1):19-23.
    [55]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984:57.
    [56]徐流杰,魏世忠,龙锐等.高钒高速钢中碳化钒的形态分布研究[J].铸造,2003,52(11):1069-1073.
    [57] Hwang K C, Lee S, Lee H C. Effects of Alloying Elements on Microstructure and FractureProperties of Cast High Speed Steel Rolls[J]. Mater. Sci. Eng.: A,1998,254(1-2):282-295.
    [58]子澍.钒对高铬白口铸铁凝固和显微组织的影响[J].特种铸铁,2007,4:47-50.
    [59] Das K, Bandyopadhyay T K, Das S. A Review on the Various Synthesis Routes of TiC ReinforcedFerrous Based Composites[J]. J. Mater. Sci.,2002,37:3881-3892.
    [60] Tokaji K, Horie T, Enomoto Y. Effect of Microstructure and Carbide Spheroidization on FatigueBehaviour in High V-Cr-Ni Cast Iron[J]. International Journal of Fatigue,2006,28:281-288.
    [61] Sylvaine H T, Leila A, Rafika K. Miscibility of Binary VC–MC Carbides in QuaternaryFe–V–M–C Alloys[J]. J. Alloys. Compd.,2001,317-318:311-314.
    [62] Zhi X H, Xing J D, Fu H G, et al. Effect of Titanium on the As-Cast Microstructure ofHypereutectic High Chromium Cast Iron[J]. Mater. Charact.,2008,59(9):1221-1226.
    [63] Xu Z M, Liang G F, Guan Q F, et al. TiC as Heterogeneous Nuclei of the (Fe, Mn)3C and AusteniteIntergrowth Eutectic in Austenite Steel Matrix Wear Resistant Composite[J]. Mater. Res. Bull.,2004,39(3):457-463.
    [64]郝石坚.现代铸铁学[M].北京:冶金工业出版社,2004:278-311.
    [65] Klug J A, Proslier T, Elam J W, et al. Atomic Layer Deposition of Amorphous NiobiumCarbide-Based Thin Film Superconductors [J]. J Phys. Chem. C,2011,115:25063–25071.
    [66]惠卫军,董翰,翁宇庆,等.回火温度对Cr-Mo-V系高强度钢力学性能的影响[J].金属学报,2002,38(10):1009-1014.
    [67] Zhao Z. The Design of Alloy Steels[M]. Beijing: National Defense Industry Press,1999:155-160.
    [68] Richter J. Tribological Evaluation of High-Speed Steels With a Regulated Carbide Phase[J]. Mater.Charact.,2003,50(4-5):339–347.
    [69] Chen F, Wang Y, Yang, T. Microstructure and Wear Properties of Fe–VC–Cr7C3CompositeCoating on Surface of Cast Steel[J]. Mater. Charact.,2008,59(4):488–492.
    [70] Liu Y, Yu B, Wang Z, et al. A Study on the Wear and Friction Behaviors of TiC/NiCr Cermets[J].Tribology,2000,20(3):90-93.
    [71]贺林,张长军,周卫星.高铬铸铁中碳化物相抗磨作用的“尺寸效应”[J].热加工工艺,1998,(4):15-18.
    [72] Williams W S. Electrical Properties of Hard Materials[J]. International Journal of RefractoryMetals and Hard Materials,1999,17(1-3):21–26.
    [73] Farah A F, Crnkovic O R, Canale L C F, et al. Heat Treatment in High Cr White Cast Iron NbAlloy[J]. J. Mater. Eng. Perform.,2001,10(1):42–45.
    [74] Sen U. Kinetics of Niobium Carbide Coating Produced on AISI1040Steel by Thermo-ReactiveDeposition Technique[J]. Mater. Chem. Phys.,2004,86(1):189–194.
    [75] Sen U. Wear Properties of Niobium Carbide Coatings Performed by Pack Method on AISI1040Steel[J]. Thin Solid Films,2005,483(1-2):152–157.
    [76] Nedforsa N, Tengstrandb O, Lewina E, et al. Structural, Mechanical and Electrical-ContactProperties of Nanocrystalline-NbC/Amorphous-C Coatings Deposited by Magnetron Sputtering[J].Surf. Coat. Technol.,2011,206(2-3):354–359.
    [77] Vojvodic A, Hellman A, Ruberto C, et al. From Electronic Structure to Catalytic Activity: A SingleDescriptor for Adsorption and Reactivity on Transition-Metal Carbides[J]. Phys. Rev. Lett.,2009,103:146103-1-4.
    [78] Bendavid A, Martin P J, Kinder T J, et al. The Deposition of NbN and NbC Thin Films by FilteredVacuum Cathodicarc Deposition[J]. Surface and Coatings Technology,2003,163-164:347-352.
    [79] Ferro D, Rau J V, Generosi A, et al. Electron Beam Deposited VC and NbC Thin Films onTitanium: Hardness and Energy-Dispersive X-ray Diffraction Study[J]. Surf. Coat Technol.,2008,202(10):2162-2168.
    [80] Liu H, Zhu J, Liu Y, et al. First-Principles Study on the Mechanical Properties of VanadiumCarbides VC and V4C3[J]. Mater. Lett.,2008,62(17-18):3084-3086.
    [81] im nek A, Vacká J. Hardness of Covalent and Ionic Crystals: First-Principle Calculations[J].Phys. Rev. Lett.,2006,96(8):085501-1-4.
    [82] Gao F M, He J L, Wu E D, et al. Hardness of Covalent Crystals[J]. Phys. Rev. Lett.,2003,91(1):15502-1-4.
    [83] Ledbetter H M, Chevacharoenkul S, Davis R F, et al. Monocrystal Elastic Constants of NbC[J]. J.Appl. Phys.,1986,60(5):1614-1617.
    [84] Brown H L, Armstrong P E, Kempter C P, et al. Elastic Properties of Some PolycrystallineTransition-Metal Monocarbides[J]. J. Chem. Phys.,1966,45(2):547-549.
    [85] Parthé E, Yvon K. On the Crystal Chemistry of the Close Packed Transition Metal Carbides. II. AProposal for the Notation of the Different Crystal Structures[J]. Acta Cryst. B,1970,26:149-153.
    [86] Yvon K, Rieger W, Nowtny H. Die Kristallstructure on V2C[J]. Monatsh Fuer Chem.,1966,97:689-694
    [87] Venables J D, Khan D, Lye R G. Structure of the Ordered Compound V6C5[J]. Phil. Mag.,1968,18:177-192.
    [88] Khaenko B V, Sivak O P. Displacment of Niobium Atoms in the Superstructure Delta-Nb6C5[J].Dop. Akad. Nauk. Ukr. RSR, A,1989,51(1):78–81.
    [89] Segall M D, Lindan P L D, Probert M J, et al. First-Principles Simulation: Ideas, Illustrations andthe Castep Code[J]. J. Phys.: Cond. Matt.,2002,14(11):2717-2744.
    [90] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys.Rev. Lett.,1996,77(18):3865-3868.
    [91] Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism.Physical Review B,1990,43(11):7892-7895.
    [92] Rudy E, Benesovsky F, Rudy E. Untersuchungen in System Vanadium-Wolfram-Kohlenstoff[J].Monatshefte Fuer Chemie,1962,93:693-707.
    [93] Kordes D. Anadiummonocarbid mit Geordneten Leerstellen[J]. Phys. Status Solidi,1968,26:K103-K105.
    [94] Zubkov V G, Dubrovskaya L B, Gel’d P V, et al. The Crystal Structure of C3Nb4[J]. Dokl. Akad.Nauk SSSR,1969,184(4):874–876.
    [95] Rudy E, Benesovsky F, Toth L. Untersuchung der Dreistoffsysteme der Va-und Via-Metalle mitBor und Kohlenstoff[J]. Zeitschrift fuer Metallkunde,1963,54:345–353.
    [96] Zhou W, Wu H, Yildirim T. Electronic, Dynamic, and Thermal Properties of Ultra-incompressibleSuperhard Rhenium Diboride: A Combined First-priciples and Neutron Scattering Study[J].Physical Review B,2007,76(18):184113-184118
    [97] Hill R. The Elastic Behavior of a Crystalline Aggregate[J], Proc. Phys. Soc. A,1952,65(5):349-354.
    [98] Wu Z J, Zhao E J, Xiang H P, et al. Crystal Structures and Elastic Properties of Superhard IrN2andIrN3from First Principles[J]. Physical Review B,2007,76(5):054115-1-15.
    [99] Zbasnik J, Toth L E. Electronic Structure of Vanadium Carbide[J]. Phys. Rev. B,1973,8(2):452-459.
    [100] Krajewski A, D'Alessio L, Maria G D. Physiso-Chemical and Thermophysical Properties of CubicBinary Carbides[J]. Cryst. Res. Technol.,1998,33(3):341-374.
    [101] Chen Y J, Li J B, Wei Q M, et al. Preparation of Different Morphology of TaCxWhiskers[J]. Mater.Lett.,2002,56(3):279-283.
    [102] Wei S, Zhu J, Xu L. Research on Wear Resistance of High Speed Steel with High VanadiumContent[J]. Mater. Sci. Eng. A,2005,404(1-2):138-145.
    [103] Krzanowski J E, Leuchtner R E. Chemical, Mechanical, and Tribological Properties ofPulsed-Laser-Deposited Titanium Carbide and Vanadium Carbide J. Am. Ceram. Soc.,1997,80(5):1277-1280.
    [104] Wu X Y, Li G Z, Chen Y H, et al. Microstructure and Mechanical Properties of VanadiumCarbide Coatings Synthesized by Reactive Magnetron Sputtering[J]. Int. J. Refractory Metals&Hard Mater.,2009,27(3):611-614.
    [105] Lipatnikov V N, Gusev A I, Ettmeier P, et al. Order-disorder Phase Transformations and SpecificHeat of Nonstoichiometric Vanadium Carbide[J]. Phys. Solid State,1999,41(3):474-480.
    [106] Samsonow G W, Morosow W W. Carbohydride der Ubergangsmetalle[J]. Monatshefte FuerChemie,1971,102:1667-1678.
    [107] Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press,1954:10-22.
    [108] Born M. On the Stability of Crystal lattices. Proc. Cambridge Philos. Soc.1940,36:160-172
    [109] Sun Z, Ahuja R, Lowther J E. Mechanical properties of vanadium carbide and a ternary vanadiumtungsten carbide[J]. Solid State Commun.2010,150(15-16):697-700
    [110] Jhi S H, Ihm J, Louie S G, et al. Electronicmechanism of Hardness Enhancement inTransition-metal Carbonitrides[J]. Nature1999,399:132-134.
    [111] Chen X Q, Niu H Y, Franchin C. Modeling Hardness of Polycrystalline Materials and BulkMetallic Glasses[J]. Intermetallics,2011,19(9):1275-1281.
    [112] Andrievski R A. Superhard Materials Based on Nanostructured High-melting Point Compounds:Achievements and Perspectives[J]. Int. J. Refract. Met. Hard Mater.,2001,19(4-6):447-452.
    [113] Latini A, Rau J V, Teqhil R, et al.. Superhard Properties of Rhodium and Iridium Boride Films[J].ACS: Appl. Mater. Interfaces,2010,2:581-587.
    [114] Segall M D, Shah R, Pickard C J, et al. Payne, Population Analysis of Plane-wave ElectronicStructure Calculations of Bulk Materials[J]. Phys. Rev. B,1996,54:16317-16320.
    [115] Zaoui A, Bouhafs B, Ruterana P. First-principles Calculations on the Electronic Structure ofTiCxN1x, ZrxNb1xC and HfCxN1xalloys[J]. Mater. Chem. Phys.2005,91:108-115.
    [116] Gusev A I. Sequence of Phase Transformations in the Formation of Superstructures of the M6C5Type in Nonstoichiometric Carbides[J]. J. Exp. Theor. Phys.,2009,109(3):417-433.
    [117] Christensen A N. Vacancy Order in Nb6C5[J]. Acta Chem. Scand.1985,39A:803-804.
    [118] Yvon K, Parthé E. On the Crystal Chemistry of the Close Packed Transition Metal Carbides. I. Thecrystal structure of the V, Nb and Ta Carbides[J]. Acta Crystallogr. Sect. B: Struct. Sci.1970,26B:149-153.
    [119] Wang L, Li Q, Mei T, Shi L, et al. A Thermal Reduction Route to Nanocrystalline Transition MetalCarbides from Waste Polytetrafluoroethylene and Metal Oxides[J]. Mater. Chem. Phys.,2012,137:1-4.
    [120] Liu J Z, Zunger A. Thermodynamic States and Phase Diagrams for Bulk-incoherent,Bulk-coherent, and Epitaxially-coherent Semiconductor Alloys: Application to Cubic (Ga,In)N[J].Phys. Rev. B,2008,77:205201-1-12
    [121] Hugosson H W, Eriksson O, Jansson U et al. Phase Stabilities and Homogeneity Ranges in4d-transition-metal Carbides: A Theoretical Study[J]. Phys. Rev. B,2001,63:134108-1-11
    [122] Hugosson H W, Jansson U, Johansson B, et al. Phase Stability Diagrams of Transition MetalCarbides, a Theoretical Study[J]. Chem. Phys. Lett.,2001,333(6):444-450.
    [123] Chen J, Boyer L L, Krakauer H, et al. Elastic Constants of NbC and MoN: Instability ofB1-MoN[J]. Phys. Rev. B,1988,37(7):3295-3298.
    [124] Amriou T, Bouhafs B, Aourag H, et al. FP-LAPW Investigations of Electronic Structure andBonding Mechanism of NbC and NbN Compounds[J]. Physica B: Condensed Matter,2003,325:46-56.
    [125] Vojvodic A, Ruberto C. Trends in Bulk Electron-structural Features of Rocksalt EarlyTransition-metal Carbides[J]. J. Phys.: Condens. Matter,2010,22:375501-1-10.
    [126] Krasnenko V, Brik M G. First-principles Calculations of Hydrostatic Pressure Effects on theStructural, Elastic and Thermodynamic Properties of Cubic Monocarbides XC (X=Ti, V, Cr, Nb,Mo, Hf)[J]. Solid State Sci.,2012,14(10):1431-1444.
    [127] Frey H, Kienel G. Dünnschichttechnologie[M], VDI-Verlag: Düsseldorf,1987:121.
    [128] Hannink R H J, Kohlstedt D L, Murray M J. Slip System Determination in Cubic Carbides byHardness Anisotropy[J]. Pro. R. Soc. Lond. A.,1972,326:409–420
    [129] Li Y, Gao Y, Xiao B, et al. The Electronic, Mechanical Properties and Theoretical Hardness ofChromium Carbides by First-principles Calculations[J]. J. Alloys Compd.,2011,509(17):5242-5249.
    [130] Zhang M, Wang H, Wang H et al. Structural Modifications and Mechanical Properties ofMolybdenum Borides from First Principles[J]. J. Phys. Chem. C,2010,114(14):6722-6725.
    [131] Gou H, Hou L, Zhang J, et al. Pressure-induced Incompressibility of ReC and Effect of MetallicBonding on Its Hardness[J]. Appl. Phys. Lett.2008,92:241901-1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700