用户名: 密码: 验证码:
α-乙酰-γ-丁内酯的合成机理研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-乙酰-γ-丁内酯(ABL)是一重要的医药中间体和有机化工原料。尤其是随着维生素B1、延心痛、氯喹、杀菌剂丙硫菌唑、抗惊厥药物盐酸氯美噻唑、抗精神病药物利培酮嘧啶以及特殊医用高分子材料,在国内外市场上的不断开拓,对α-乙酰-γ-丁内酯的需求量也逐年增加。目前,α-乙酰-γ-丁内酯的合成方法主要有两种,其一:以γ-丁内酯和乙酸酯为原料,甲苯做溶剂,碱金属为缩合剂制备α-乙酰-γ-丁内酯的生产工艺;其二:以环氧乙烷和乙酰乙酸酯为原料的合成工艺。前者与后者相比,具有成本低、产率高、不安全隐患相对较小等优点。该工艺是国内目前工业化生产普遍使用的方法。但是,该生产工艺,使用甲苯做溶剂,并在金属钠熔融状态下滴加乙酸酯和γ-丁内酯的混合物,在反应引发阶段,产生大量极易气化的乙酸酯和反应生成的副产乙醇、氢气,经常发生冲料、燃烧、甚至爆炸等事故。另外,由于α-乙酰-γ-丁内酯在水中溶解度较大(约20%),后处理水相需要有机溶剂萃取,操作相对麻烦,污染严重。
     本工作为使国内目前合成α-乙酰-γ-丁内酯工业化生产普遍采用的方法更加合理、安全、减少污染及简化操作,对其整个生产过程进行了系统的研究。揭示了α-乙酰-γ-丁内酯的反应机理;建立了一种收率高、相对安全、环境污染少、操作简便、易于工业化生产的合成新工艺。具体研究内容及结果如下:
     1.揭示了α-乙酰-γ-丁内酯生成的反应机理
     利用GC/MS联用对反应过程中物料组成的变化进行了跟踪检测,并采用密度泛函理论对其原料、产品以及可能生成的中间体的生成焓(△,H298)进行了计算,揭示了α-乙酰-γ-丁内酯生成的反应机理是:“γ-丁内酯在碱性条件下脱去一α-活泼氢形成其碳负离子,随后其在生成α-乙酰-γ-丁内酯过程中通过了两种途径,即:该碳负离子不但可直接进攻乙酸酯的羰基碳,形成α-乙酰-γ-丁内酯,而且该碳负离子还可进攻另一分子γ-丁内酯的羰基碳,形成其“二聚体”的碳负离子,该二聚体的碳负离子再与乙酸酯反应生成α-乙酰-γ-丁内酯”。
     2.建立了“本底做溶剂代替甲苯合成α-乙酰-γ-丁内酯的新工艺”
     α-乙酰-γ-丁内酯生成的反应机理表明,在合成α-乙酰-γ-丁内酯的过程中,可以不考虑由于原料局部过浓而产生副反应的问题。从而,用“本底做溶剂代替甲苯”,彻底避免了苯系物带来的环境污染;并通过调节金属钠比表面积实现了反应速率可控的目的,消除了冲料、着火等安全隐患;同时,通过选择中和用酸的种类、浓度、温度等条件,利用盐析原理,实现了油/水两相有效分离,取消了水相用有机溶剂萃取的操作,简化了后处理,生产成本每吨节省3100多元,收率从76%提高到了90%以上。建立了一条年产2000吨的工业化生产线。
     3.建立了联产多种磷酸盐的废水处理方法
     在生产α-乙酰-γ-丁内酯的过程中,每生产1吨α-乙酰-γ-丁内酯,同时产生副产物磷酸盐废水约2吨左右。对该废水为原料联产多种磷酸盐生产条件进行了系统的研究,建立了各项指标均符合国标要求的多种磷酸盐(磷酸二氢钠、磷酸氢二钠、磷酸钠、酸式焦磷酸钠、焦磷酸钠、三偏磷酸、六偏磷酸钠或三聚磷酸钠),联产新工艺。
     4.建立了同时测定主副产物及原料气相色谱方法
     为了实现对工业化生产的有效控制,采用毛细管气相色谱法,以己酸乙酯为内标物,建立了同时测定α-乙酰-γ-丁内酯、Y-丁内酯和α-(2-四氢呋喃亚基)--γ-丁内酯含量的方法,其线性范围分别在0~30.1335mg·mL-1、0~15.0810mg·mL-1和0~9.0600mg·mL-1的范围内被测组分浓度与被测组分与内标物峰面积比呈良好的线性关系,其相关系数均在0.9991以上;回收率在96.54~102.47%之间,相对标准偏差在0.08-2.48%之间。该方法具有良好的定量精确性和重复性,应用于α-乙酰-γ-丁内酯生产过程中中控及产品的含量分析,取得了满意的结果。
     5.修订了“工业α-乙酰-γ-丁内酯”的质量标准
     为确保该产品质量,满足下游产品的质量和生产要求,改变该产品现行标准落后的现状,建立相对科学、合理的产品质量标准。建立了以主成分α-乙酰-γ-丁内酯为内标,气相色谱校正面积归一化法同时测定主成分α-乙酰-γ-丁内酯和有害杂质苯和甲苯的方法。
a-Acetyl-y-butyrolactone (ABL) is an important drug intermediate and synthon in organic chemistry. As vitamin B1, delay heartache, chloroqhyll, fungicides prothioconazole, anti-convulsant drugs clomethiazole hydrochloride, the antipsychotic risperidone pyrimidine and special medical polymer materials, and are expanded the domestic and overseas markets constantly, the demand of ABL is also increased year by year. So far, there are only two published methods for ABL synthesis. The first one uses y-butyrolactone (GBL) and ethyl acetate (EtOAc) as raw materials, sodium as condensating agent and alkylbenzene as the solvent. The other method uses ethylene oxide and ethyl acetoacetate as raw materials. The former has more the advantages of low cost, high yield, unsafe hidden danger relatively small than the latter. The process is a commonly used method in domestic industrial production. However, the production process, using toluene as solvent, and mixtures of acetate and y-butyrolactone was added dropwise in the molten state of the sodium. In the inducing phase, a large amount of easily gasifiable acetate and the reaction generating byproduct of ethanol, hydrogen were produced. Red material, burning, even an explosion and other accidents were usually occured. In addition, due to a-acetyl-y-butyrolactone has larger solubility (about20%) in water. Water phase need organic solvent extract, post-processing operate relatively troublesome and serious pollution.
     This work systematically studied the entire production process, in order to make domestic synthetic a-acetyl-y-butyrolactone industrial production commonly method is more reasonable, safe, reduce pollution and streamline operations. An environmentally friendly, safe, simple and efficient new method was been established for the synthesis of ABL with the yield higher. Specific research contents and results are as follows.
     1. The mechanism of ABL synthesis was explored.
     The mechanism of ABL synthesis from GBL and EtOAc was explored by detecting the material changes involved with GC/MS and the enthalpies of formation of the synthons, products, and possible intermediates were calculated using the density functional theory. GBL forms a carbanion of y-butyrolactone by losing an a-H under strongly alkaline conditions. ABL is then obtained via two reaction mechanisms. One of the reaction mechanisms involves direct reaction of the carbanion of y-butyrolactone with EtOAc to produce ABL. The other involves the formation of a carbanion of a-(2-hydroxy-tetrahydrofuran-2-yl)-y-butyrolactone through the reaction of two molecules of GBL, and the subsequent combination of this anion with EtOAc to produce ABL
     2. Established the new process for synthetic ABL with raw material replacd toluene as solvent.
     The mechanism of ABL synthesis showed that it is unnecessary to take into account raw materials'local thickness, and their self-condensation under these conditions in the synthesis of ABL process. Considering the reasons above, this work applied raw material replaced alkylbenzene as the solvent, and avoided environmental pollution by alkylbenzene; also, accidents such as red material and fire were avoided by specific surface area of sodium metal control. Meanwhile, through to selecting the type and concentration of acid, neutralizing temperature and other conditions, Effective isolation of the organic and aqueous phases was performed using the salting out method.
     The operation of the aqueous phase using an organic solvent extraction was cancelled, and the post-processing was simplified. The production costs reduced more than3100yuan per ton, and the yield increased from76%to higher than90%. The industrialization production line with annual output of2,000t was established.
     3. Established a treatment method for phosphate wastewater combined production of a variety of phosphate.
     In the process of production ABL,1ton of ABL produces, meanwhile byproducts phosphate wastewater about2tons. Production conditions were systematically studied for Phosphate wastewater from the production ABL as raw material. A treatment method was established for phosphate wastewater combined production of a variety phosphate (sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium trimetaphosphate, sodium hexametaphosphate, and sodium tripolyphosphate). The indexes of phosphate products were analyzed and the results showed all of them met the requirements of corresponding in dustrial phosphate standards.
     4. A method for simultaneous determination of ABL, by-product and raw material was established by gas chromatography.
     In order to achieved effective control of industrial production.A method for simultaneous determination contents of ABL, GBL and α-(2-tetrahydro furanylidene)-y-butyrolactone (AGBL) by gas chromatography was established with ethyl hexanoate as an internal standard. The method has been applied to the process in which GBL and ethyl acetate were used as raw material to produce ABL.The results showed that the peak area ratio of the measured component to the internal standard has a good linear relationship with component concentration in the range of the0-30.13g/L for ABL,0-15.08g/L for GBL and0-9.06g/L for AGBL, the correlation coefficients are more than0.9991, recoveries were between96.5-102.9%; Relative standard deviations were between0.10-2.50%. And the method is applied in ABL production process control and product analysis, and satisfactory results were obtained, which provides the basis for the optimization of the best technological conditions and establishments of product standards of ABL.
     5. Revision of quality standard for industrial a-acetyl-y-butyrolactone
     In order to ensure the product quality, meet the requirements of production and quality of downstream products, the current status of the backward standards for product are changed present, a relatively scientific and reasonable product quality standards was established. A method for simultaneous determination contents of ABL, benzene and toluene by gas chromatography was established with correction area normalization method using ABL as an internal standard.
引文
[1]姚俊生,丁扬,石春明.双乙烯酮法合成乙酰丁内酯的研究[J].精细与专用化学品,2012,20(2):13-17.
    [2]任宇,边军,朱崇泉,吴国沛.环丙胺的合成[J].江苏化工,1995,23(1):22-23.
    [3]李眉,郭惠元.环丙胺的合成与生成[J].医药化工,1992,23(3):141.
    [4]尚东升.γ-丁内酯五步法制备环丙胺工艺评析[J].江苏化工,2004,32(6):49-52.
    [5]刘敏,刘鸿,李普瑞.3-巯基-4-氧代乙酸戊酯的合成[J].应用化工,2003,32(6):53-55.
    [6]王美娟.丙硫菌唑的合成及工艺优化[D].上海:华东理工大学硕士学位论文,2009.
    [7]赵晓娟.盐酸氯美噻唑及其中间体的合成[D].广东:五邑大学硕士学位论文,2006.
    [8]濮存恬,吴怡祖,陈莉.α-乙酰-γ-丁内酯合成工艺优化[J].适用技术市场,1995,(8):20-21.
    [9]安禹慧.抗精神病药物利培酮合成工艺的研究[D].天津:天津大学硕士学位论文,2004.
    [10]李瑞建,郑雪清,房艳芬,齐武肖,郝小燕.利培酮嘧啶中间体的合成工艺研究[J].中国医药导报.2010,7(22):34-36.
    [11]王超,禹艳坤,刘爱霞,冀亚飞.帕潘立酮的合成[J].中国医药工业杂志,2010,41(10):721-724.
    [12]葛纪龙,董秀忠,葛旭东.帕潘立酮中间体的制备方法[J].中国石油和化工,2011,(6):33-36.
    [13]高红云,李文翘,张芳江.帕潘立酮中间体的合成方法[P].发明专利,专利号:CN 101440093A,2008.
    [14]Sabry S. M. Polaropraphic and voltammetric assays of sulfonamides as alpha oxo gamma butyrolactone arylhydrazones [J]. Analytical letters,2007,40(2):233-256.
    [15]Sabry S. M. Enhanced spectrophotometry of sulfonamides with novel 2-acetyl butyrolactone derivatives [J]. Analytical letters,2006,39(13):2591-2615.
    [16]Sabry S. M. Application of 2-acetyl butyrolactone to spectrofluorinietry: Fluorescence properties of Schiff bases derived from 2-acetyl butyrolactone and spectrofluormetric determination of primary amine-containing compounds [J]. Journal of pharmaceutical and biomedical analysis,2006,40(5):1057-1067.
    [17]马燕红,张艳红,于海英,张生万.光度法测定a-乙酰-γ-丁内酯含量方法的研究[J].化学工程师,2008,150(3):20-22.
    [18]王鹏,辛菲,李海华,杜西莹.4-甲基-5-(β-羟乙基)-噻唑的制备[J].北京理工大学学报,2004,24(09):821-824.
    [19]陈慧文.4-甲基-5-(β-羟乙基)-噻唑的制备[D].天津:天津大学硕士学位论文,2009.
    [20]李树安.肉香型香料4-甲基-5-噻唑乙醇的合成[J].精细化工,2005,22(7):521-523.
    [21]卫洁,孙斌,李新,王立志,宋成斌,郗金标,张知伟,张成果,卢朋,张雷亮,高敬怀,李晟.4-甲基-5-(2-羟乙基)-噻唑的合成方法[P].发明专利,申请号:CN102584740 A,2012.
    [22]陈志新.4-甲基-5-(β-羟乙基)-噻唑的合成[J].浙江化工,1996,27(3):7-9.
    [23]张小林,李海峰,欧阳红霞,朱李良.4-甲基-5-(2-羟乙基)噻唑的合成新工艺[J].南昌大学学报.2011,35(3):256-259.
    [24]Deng Xianmo, Yao Jinrong, Yuan Minlong. Polymerization of lactides and lactones 11. Ring-opening polymerization of a-acetyl-y-butyrolactone and copolymerization with β-butyrolactone[J]. European Polymer Journal,2000,36 (12):2739-2741.
    [25]姚晋荣.新型内酯的合成及其开环聚合的研究[D].成都:中国科学院成都有机化学研究所硕士学位论文,1999.
    [26]Christine Jerome, Philippe Lecomte. Recent advances in the synthesis of aliphatic polyestersby ring-opening polymerization[J]. Advanced Drug Delivery Reviews,2008,60 (9):1056-1076.
    [27]潘高峰,冯宝星.纺织技术在医用可吸收高分子材料领域的应用.2009中国医疗卫生用纺织品创新璺展论坛,124-127.
    [28]于翠萍,李希,沈之荃.丙交酯开环均聚合[J].化学进展,2007,19(1):136-144.
    [29]Maria C. Rodriguez-Arguelles, Patricia Touron-Touceda, Roberto Cao, Ana M. Garcia-Deibe, Paolo Pelagatti, Corrado Pelizzi, Franca Zan. Complexes of 2-acetyl-y-butyrolactone and 2-furancarbaldehyde thiosemicarbazones:Antibacterial and antifungal activity[J]. Journal of Inorganic Biochemistry.2009,103(1):35-42.
    [30]Ribeiro Joyce Benzaquem, Sousa Li via Maria Andrade de, Soares Mariana da Volta, Ramos Maria da Conceicao Klaus V., Neto Francisco Radler de Aquino, Fraga Carlos Alberto Mansour, Leite Selma G Ferreira, Cordeiro Yraima and Antunes Octavio A. C. Microbial reduction of a-acetyl-y-butyrolactone[J]. Tetrahedron:Asymmetry,2006, 17(6):984-988.
    [31]Giancarlo Fantin, Marco Fogagnolo, Paolo Giovannini, Alessandro Medici, Edoardo Pagnotta, Paola Pedrini, Antonio Trincone. Synthesis of homochiral syn-and anti-a-(hydroxyethyl)-γ-butyrolactones via microbial reduction[J]. Tetrahedron:Asymmetry, 1994,5 (9):1631-1634.
    [32]Ribeiro Joyce B., Sousa L.M.A., Fraga C.A.M., Leite Selma G.F., Ramos M.C.K.V., Aquino Neto F.R. de, Aguiar L.C.S., Souza Rodrigo O.M.A. de, Antunes O.A.C. Microbial reduction of alpha-substituted-alpha-acetyl-gamma-butyrolactones[J]. Catalysis Communications.2008,9 (8):1782-1786.
    [33]Willian L.Johnson. PREPARATION OF ACETYLBUTYROLACTONE[P]. Patent, Patent number:US2443827,1948.
    [34]Richard Norman Lacey H J. Production of Gamma-Lactones[P]. Patent, Patent number:GB740993,1955.
    [35]Masahiko Shimizu, Satoshi Kimura, Koji Ozaki. Production of alfa Acetyl gamma Butyrolactone[P]. Patent, Patent number:JP2000355588,2000.
    [36]清水雅彦.α-乙酰-γ-丁内酯的制造方法[P].发明专利,专利号:CN 1357545A,2002.
    [37]王俦.环氧乙烷的爆炸性质与安全生产(上)[J].合成纤维,1981,(01):63-68.
    [38]王俦.环氧乙烷的爆炸性质与安全生产(下)[J].合成纤维,1981,(02):50-55.
    [39]高海英.环氧乙烷的危险性分析及其安全措施[J].石油化工设计,2008,25(2):62-64.
    [40]李文吉,孙京津.环氧乙烷在贮存,运输中的危害及维护[J].日用化学品科学,1995,(4):27-28.
    [41]李文吉,孙京津.从几起爆炸事故看环氧乙烷安全管理的必要性[J].日用化学品科学,1995,(3):25.
    [42]吴章.一起环氧乙烷贮罐事故分析[J].化工劳动保护,1997,(5):24-25.
    [43]陈丕尊.环氧乙烷贮罐区安全措施设计[J].沈阳化工,2000,29(4):205-207.
    [44]Venkat Ragavan.R, Vijayakumar.V, Suchetha Kumari. Synthesis of some novel bioactive 4-oxy/thio substituted-lH-pyrazol-5(4H)-ones via efficient cross Claisen condensation[J]. European journal of medicinal chemistry.2009,44(10):3852-3857.
    [45]Misaki Tomonori, Nagase Ryohei, Matsumoto Kunshi, and Tanabe Yoo. Ti-Cross-Claisen condensation between carboxylic esters and acid chlorides or acids:a highly selective and general method for the preparation of various β-keto esters[J]. Journal of the American chemistry society,2005,127(9):2854-2855.
    [46]Honda Yutaka, Katayama Satoshi, Kojima Mitsuhiko, Suzuki Takayuki, and Izawa Kunisuke. Synthesis of optically active a-aminoalkyl a'-halomethyl ketone:a cross Claisen condensation approach[J]. Organic letter,2002,4(3):447-449.
    [47]Esteb John J, Stockton Matthew B. A solvent-free Claisen condensation reaction for the organic laboratory [J]. Journal of chemical education,2003,80 (12):1446-1447.
    [48]Tirronen Tirronen, Salmi Tapio, Lehtonen Juha, Vuori Antti, Gro"nfors Outi, Kaljula Kai. Moselling of complex liquid-solid reaction systems in semibatch reactors:Claisen condensation in industrial scale[J]. Chemical engineering science,2001,56 (2):699-705.
    [49]Jedlinski Zbigniew, Kowalczuk Marek, Kurcok Piotr, Grzegorzek Miroslaw, and Ermel Jolacta. A novel route to a-substitued y-lactones via lactone enolates[J]. Journal of organic chemistry,1987,52:4601-4601.
    [50]丁扣华.一种α-乙酰-γ-丁内酯的制备方法[P].发明专利,专利号:CN101092407A,2007.
    [51]Koehler Guenther, Uhlenbrock Wilfried. Method for preparing 2-acetyl-y- butyrolactone [P]. Patent, Patent number:US5789603A,1997.
    [52]周景尧,林国妹.α-乙酰-γ-丁内酯合成工艺的改进[J].中国医药工业杂志,1994,25(10):451.
    [53]吴怡祖,万锡仁,唐山.γ-丁内酯制备a-乙酰-γ-内酯的探讨[J].南京化工学院学报,1992,14(3):48-52.
    [54]Lipkin M. A., Markevich V.S., Kirsanov A. T., and Yurkevich A. M., The condensation of y-butyrolactone and ethyl acetate [J]. Pharmaceutical Chemistry Journal. 1988,22 (12):1465-1469.
    [55]濮存恬,吴怡祖,陈莉.α-乙酰-γ-丁内酯的合成工艺优化[J].适用技术市场,1995,(8):20-21.
    [56]Gorou Nakai, Yasuhiko Kojima, Tadao Shiyouji, Sadao Takehara, Yoshie Shirato, Jitsuo Kurokawa. Preparation of alpha acetyl lactones[P]. Patent, Patent number: JP58099473,1983.
    [57]俞小鸥.α-乙酰-γ-丁内酯的制备方法及其专用设备[P].发明专利,专利号:CN1548427A,2004.
    [58]钱其群.一种α-乙酰-γ-丁内酯的制备方法[P].发明专利,专利号:CN101230054A,2008.
    [59]薛永强,张建平,崔子祥,闫济民,李文杰.α-乙酰-γ-丁内酯的制备方法及其专用设备[P].发明专利,专利号:CN 102229586A,2011.
    [1]濮存恬,吴怡祖,陈莉.α-乙酰-γ-丁内酯合成工艺优化[J].适用技术市场,1995,(8):20-21.
    [2]Deng Xianmo, Yao Jinrong, Yuan Minlong. Polymerization of lactides and lactones 11. Ring-opening polymerization of a-acetyl-y-butyrolactone and copolymerization with β-butyrolactone[J]. European Polymer Journal,2000,36 (12):2739-2741.
    [3]潘高峰,冯宝星.纺织技术在医用可吸收高分子材料领域的应用.2009中国医疗卫生用纺织品创新璺展论坛.124-127.
    [4]俞小鸥.α-乙酰-γ-丁内酯的制备方法及其专业设备[P].中国专利,专利号:CN1263749C,2003.
    [5]Guenther Koehler; Wilfried Uhlenbrock. Method for preparing a-acetyl-y-butyrolactone [P]. Patent, Patent number:5789603,1998.
    [6]钱其群.一种a-乙酰-γ-丁内酯的制备方法[P].中国专利,专利号:CN101230054A,2008.
    [7]M.A.Lipkin, V.S.Markevich. The condensation of y-butyrolactone and ethyl acetate[J]. Pharmaceutical Chemistry Journal. 1988,22(12):911-915.
    [8]吴恰祖,万锡仁,唐山.γ-丁内酯制备a-乙酰-γ-内酯的探讨[J].南京化工学院学报,1992,14(3):48-52.
    [9]Joseph W. Ochterski, George A. Petersson, and Kenneth B. Wiberg. A Comparison of Model Chemistries [J]. Journal of the American Chemical Society,1995,117 (45): 11299-11308.
    [10]Rui M.Borges dos Santos, Vania S.F.Muralha, Catarina F.Correia, Rita C.Guedes, Benedito J.Costa Cabral, and Jose A.Martinho Simoes. S-H Bond Dissociation Enthalpies in Thiophenols:A time-resolved photoacoustic calorimetry and quantum chemistry study[J]. Journal of physical chemistry A.2002,106(42):9883-9889.
    [11]S.Fascella, C.Cavallotti, R.Rota, and S.Carra. Quantum chemistry investigation of key reactions involved in the formation of naphthalene and indene[J]. Journal of physical chemistry A.2004,108(17):3829-3843.
    [12]Misaela Francisco-Marquez, J. Raul Alvarez-Idaboy, Annia Galano, Annik Vivier-Bunge. Quantum chemistry and TST study of the mechanism and kinetics of the butadiene and isoprene reactions with mercapto radicals[J]. Chemical Physics.2008,344: 273-280.
    [13]Christophe Waterlot, Daniel Couturier, Benoit Rigo, Alina Ghinet, Marc De Backer. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillontie K10-inversion of relative selectivites and reactivities of aryl halides[J]. Chemical papers,2011,65(6):873-882.
    [14]Vikas D. Ghule, Radhakrishnan Sarangapani, Pandurang M. Jadhav, Surya P. Tewarri, Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials[J]. Chemical papers,2011,65(3):380-388.
    [15]Xue Li,Qing-Chun Zheng, Ji-Long Zhang, Hong-Xing Zhang. Theoretical study on the mechanism of rearrangement reaction catalyzed by N5-carboxyaminoimidazole ribonucleotide mutase[J]. Computational and Theoretical Chemistry.2011,964:77-82.
    [16]Ida Shafagh, Kevin J. Hughes, Mohamed Pourkashanian. Modified enthalpies of formation for hydrocarbons from DFT and ab initio thermal energies[J]. Computational and Theoretical Chemistry.2011,964:100-107.
    [17]Vitaly G. Kiselev and Nina P. Gritsan. Theoretical Study of the Nitroalkane Thermolsis.1. Computation of the Formation Enthalpy of the Nitroalkanes, Their Isomers and Radical Products[J]. Journal of physical chemistry A.2008,112:4458-4464.
    [18]Evaluation of the Enthalpy of Formation, Proton Affinty, and Gas-Phase Basicity of y-Butyrolactone and 2-Pyrrolidinone by Isodesmic Reactions[J]. Journal of physical chemistry A.2008,112:4060-4064.
    [19]Grigorii M. Khrapkovskii, Roman V. Tsyshevsky, Denis V. Chachkov, Daniil L. Egorov, Alexander G Shamov. Formation enthalpies and bond dissociation enthalpies for C1-C4 mononitroalkanes by composite and DFT/B3LYP methods[J]. Journal of molecular structre:THEOCHEM.2010,985:1-6.
    [20]傅献彩,沈文霞,姚天扬.物理化学[M].北京,高等教育出版社,1990,62-63.
    [21]M. J. Frisch, G W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y Ayala, K. Morokuma, G A. Voth, P. Salvador, J. J. Dannenberg, V. G Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA,2003.
    [22]Joseph W. Ochterski, Ph. D. Thermochemistry in Gaussian. Gaussian, Inc.2000, 6:1-15.
    [1]Stanley N. Deming, John A. Palasota, Josephine M. Palasota. Experimental design in chemometrics[J]. Journal of Chemometrics.1991,5(3):181-192.
    [2]R.A.Stone, A.Veevers. The taguchi influence on designed experiments[J]. Journal of Chemometrics.1994,8(2):103-110.
    [3]S.S.Madaeni, S.Koocheki. Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element [J]. Chemical Engineering Journal.2006,119(l):37-44.
    [4]Junghui Chen, Rong-Guey Sheui. Using taguchi's method and orthogonal function approximation to design optimal manipulated trajectory in batch processes[J]. Industrial & Engineering Chemistry Research.2002,41(9):2226-2237.
    [5]J. Esteban Duran, Madjid Mohseni, Fariborz Taghipour. Design improvement of immobilized photocatalyticreactors using a CFD-taguchi combined method[J]. Industrial & Engineering Chemistry Research.2011,50(2):824-831.
    [6]Lipkin M. A., Markevich V.S., Kirsanov A. T., and Yurkevich A. M., The condensation of y-butyrolactone and ethyl acetate [J]. Pharmaceutical Chemistry Journal.1988,22 (12): 1465-1469.
    [1]陈华东,曾波,戴元华,等.六偏磷酸钠的应用及制备技术[J].无机盐工业,2010,42(2):9-11.
    [2]刘秀明.六偏磷酸钠的生产工艺[J].云南化工,1994,(3):30-33.
    [3]崔慕贤.食品六偏磷酸钠的研制[J].无机盐工业,881,(6):12-16.
    [4]Micha Shemer, Sylvia Mizrahi, Zeki Berk, et al. Effect of Processing Conditions on Isolation of Cottonseed Protein by Sodium Hexametaphosphate Extraction Method[J]. Journal of Agricultural and Food Chemistry,1973,21 (3)460-462.
    [5]黄家栩,范国强.食品添加剂六偏磷酸钠.中华人民共和国国家标准.1989,GB1890-1989.
    [6]刘绍从,赵祖亮,刘幽若,孙书军,陆思伟.工业用化工产品铁含量测定的通用方法1,10-菲哕啉分光光度法.中华人民共和国国家标准.2006,GB/T 3049-2006.
    [7]范国强,张萍,毛旭斌,刘亮,崔鹤.无机化工产品中氯化物含量测定的通用方法电位滴定法.中华人民共和国国家标准.1982,GB/T3050-2000.
    [8]李霞,胡育红,李光明.工业磷酸二氢钠.中华人民共和国化工行业标准.2009,HG/T 2767-2009.
    [9]李光明.工业磷酸氢二钠.中华人民共和国化工行业标准.2000,HG/T 2965-2000.
    [10]李光明,李霞.工业磷酸三钠.中华人民共和国化工行业标准.2009,HG/T2517-2009.
    [11]李光明,万金铸,郑光明,熊萍.工业六偏磷酸钠.中华人民共和国化工行业标准.2007,HG/T 2519-2007.
    [12]食品安全国家标准食品添加剂.焦磷酸二氢二钠.中华人民共和国国家标准.2010,GB25567-2010.
    [13]食品安全国家标准食品添加剂焦磷酸钠.中华人民共和国国家标准.2010,GB25557-201 0.
    [14]食品安全国家标准食品添加剂三聚磷酸钠.中华人民共和国国家标准.2010,GB25566-2010.
    [15]段长强,孟庆芳等.现代化学试剂手册[M].北京:化学工业出版社.1986,216.
    [16]BY RICHARD C.VOGEL AND HAROLD, Exchange Studies between Sodium Trimetaphosphate and Sodium Hexametaphosphate Using Radioactive Phosphorus[J]. Journal of the American Chemical Society,1950,72 (3) 1420-1421.
    [17]郭举,周贵云,徐艳丽.由磷酸二氢钠制高纯度三偏磷酸钠的试验研究[J].硫磷设计与粉体工程.2009,(2):17-19.
    [18]赵建国.高纯度三偏磷酸钠的制备[J].陕西化工.1997,(1):14-16.
    [19]张越,李小云,翟学良,康文通,侯钰.三偏磷酸钠的制备及其作为磷酸化试剂的应用[J].无机盐工业.2000,32(3):28-29.
    [20]李辉,李明瑞.食品级低水不溶物焦磷酸二氢二钠的制备方法[P].中国专利,专利号:CN 102101663 A.
    [21]李宝升,王修俊,邱树毅,屈源.食品添加剂磷酸氢二钠制备的工艺研究[J].中国食品添加剂,2009,(6):150-152.
    [22]魏玉鹏.焦磷酸钠生产工艺特点探讨[J].磷酸盐工业,2001,(1):17-20.
    [23]李军,张海燕,王邵东,金刚,陈锐,邓任军,任永胜,王涛,杨光明.用磷铁制备氧化铁红联产磷酸三钠的方法[P].2008,中国专利,专利号:CN101417821 B.
    [24]华小西.三聚磷酸钠应用研究现状[J].磷酸盐工业.2004,(2):12-14.
    [25]崔益顺.三聚磷酸钠制备工艺研究[J].四川理工学院学报.2009,22(1):65-67.
    [1]俞小鸥.α-乙酰-γ-丁内酯的制备方法及其专业设备[P].发明专利,专利号:CN1263749C,2003.
    [2]Guenther Koehler; Wilfried Uhlenbrock. Method for Preparing a-acetyl-y-Butyrolactone [P]. Patent, Patent number:US 5789603,1998.
    [3]丁扣华.一种α-乙酰-γ-丁内酯的制备方法[P].发明专利,专利号:CN101092407B,2007.
    [4]M.A.Lipkin, V.S.Markevich. The condensation of y-butyrolactone and ethyl Acetate[J]. Pharmaceutical Chemistry Journal.1988,22(12):911-915.
    [5]张生万,王伟,吴菊花,祁成福,付晋平,胡永钢,李美萍,冯彦琳.一种a-乙酰-γ-丁内酯的制备方法[P].发明专利,专利号:CN101768141A,2010.
    [6]张生万,王伟,祁成福,付晋平,李美萍,赵振华,陈雪敏,胡永钢,冯彦琳.一种α-乙酰-γ-丁内酯的制备方法[P].发明专利,专利号:CN 102030729 A,2010.
    [7]兰州大学化学系.有机微量分析[M].北京:科学出版社,1978,317.
    [8]潘奉华,朱京科,骆有寿,孙昊.气相色谱法定量分析α-乙酰--γ-丁内酯[J].色谱.1996,14(1):69-70.
    [9]林衍华,潘奉华,朱京科,骆有寿.气相色谱法分析α-乙酰-γ-丁内酯及其原料[J].精细石油化工.1996,(2):53-55.
    [10]吴怡祖,万锡仁.气相色谱法测定Y-丁内酯及α-乙酰-γ-丁内酯[J].江苏化工.1992,(1):49-51.
    [11]马燕红,张艳红,于海英,张生万.光度法测定α-乙酰-γ-丁内酯含量方法的研究[J].化学工程师.2008,(3):20-22.
    [1]付晋平,赵振华.工业2-乙酰-γ-丁内酯.山西寿阳世纪精细化工有限公司企业标准,2009,Q/SJH001-2009.
    [2]南通醋酸化工股份有限公司.工业2-乙酰-γ-丁内酯.南通醋酸化工股份有限公司企业标准,Q/320601 NS11-2000.
    [3]张思武,郑铁江,吴天华,谢登龙,薛建军,马晓丽,吕坚,王箐,张云.工业用乙酸酯类试验方法.中华人民共和国国家标准.2007,GB/T 12717-2007.
    [4]邹惠玲,龚世斌,邱爱玲.液体化工产品折光率的测定(20℃).中华人民共和国国家标准.2008,GB/T 6488-2008.
    [5]国家药典委员会编.中华人民共和国药典二部[M],北京:中国医药科技出版社,2010,附录68-69.
    [6]王永华.气相色谱分析应用[M].北京:科学出版社.2006,136-137.
    [7]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析[M].北京:高等教育出版社.1995,373-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700