用户名: 密码: 验证码:
半封闭海域河流水龄时空分布及其影响因素数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体微团在空间某点的水龄定义为该水体微团自进入控制体以来到流经该点所需要的时间。水龄是定量描述海洋水动力过程的环境效应的辅助变量,对深入理解陆源物质在海域中的输运具有重要的参考意义。然而,关于河流水在半封闭海域中的水龄研究甚少。本文以渤海和濑户内海作为代表区域,利用基于CART理论(constituent-oriented age and residence time theory)的三维水龄模型,模拟分析了黄河水(流入渤海的最大河流)在渤海中和淀川河水(流入濑户内海的最大河流)在濑户内海中水龄时空分布及其影响因素,尝试给出了半封闭海域河流水龄分布特征。主要结论如下:
     黄河水在整个渤海中的年平均水龄为3年。水龄显示明显的水平空间变化:在莱州湾中为1.7年而在辽东湾中为3.9年。除春季和夏季在黄河入海口附近和渤海中部南端外,在其他区域和季节水龄在垂向上几乎是均匀的。除莱州湾外,整个渤海的水龄季节变化很小。黄河水在渤海海峡处的水龄为3.4年。在各季节内,黄河水在渤海海峡南部的水龄都要低于北部。但在垂向上,表底差异并不明显。如果黄河水离开渤海后不能再次返回渤海,黄河水在渤海中水龄的四季空间分布特征并未发生改变,但水龄绝对数值会显著减小。例如黄河水在整个渤海中年平均水龄将自3年锐减为1.2年。潮是控制黄河水在渤海中水龄的最主要动力因素。无潮时,黄河水在渤海中水龄将减少超过50%。风是第二重要因素。无风时,黄河水在渤海中水龄增加20%~30%。无斜压过程或黄河水径流量的改变,对水龄影响很小。
     淀川河水在整个濑户内海中的年平均水龄为152天。水龄显示明显的水平空间变化:在大阪湾、播磨滩和濑户内海其他区域中依次为97天、199天和450天。在濑户内海中,除四季在大阪湾外,在其他区域水龄在垂向上几乎是均匀的。大阪湾和整个濑户内海的水龄季节变化均很明显。淀川河水自淀川河入海口排入大阪湾后(0.8×10~(10)m~3),分为二支:第一支(0.3×10~(10)m~3)经明石海峡进入播磨滩,进而经铭门海峡进入纪伊水道;第二支(0.5×10~(10)m~3)经纪淡海峡直接进入纪伊水道。而经备赞海峡进入濑户内海其他区域的量极少。淀川河水在铭门海峡和纪淡海峡处的水龄依次为203天和128天。冬季,在纪淡海峡西部的水龄要高于东部,垂向分布无差异。而夏季,在纪淡海峡西部的水龄要低于东部,垂向差异非常明显。如果淀川河水离开濑户内海后不能再次返回濑户内海,淀川河水在濑户内海中水龄的四季空间分布特征并未发生改变,但水龄绝对数值会显著减小。例如淀川河水在整个濑户内海中年平均水龄将自152天锐减为69天。斜压是控制淀川河水在濑户内海中水龄的最主要动力因素。无斜压时,淀川河水在大阪湾和播磨滩中水龄增加均超过50%。潮是第二重要因素。无潮时,淀川河水在大阪湾和播磨滩中水龄分别增加6%和51%。而且淀川河水自大阪湾分为二支进入纪伊水道的通道由潮决定。无风时或淀川河水径流量的改变,对水龄影响很小。
     通过分析黄河水在渤海中和淀川河水在濑户内海中水龄时空分布及其影响因素,尝试给出了半封闭海域河流水龄分布特征。在半封闭海域中,河流水龄呈现明显的水平空间变化。河流水在河流入海口附近水龄最低,随着与入海口距离的增加,水龄逐渐增大。在河流入海口及其邻近海域中,水龄在垂向上呈现明显差异。在河流入海口及其邻近海域中,水龄季节变化也很明显。黄河水经渤海海峡这唯一的通道离开渤海,而淀川河水主要经铭门海峡和纪淡海峡这2个通道离开濑户内海。如果河流水离开半封闭海域后不能再次返回半封闭海域,河流水在半封闭海域中水龄的四季空间分布特征并未发生改变,但水龄绝对数值会显著减小。河流水在半封闭海域中水龄对河流径流量的响应并不明显。渤海中,潮是最主要的动力控制因素,其次是风。而在濑户内海中,斜压是最主要的,其次是潮。
Water age is defined as the time elapsed since the departure of a water parcelfrom an area, where its age is prescribed to be0, to its arrival at a water body ofinterest. Water age is such one auxiliary variable that quantitatively reflects theenvironmental functions of dynamic processes and helps to understand the transporttimescales of land-based materials in the sea. However, little study has considered theage of river water in the semienclosed sea. To understand the age distribution of riverwater and its control factors in the semienclosed sea, the age of Yellow River water inthe Bohai Sea and Yodo River water in the Seto Inland Sea was calculated by athree-dimensional model based on the constituent-oriented age and residence timetheory (CART). The Yellow River and Yodo River is the largest river that feeds intothe Bohai Sea and Seto Inland Sea, respectively. Significant results and usefulconclusions have been achieved:
     Yellow River water has a mean of3.0years for the entire Bohai Sea. The spatialvariation of the water age is significant:1.7years in the Laizhou Bay but3.9years inthe Liaodong Bay. The vertical variation in age of Yellow River water in the BohaiSea is small except for the area close the Yellow River mouth and the southern part ofCentral Basin in spring and summer. Except for the Laizhou Bay, the age of YellowRiver water in the entire Bohai Sea shows weak seasonal variation. The age of YellowRiver water at the Bohai Strait is3.4years. The age of Yellow River water at theBohai Strait is lower at the southern side than at the northern side throughout a year.But the vertical variation in the age of Yellow River water at the Bohai Strait is small.The exclusion of the return of old Yellow River water to the Bohai Sea does notchange the spatial distribution of water age for the four seasons but reduces theabsolute value of water age greatly. Without the reentry process, the mean age ofYellow River water in the entire Bohai Sea decreases to1.2years. Among all of thedynamic processes associated with circulations, the tide is the most dominant factor to affect the age of Yellow River water. Without tidal forcing, the mean age of YellowRiver water was reduced by more than50%. The winds are a secondary factor incontrolling the age of Yellow River water. Without winds, the mean of Yellow Riverwater increases by20%~30%. Without baroclinic force or changes in Yellow Riverdischarges have only slight influences on the age of Yellow River water in the BohaiSea.
     Yodo River water has a mean of152days for the entire Seto Inland Sea. Thespatial variation of the water age is significant:97days in the Osaka Bay,199days inthe Harima-Nada but450days in other regions of the Sea Inland Sea. The verticalvariation in age of Yodo River water in the Seto Inland Sea is small except for OsakaBay throughout a year. The age of Yodo River water in the Osaka Bay and entire SetoInland Sea both shows strong seasonal variation. After discharging into the Osaka Bay,Yodo River water divides into two branches. One of them (~0.3×10~(10)m~3) flows intothe Harima-Nada through the Akashi Strait, and then flows into the Kii Channelthrough the Naruto Strait. The other branch (~0.5×10~(10)m~3) flows into the Kii Channeldirectly through the Kitan Strait. Only a little Yodo River water flows into otherregions of the Seto Inland Sea. The age of Yodo River water at the Naruto Strait andKitan Strait is203days and128days, respectively. In winter, the age at the KitanStrait is lower at the eastern side than at the western side and the age distribution inthe vertical direction is homogenous. While in summer, the age at the Kitan Strait islower at the western side than at the eastern side and the age in the vertical directionshows strong stratification. The exclusion of the return of old Yodo River water to theSeto Inland Sea does not change the spatial distribution of water age for the fourseasons but reduces the absolute value of water age greatly. Without the reentryprocess, the mean age of Yodo River water in the entire Seto Inland Sea decreases to69days. Among all of the dynamic processes associated with circulations, thebaroclinic force is the most dominant factor to affect the age of Yodo River water.Without baroclinic force, the mean age of Yodo River water in the Osaka Bay andHarima-Nada both increases by more than50%. The tide is a secondary factor incontrolling the age of Yodo River water. Without tidal forcing, the mean of Yodo River water in the Osaka Bay and Harima-Nada increases by6%and51%,respectively. Without winds or changes in Yodo River discharges have only slightinfluences on the age of Yodo River water in the Seto Inland Sea.
     To understand the age distribution of river water and its control factors in thesemienclosed sea, the age of Yellow River water in the Bohai Sea is compared withthe age of Yodo River water in the Seto Inland Sea. In the semienclosed sea, the waterage varies significantly in the horizontal direction. The age of river water is smallestaround the river mouth and increases in proportion to the distance away from the rivermouth. The vertical variation in age of river water in the area close the river mouth islarge. And the age of river water in the area close to the river mouth shows strongseasonal variation. Yellow River water flows out of the Bohai Sea through the BohaiStrait, while Yodo River water mainly flows out of the Seto Inland Sea through theNaruto Strait and Kitan Strait. The exclusion of the return of old river water to thesemienclosed sea does not change the spatial distribution of water age for the fourseasons but reduces the absolute value of water age greatly. Changes in riverdischarges have only slight influence on the age of river water in the semienclosed sea.Among all of the dynamic processes associated with circulations, tide is the mostdominant factor to affect the age of Yellow River water in the Bohai Sea. And windsare a secondary factor. While baroclinic force is the most dominant factor to affect theage of Yodo River water in the Seto Inland Sea. And tide is a secondary factor.
引文
[1] Adkins J F, and Boyle E A. Changing atmospheric14C and the record of deep water.Paleoceanography,1997,12(3):337~344.
    [2] Andree M, Oeschger H, Broecker W, et al. Limits on the ventilation rate for the deep oceanover the last12000years. Climate Dynamics,1986,1:53~62.
    [3] Anderson L G, Tanhua T, Bj rk G, et al. Arctic ocean shelf-basin interaction: an activecontinental shelf CO2pump and its impact on the degree of calcium carbonate solubility.Deep-Sea ResearchⅠ,2010,57:869~879.
    [4] Beckers J M., Delhez E J M, and Deleersnijder E. Some properties of generalisedage-distribution equations in fluid dynamics. SIAM Journal on Applied Mathematic,2001,61(5):1526~1544.
    [5] Blumberg A F. A primer for ECOMSED user manual (version1.3). Technical Report. InHydroQual, Inc., Mahwah, New Jersey,2002.
    [6] Blumberg A F, and Mellor G L. A description of a three-dimensional coastal oceancirculation model, in Three-Dimensional Coastal Ocean Models, Estuarine, Coastal and ShelfScience,1987, vol.4, edited by N. Heaps, pp.1~16, AGU, Washington, D. C.
    [7] Bolin B, and Rodhe H. A note on the concepts of age distribution and transit time in naturalreservoirs. Tellus,1973,25(1):58~62.
    [8] Broecker W S, Peng T H, Trumbore S, et al. The distribution of radiocarbon in the glacialocean. Global Biogeochemical Cycles,1990,4(1):103~117.
    [9] Brown J E, Kolstad A K, Brungot A L, et al. Levels of99Tc in Seawater and Biota Samplesfrom Norwegian Coastal Waters and Adjacent Seas. Marine Pollution Bulletin,1999,38(7):560~571.
    [10] Chang P H, Guo X, and Takeoka H. A numerical study of the seasonal circulation in the SetoInland Sea, Japan. Journal of Oceanography,2009,65:721~736.
    [11] Chen X. A laterally averaged two-dimensional trajectory model for estimating transport timescales in the Alafia River estuary, Florida. Estuarine, Coastal and Shelf Science,2007,75(3):358~370.
    [12] Cornaton F J. Transient water age distributions in environmental flow systems: thetime-marching Laplace transform solution technique. Water Resources Research,2012,48,W03524, doi:10.1029/2011WR010606.
    [13] Curry R G, McCartney M S, and Joyce T M. Oceanic transport of subpolar climate signals tomid-depth subtropical waters. Nature,1998,391:575~577.
    [14] Dahlgaard H, Herrmann J, and Salomon J C. A tracer study of the transport of coastal waterfrom the English Channel through the German Bight to the Kattegat. Journal of MarineSystems,1995,6(5-6):415~425.
    [15] de Brye B, de Brauwere A, Gourgue O, et al. Reprint of Water renewal timescales in theScheldt Estuary. Journal of Marine Systems,2012(In Press, Corrected Proof).
    [16] Deleersnijder E, Campin J M, and Delhez E J M. The concept of age in marine modelling I.Theory and preliminary model results. Journal of Marine Systems,2001a,28:229~267.
    [17] Deleersnijder E, and Delhez E J M. Symmetry and asymmetry of water ages in aone-dimensional flow. Journal of Marine Systems,2004,48(1-4):61~66.
    [18] Deleersnijder E, Delhez E J M, Crucifix M, et al. On the symmetry of the age field of apassive tracer released into a one-dimensional fluid flow by a point-source. Bulletin de laSociété Royale des Sciences de Liège,2001b,70(1):5~21.
    [19] Delhez E J M, and Deleersnijder E. Age and the time lag method. Continental Shelf Research,2008,28:1057~1067.
    [20] Delhez E J M, and Deleersnijder E. The concept of age in marine modelling II. Concentrationdistribution function in the English Channel and the North Sea. Journal of Marine Systems,2002,31(4):279~297.
    [21] Delhez E J M, Deleersnijder E, Mouchet A, et al. A note on the age of radioactive tracers.Journal of Marine Systems,2003,38(3-4):277~286.
    [22] Delhez E J M., Heemink A W, and Deleersnijder E. Residence time in a semi-encloseddomain from the solution of an adjoint problem. Estuarine, Coastal and Shelf Science,2004,61(4):691~702.
    [23] Doney S C, and Jenkins W J. Ventilation of the deep western boundary current and abyssalwestern north Atlantic: estimates from Tritium and3He distributions. Journal of PhysicalOceanography,1994,24:638~659.
    [24] Doney S C, Jenkins W J, and Bullister J L. A comparison of ocean tracer dating techniqueson a meridional section in the eastern North Atlantic. Deep Sea Research Part I:Oceanographic Research Papers,1997,44(4):603~626.
    [25] England M H, and Holloway G. Simulations of CFC content and water mass age in the deepNorth Atlantic. Journal of Geophysical Research,1998,103(C8):15885~15901.
    [26] England M H, and Maier-Reimer E. Using chemical tracers to assess ocean models. Reviewsof Geophysics,2001,39(1):29~70.
    [27] England M H, and Rahmstorf S. Sensitivity of ventilation rates and radiocarbon uptake tosubgrid-scale mixing in ocean models. Journal of Physical Oceanography,1999,29(11):2802~2828.
    [28] Fan H, and Huang H. Response of coastal marine eco-environment to river fluxes into the sea:A case study of the Huanghe (Yellow) River mouth and adjacent waters. MarineEnvironmental Research,2008,65(5):378~387.
    [29] Furevik T. On anomalous sea surface temperatures in the Nordic Seas. Journal of Climate,2000,13:1044~1053.
    [30] Gardinar C W. Handbook of Stochastic Methods for Physics, Chemistry and the NaturalSciences. Springer-Verlag,1983.
    [31] Gong W, Shen J, and Hong B. The influence of wind on the water age in the tidalRappahannock River. Marine Environmental Research,2009,68(4):203~216.
    [32] Guegueniat P, Kershaw P, Hermann J, et al. New estimation of La Hague contribution to theartificial radioactivity of Norwegian waters (1992-1995) and Barents Sea (1992-1997). TheScience of the Total Environment,1997,202(1-3):249~266.
    [33] Guo X, Futamura A, and Takeoka H. Residual currents in a semi-enclosed bay of the SetoInland Sea, Japan. Journal Geophysical Research,2004,109, C12008,doi:10.1029/2003JC002203.
    [34] Guo X, Hukuda H, Miyazawa Y, et al. A triply nested ocean model for simulating theKuroshio-Roles of horizontal resolution of JEBAR. Journal of Physical Oceanography,2003,33:146~169.
    [35] Hall T M, Waugh D W, Haine T W N, et al. Estimates of anthropogenic carbon in the IndianOcean with allowance for mixing and time-varying air-sea CO2disequilibrium. GlobalBiogeochemical Cycles,2004,18, GB1031, doi:10.1029/2003GB002120.
    [36] Hansell D A, Kadko D, and Bates N R. Degradation of terrigenous dissolved organic carbonin the western Arctic Ocean. Science,2004,304(5672):858~861.
    [37] Hilton A B C, McGillivary D L, and Adams E E. Residence time of freshwater in Boston’sinner harbor. Journal of Waterway, Port, Coastal, and Ocean Engineering,1998,124(2):82–89.
    [38] Hong B, and Shen J. Responses of estuarine salinity and transport processes to potentialfuture sea-level rise in the Chesapeake Bay. Estuarine, Coastal and Shelf Science,2012,104-105:33~45.
    [39] Hong B, Pand N, Shen J, et al. Modeling water exchange between Baltimore Harbor andChesapeake Bay using artificial tracers: Seasonal variations. Marine Environmental Research,2010,70(1):102~119.
    [40] Huang D, Su J, and Backhaus J O. Modelling the seasonal thermal stratification andbaroclinic circulation in the Bohai Sea. Continental Shelf Research,1999,19(11):1485~1505.
    [41] Imasato N, Awaji T, and Kunishi H. Tidal exchange through Naruto, Akashi and KitanStraits. Journal of the Oceanographical Society of Japan,1980,36:151~162.
    [42] Jenkins W J.3H and3He in the beta triangle: observations of gyre ventilation and oxygenutilization rates. Journal of physical oceanography,1987,17(6):763~783.
    [43] Jenkins WJ. The use of anthropogenic tritium and helium-3to study subtropical gyreventilation and circulation. Philosophical Transactions of the Royal Society of London,1988,A325:43–61.
    [44] Jenkins W J, and Clarke W B. The distribution of3He in the western Atlantic Ocean. DeepSea Research and Oceanographic Abstracts,1976,23(6):481~494.
    [45] Jutterstr m S, and Jeansson E. Anthropogenic carbon in the East Greenland Current. Progressin Oceanography,2008,78(1):29~36.
    [46] Karstensen J, and Tomczak M. Ventilation processes and water mass ages in the thermoclineof the southeast Indian Ocean. Geophysical Research Letters,1997,24(22):2777~2780.
    [47] Kautsky H. Distribution and content of different artifical radio nuclides in the water of theNorth Sea during the years1977to1981(complemented with some results from1982to1984). Deutsche Hydrografische Zeitschrift,1985,38(5):193~224.
    [48] Kershaw P J, Heldal H E, Mork K A, et al. Variability in the supply, distribution and transportof the transient tracer99Tc in the NE Atlantic. Journal of Marine Systems,2004,44(1-2):55~81.
    [49] Lindahl P, Ellmark C, G fvert T, et al. Long-term study of99Tc in the marine environment onthe Swedish west coast. Journal of Environmental Radioactivity,2003,67(2):145~156.
    [50] Liu W C, Chen W B, and Hsu M H. Using a three-dimensional particle-tracking model toestimate the residence time and age of water in a tidal estuary. Computers&Geosciences,2011,37(8):1148-1161.
    [51] Liu W C, Chen W B, Kuo J T, et al. Numerical determination of residence time and age in apartially mixed estuary using three-dimensional hydrodynamic model. Continental ShelfResearch,2008,28(8):1068–1088.
    [52] Luff R, and Pohlmann T. Calculation of water exchange times in the ICES-boxes with aeulerian dispersion model using a half-life time approach. Ocean Dynamics,1996,47(4):287~299.
    [53] McCubbin D, Leonard K S, Brown J, et al. Further studies of the distribution oftechnetium-99and caesium-137in UK and European coastal waters. Continental ShelfResearch,2002,22(10):1417~1445.
    [54] Meier H E M. Modeling the pathways and ages of inflowing salt-and freshwater in the BalticSea. Estuarine, Coastal and Shelf Science,2007,74(4):610~627.
    [55] Mellor G L. Users guide for a three-dimensional, primitive equation numerical ocean model(version2004), Program in Atmospheric and Oceanic Sciences, Princeton University,Princeton, New Jersey,2004.
    [56] Miao J, and Liu X. A numerical study of the wintertime circulation in the northern HuanghaiSea and the Bohai Sea Part I: basic characteristics of the circulation. Chinese Journal ofOceanology and Limnology,1988,6(3):216~226.
    [57] Monsen N E, Cloern J E, Lucas L V, et al. A comment on the use of flushing time, residencetime, and age as transport time scales. Limnology and Oceanography,2002,47:1545~1553.
    [58] Nakata H, and Hirano T. A drift-card experiment in the Seto Inland Sea, Japan. Estuarine,Coastal and Shelf Science,1990,30(2):141~152.
    [59] Nishiyama K, Yano T, Suzuki H, et al. Meteorology and oceanography in the Seto Inland Sea.Marine Pollution Bulletin,1991,23:5~9.
    [60] Peeters F, Kipfer R, Achermann D, et al. Analysis of deep-water exchange in the Caspian Seabased on environmental tracers. Deep Sea Research Part I,2000,47(4):621~654.
    [61] Robins P E, and Jenkins W J. Observations of temporal changes of tritium-3He age in theeastern North Atlantic thermocline: Evidence for changes in ventilation? Journal of MarineResearch,1998,56(5):1125~1161.
    [62] Robins P E, Price J F, Owens W B, et al. The importance of lateral diffusion for theventilation of the lower thermocline in the subtropical North Atlantic. Journal of PhysicalOceanography,2000,30:67~89.
    [63] Rutgers Van der Loeff M M, Key R M, Scholten J, et al.228Ra as a tracer for shelf water inthe arctic ocean. Deep Sea Research Part II,1995,42(6):1533~1553.
    [64] Shackleton N J, Duplessy J C, Arnold M, et al. Radiocarbon age of last glacial Pacific deepwater. Nature,1988,335:708–711.
    [65] Shen J, and Haas L. Calculating age and residence time in the Tidal York River usingthree-dimensional model experiments. Estuarine, Coastal and Shelf Science,2004,61(3):449~461.
    [66] Shen J, and Lin J. Modeling study of the influences of tide and stratification on age of waterin the tidal James River. Estuarine, Coastal and Shelf Science,2006,68(1-2):101~112.
    [67] Shen J, and Wang H V. Determining the age of water and long-term transport timescale of theChesapeake Bay. Estuarine, Coastal and Shelf Science,2007,74(4):585~598.
    [68] Stramma L, and Rhein M. Variability in the Deep Western Boundary Current in the equatorialAtlantic at44W. Geophysical Research Letters,2001,28(8):1623~1626.
    [69] Swift J H, Jones E P, Aagaard K, et al. Waters of the Makarov and Canada basins. Deep SeaResearch Part II,1997,44(8):1503~1529.
    [70] Sy A, Rhein M, Lazier J R N, et al. Surprisingly rapid spreading of newly formedintermediate waters across the North Atlantic Ocean. Nature,1997,386:675~679.
    [71] Takeoka H. Fundamental concepts of exchange and transport time scales in a coastal sea.Continental Shelf Research,1984a,3(3):311~326.
    [72] Takeoka H. Exchange and transport time scales in the Seto Inland Sea. Continental ShelfResearch,1984b,3(4):327~341.
    [73] Takeoka H. Progress in Seto Inland Sea Research. Journal of Oceanography,2002,58:93~107.
    [74] Tawara S. Studies on the characteristics of oceanographic condition in relation to fishingcondition in the shallow coastal waters. The journal of Shimonoseki University of Fisheries,1986,34(1):1~103(in Japanese with English abstract).
    [75] Thiele G, and Sarmiento J L. Tracer dating and ocean ventilation. Journal of GeophysicalResearch,1990,95(C6):9377~9391.
    [76] Wang Q, Guo X, and Takeoka H. Seasonal variations of the Yellow River plume in the BohaiSea: a model study. Journal of Geophysical Research,2008,113, C08046,doi:10.1029/2007JC004555.
    [77] Wang Y, Shen J, and He Q. A numerical model study of the transport timescale and change ofestuarine circulation due to waterway constructions in the Changjiang Estuary, China. Journalof Marine Systems,2010,82(3):154~170.
    [78] Watanabe Y W, Shimamoto A, and Ono T. Comparison of Time-Dependent Tracer Ages inthe Western North Pacific: Oceanic Background Levels of (SF6, CFC-11, CFC-12andCFC-113. Journal of Oceanography,2003,59(5):719~729.
    [79] Wunsch C. Oceanic age and transient tracers: analytical and numerical solutions. Journal ofGeophysical Research,2002,107, C6, doi:10.1029/2001JC000797.
    [80] Yang W, Chen M, Li G, et al. Relocation of the Yellow River as revealed by sedimentaryisotopic and elemental signals in the East China Sea. Marine Pollution Bulletin,2009,58(6):923~927.
    [81] Zhang W G, Wilkin J L, and Schofield O M E. Simulation of water age and residence time inNew York Bight. Journal of Physical Oceanography,2010,40:965–982.
    [82] Zhang X Y. Ocean outfall modeling-Interfacing near and far field models with particletracking method:[Ph.D. Dissertation]. MIT, Cambridge, Massachusetts,1995.
    [83] Zimmerman J T F. Mixing and flushing of tidal embayments in the western Dutch WaddenSea, Part I: distribution of salinity and calculation of mixing time scales. Netherlands Journalof Sea Research,1976,10(2):149~191.
    [84]陈敏,邢娜,黄奕普,等.加拿大海盆河水组分的平均停留时间.科学通报,2007,52(24):2889~2894.
    [85]冯士筰,李凤歧,李少菁.海洋科学导论.北京:高等教育出版社,1999.438~440.
    [86]冯士筰,张经,魏皓,等.渤海环境动力学导论.北京:科学出版社,2007.1~5.
    [87]何磊.海湾水交换数值模拟方法研究:[硕士论文].天津:天津大学,2004.
    [88]黄大吉,苏纪兰,张立人.渤海冬夏季环流的数值研究.空气动力学学报,1998,16(1):115~121.
    [89]林霄沛,吴德星,鲍献文,等.渤海海峡断面温度结构及流量的季节变化.青岛海洋大学学报,2002,32(3):355~360.
    [90]柳哲雄.大阪湾的河水交换率的季节变动.沿岸海洋研究,1986,24(1):137~142(日文).
    [91]柳哲雄,高桥晓.大阪湾的淡水应答特性.海与空,1988,64(2):51~58(日文).
    [92]沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征.中国环境科学,2006,26(1):120~124.
    [93]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用.地球科学进展,2001,16(1):5~11
    [94]王海燕,高增祥,邹涛,等.渤海淡水存留时间分析.生态学杂志,2010,29(3):498~503.
    [95]王悦. M2分潮潮流作用下渤海湾物理自净能力与环境容量的数值研究:[硕士论文],青岛:中国海洋大学,2005.
    [96]魏皓,田恬,周锋,等.渤海水交换的数值研究~水质模型对半交换时间的模拟.青岛海洋大学学报,2002,32(4):519~525.
    [97]魏泽勋,李春雁,方国洪,等.渤海夏季环流和渤海海峡水体输运的数值诊断研究.海洋科学进展,2003,21(4):454~464.
    [98]张学庆,王鹏程,石明珠,等.大辽河口存留时间和暴露时间数值模拟.水科学进展,2012,23(5):709~714.
    [99]张志欣,乔方利,郭景松,等.渤海南部沿岸水运移及渤黄海水体交换的季节变化.海洋科学进展,2010,28(2):142~148.
    [100]赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼,1998,29(1):86~96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700