用户名: 密码: 验证码:
人孤雌胚胎干细胞诱导分化为肠上皮干细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     肠上皮损伤包括克隆氏病、溃疡性结肠炎、短肠综合征、放射性肠炎等,可引起消化吸收障碍,严重时甚至危及到患者生命,是当今临床治疗上的一个难题。将具有肠上皮修复潜能的肠上皮干细胞(intestinal epithelial stem cell, IESC)应用于肠上皮损伤的治疗,已成为目前国内外研究的热点之一,但在体外原代培养IESC比较困难,大大限制了其在临床中的应用。人孤雌胚胎干细胞(human parthenogenetic embryonic stem cell, hPESC)由于可避免移植免疫排斥、伦理学争端等问题,有望成为诱导分化为IESC的重要细胞来源。本研究拟探讨hPESC体外培养的最佳条件和体外分阶段诱导hPESC分化为IESC的可行性及条件。
     方法:
     1、采用胰蛋白酶消化法原代培养人包皮成纤维细胞(human foreskin fibroblast, hFF),倒置显微镜下观察其生长状态,并采用免疫细胞化学染色对其进行鉴定。
     2、建立hPESC体外培养的三种不同体系:以MEF为饲养层、以hFF为饲养层和无血清无饲养层体系,观察hPESC在不同体系中的生长状态,采用碱性磷酸酶(alkaline phosphatase, AKP)检测和核型分析研究hPESC的生物学特性,优化hPESC体外培养的最佳条件。
     3、体外诱导hPESC向限定性内胚层(definitive endoderm, DE)分化:以ActivinA和Wnt3a作为诱导因子,同时作用于hPESC以提高向DE分化的比例,采用流式细胞术(flow cytometry, FCM)和实时定量PCR方法动态监测DE的标志物CXCR4、ECD、Sox-17和Gsc的表达,确定hPESC向DE分化比例最高的时间点。
     4、体外诱导DE向IESC分化:以EGF作为诱导因子,定向诱导DE向肠上皮干细胞(intestinal epithelial stem cell, IESC)分化,采用免疫细胞化学双染色和实时定量PCR方法动态测定ESC标记物Msil和Hesl的表达,确定DE向IESC分化比例最高的时间点。
     结果:
     1、经原代培养成功获得了hFF,通过形态学观察和免疫细胞化学染色鉴定符合成纤维细胞的生物学特性。
     2、生长在hFF饲养层上的hPESC克隆形态规则、生长状态良好、不易分化,经体外培养25代,hPESC仍能够保持基本生物学特性和正常核型;生长在MEF饲养层上的hPESC克隆形态良好、生长速度稳定、自发分化率低,经体外培养15代,hPESC仍能够保持基本生物学特性;生长在无血清无饲养层体系中的hPESC克隆形态良好、生长速度较慢、分化率极低,经体外培养15代,hPESC仍能够保持基本生物学特性。
     3、经过15代的体外培养,比较三种不同培养体系中hPESC克隆的形态、贴壁率、自发分化率,hPESC的扩增速度,动物源性污染,实验的工作量及成本问题,发现hPESC-hFF体系具有无可比拟的优势。
     4、hPESC在诱导因子Activin A和Wnt3a共同作用下向DE分化,FCM检测显示:CXCR4和ECD于诱导2天时达到峰值;实时定量PCR结果表明:Sox-17和Gsc的表达于诱导2天时达到峰值,即hPESC向DE分化在诱导2天时比例最高。
     5、DE在诱导因子EGF作用下向ESC定向分化,免疫细胞化学双染色显示:Msil定位于胞核,呈蓝紫色,Hesl定位于胞浆,呈红色,Msil和Hesl双阳性细胞的比例在诱导5天时达到峰值;实时定量PCR结果表明:在诱导第5天时Msil及Hesl同步达到峰值,即DE向IESC分化在诱导5天时比例最高。
     结论:
     1、经胰蛋白酶消化法原代培养成功获得了hFF。
     2、在适宜的条件下,hPESC-MEF体系、hPESC-hFF体系和无血清无饲养层hPESC体系均能长期有效地支持hPESC的生长并维持其未分化状态。
     3、hPESC在hFF饲养层上能够保持基本生物学特性和正常核型。作为人源性饲养层,hFF能够有效地支持hPESC的生长并维持其未分化状态。经多方面的比较,hPESC-hFF体系具有无可比拟的优势,最适合本研究中hPESC的体外培养。
     4、联合应用诱导因子Activin A和Wnt3a可促进hPESC向DE分化;诱导分化2天时,hPESC向DE分化的比例最高,是进一步向IESC诱导分化的理想前体细胞群。
     5、诱导因子EGF可促进DE向IESC分化;诱导分化5天时,DE向IESC分化的比例最高,为肠上皮损伤临床开展IESC移植治疗提供了潜在的细胞来源,为小肠上皮结构重建及小肠组织工程研究奠定了基础和并提供了理论依据。
     6、通过分阶段诱导分化方法,成功将hPESC诱导分化为IESC。
Background and Objective:
     Damage of intestinal epithelium including crohn's disease, ulcerative colitis, short bowel syndrome, radiation enterocolitis, and so on, can cause malabsorption and even endanger the life of patient in severe case. Damage of intestinal epithelium is an intractable problem in clinic. At present, treating damage of intestinal epithelium with intestinal epithelial stem cell(IESC) which owns the potency of repairing the intestinal epithelium becomes a research focus at home and abroad. However, primary culture of IESC in vitro is difficult, which constraints the application of IESC in clinic. Human partheno genetic embryonic stem cell(hPESC) can avoid many problems such as transplant rejection and ethical issues. Therefore, hPESC is expected to become a significant cell source of IESC. In this study optimum culture condition of hPESC in vitro will be studied at first, then the feasibility and condition of inducing hPESC to differentiate into IESC in vitro will be explored.
     Methods:
     1. Trypsin digestion method was adopted to carry on primary culture of hFF. Then morphology of hFF was observed with inverted microscope, and hFF was identified by immunohistochemistry method.
     2.Three different culture systems of hPESC were established as follows:mouse embryonic fibroblast(MEF) as feeder-layer, human foreskin fibroblast(hFF) as feeder-layer and feeder-free system. Morphology of hPESC in three culture systems were observed respectively. Alkaline phosphatase activity and karyotypes analysis were used to detect the biological characteristics of hPESC. Culture condition of hPESC in vitro was optimized.
     3. hPESC was induced to differentiate into definitive endoderm(DE) in vitro. Wnt3a and Activin A were adopted simultaneously as inducing factors to promote hPESC to differentiate into DE. Markers of DE including CXCR4、ECD、Sox-17and Gsc, were monitored dynamically with flow cytometry and real-time quantitative PCR, thus the time when the percentage of DE culminated was detected.
     4. Inducing DE to differentiate into IESC with inducing factor EGF in vitro. Markers of IESC including Msil and Hesl, were monitored dynamically with immunocytochemical double staining and real-time quantitative PCR, thus the differentiated time of IESC was detected in vitro.
     Results:
     1. hFF was obtained successfully by primary culture. Morphology and characteristic of hFF were verified with inverted microscope and immunocytochemical stain.
     2. Morphous of hPESC on hFF feeder-layer was regular and growth state of hPESC was well. hPESC on hFF feeder-layer was not apt to differentiate. After subcultured for25passages in vitro, hPESC still maintained biological characteristics and normal karyotype. Morphous of hPESC on MEF feeder-layer was regular and growth velocity of hPESC was stable. Self-differentiation of hPESC on MEF feeder-layer seldom occurred. After subcultured for15passages in vitro, hPESC still maintained biological characteristics. Morphous of hPESC in feeder-free system was regular and growth velocity of hPESC was slow. Self-differentiation ratio of hPESC in feeder-free system was extremely low. After subcultured for15passages in vitro, hPESC still maintained biological characteristics.
     3. After hPESC has been subcultured for15passages in vitro, morphous, adherence ratio, self-differentiate ratio and amplification velocity of hPESC, animal-derived contamination, workload and cost in three culture systems were considered thoroughly. We found that as feeder-layer of hPESC hFF owns a significant advantage.
     4. Under the effect of Wnt3a and Activin A, hPESC was induced to differentiate into DE. The results of flow cytometry indicated that expression of CXCR4and ECD culminated on the second day. The results of real-time quantitative PCR displayed that expression of Sox-17and Gsc culminated on the second day. Therefore, the percentage of DE was highest on the second day.
     5. Inducing DE to differentiate into IESC with inducing factor EGF in vitro. Immunocytochemical double staining displayed that Msil+Hesl+cells culminated on the fifth day. The results of real-time quantitative PCR revealed that the expression of Msil and Hesl culminated synchronously on the fifth day. Therefore, the percentage of IESC was highest on the fifth day.
     Conclusions:
     1. hFF was obtained successfully by trypsin digestion method.
     2. Under the appropriate conditions all of three systems could sustain the growth of hPESC and keep hPESC undifferentiated.
     3. hPESC could keep biological characteristics and normal karyotype on hFF feeder-layer. As a kind of human-derived feeder-layer, hFF could sustain the growth of hPESC and keep hPESC undifferentiated. After various comparison, we found that hFF feeder-layer have a significant advantage.
     4. Combined application of inducing factors Activin A and Wnt3a can promote hPESC to differentiate into DE; the percentage of DE was highest on the second day. The hPESC induced with Wnt3a and Activin A on the second day is the ideal progenitor cell of IESC.
     5. Inducing factor EGF can promote DE to differentiate into IESC. The percentage of IESC was highest on the fifth day. It will provide potential cell source for the IESC transplantation treatment of damage of intestinal epithelium and theoretical basis for reconstruction of intestinal epithelium and intestinal tissue engineering research.
     6. hPESC was successfully induced to differentiate into IESC by a phased method.
引文
[1]Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell[J]. Bioessays,2002, 24(1)51-98.
    [2]Brittan M, Wright NA. Stem cell in gastrointestinal structure and neoplastic development[J]. Gut,2004,53(6):899-910.
    [3]秦日异,徐李容,叶仕其,等.宫颈癌放疗后放射性肠炎22例分析[J].中华放射肿瘤学杂志,2007,16(4):290-292.
    [4]Oyama Y, Craig RM, Traynor AE, et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn's disease[J]. Gastroenterology,2005,128(3):552-563.
    [5]Shyu KG, Wang BW, Hung HF, et al. Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardialinfarction[J]. J Biomed Sci,2006,13(1):47-58.
    [6]欧阳琦,林戈,周晓樱,等.孤雌胚胎干细胞与正常胚胎干细胞分化能力的比较[J].解剖学报,2010,41(6):785-789.
    [7]刘芳宁,张彦明.哺乳动物肠上皮细胞的原代培养[J].动物医学进展,2007,28(4)53-57.
    [8]Softer D. From teratocarcinomas to embryonic stem cell and beyonda history of embryonic stem cell research[J]. Nat Rev Genet,2006,7(4)319-327.
    [9]Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science,1998,82 (5391):1145-1147.
    [10]Shamblott MJ, Axelman J, Wang SP, et al. Derivation of pluripotent stemcelk fromcultured human primordial germ cells [J]. Proc Natl Acad Sci USA,1998,95(23):13726-13731.
    [11]袁丁,林戈,卢光绣.人胚胎干细胞向神经上皮祖细胞的诱导分化[J].生命科学研究,2010,14(2):95-99.
    [12]Francis KR, Wei L. Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning[J]. Cell Death Dis,2010,1(2):e22.
    [13]石伦刚,唐郑雅,陆峻泓,等.人胚胎干细胞向类间充质干细胞的诱导分化及鉴定[J].上海交通大学学报(医学版),2009,29(3):307-311.
    [14]Fujiwara M, Yan P, Otsuji TG. et al Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-a[J]. PLoS One,2011,6(2):e16734.
    [15]李向东,王纪文,魏国峰.人胚胎干细胞在无血清mTeSR(r)1培养基中维持培养和向内皮细胞的诱导分化[J].中国组织工程研究与临床康复,2011,15(10):129-133.
    [16]王彦,钱德俭,尉真,等.人胚胎干细胞定向分化为血管内皮细胞的初步研究[J].组织工程与重建外科杂志,2010,6(2):12-15.
    [17]赵芳,孙莹璞,王芳,等.罗格列酮对人胚胎干细胞向脂肪细胞分化的影响[J].生殖与避孕,2010,30(5):10-15.
    [18]Sulzbacher S, Schroeder IS, Truong TT, et al. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions[J]. Stem cell Rev Rep,2009,5(2):159-173.
    [19]Smukler SR, Arntfield ME. Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin[J]. Cell Stem Cell,2011,8(3)281-293.
    [20]Wang P, Rodriguez RT, Wang J, et al.Targeting SOX 17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm[J]. Cell Stem Cell, 2011,8(3):335-346.
    [21]Revazova ES, Turvets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts[J]. Cloning Stem Cells,2007,9(3):432-449.
    [22]Hao J, Zhu W, Sheng C, et al. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy[J]. Sci China C Life Sci,2009,52(7):599-602.
    [23]Lengerke C, Kim K, Lerou P, et al. Differentiation potential of histocompatible parthennogenetic embryonic stem cells[J]. Ann N Y Acad Sci,2007,1106(1):209-218.
    [24]Lampton PW. Crooker RJ, Newmark JA, et al. Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos[J]. Tissue Antigens,2008,72(5):448-457.
    [25]Sritanaudomchai H, Ma H, Clepper L, et al. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells[J]. Hum Reprod,2010,25 (8):1927-1941.
    [26]Shao H, Wei Z, Wang L, et al. Generation and characterization of mouse parthenogenetic embryonic stem cells containing genomes from non-growing and fully grown oocytes[J]. Cell Biol Int,2007,31(11):1336-1344.
    [27]Isaev DA, Garitaonandia I, Abramihina TV, et al. In vitro differentiation of human parthenogenetic stem cells into neural lineages[J]. Regen Med,2012,7(1):37-45.
    [28]袁丁,卢光琇,林戈.人孤雌胚胎干细胞向多巴胺能神经元的体外分化[J].中国现代医学杂志,2010,20(3).342-345.
    [29]艾爱,陈瑶,唐郑雅,等.诱导人孤雌胚胎干细胞向类间充质干细胞分化的实验研究[J].组织工程与重建外科杂志,2010,6(3):128-131.
    [30]周静,李进,林戈,等.Wnt3和tetiv in A共同促进人胚胎干细胞向限定性内胚层细胞分化[J].西北农林科技大学学报,2010,38(4):37-41.
    [31]Cheng L, Hammond H, Ye Zh, et al. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture[J]. Stem Cells,2003,21(2):131-142.
    [32]Lee JB, Lee JE, Park JH, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition[J]. Bio 1 Reprod,2005,72(1):42-49.
    [33]Lu Z, Zhu W, Yu Y, et al. Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders[J]. J Assist Reprod Genet,2010,27(6): 285-291.
    [34]Amit M. Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells[J].Biol Reprod,2003,68(6)2150-2156.
    [35]Miyamoto K, Hayashi K, Suzuki T, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells[J]. Stem Cells,2004,22(1)2-11.
    [36]Genbacev O, Krtolica A, Zdravkovic T, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders[J]. Fertil Steril,2005,83(5):1517-1529.
    [37]Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells [J]. Nat Biotechnol,2001,19(10) 571-974.
    [38]Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9,2001 [J]. Stem Cells Dev,2004,13(6):585-597.
    [39]Ludwig T E, Levenstein M E, Jones J M, et al. Derivation of human embryonic stem cells in defined conditions [J]. Nat Biotechnol,2006,24(2):185-187.
    [40]Ludwig T E, Bergendahl V, Levenstein M E, et aL Feeder-independent culture of human embryonic stem cells[J]. Nat Methods,2006,3(8):637-646.
    [41]Rossan J. Stem cells from the mammalian blastocyst[J]. Stem Cells,2001,19 (6):477-482.
    [42]Fulk JJ, Jung T, Moor RM. The fall of biological maturation promoting factor(MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes[J]. Mol Reprod Dev,1992,32(4)378-382.
    [43]Gepstein L. Derivation and potential applications of human embryonic stem cells[J]. Circulation Research,2002,91(10):866-876.
    [44]鲍荣辉,刘先哲,周军.人成纤维细胞的原代培养及鉴定[J].新乡医学院学报,2011,28(5):577-579.
    [45]Dai G, Li Y, Peng B, et al. Cell cycle effects of AcSDKP on human bone marrow mesenchymal stem cells in vitro[J]. Journal of Natural Science of Hunan Normal University, 2010,33(4):110-115.
    [46]王晓华,王扬,蒋涛,等.人皮肤成纤维细胞原代培养及生物学特性[J].中国医科大学学报,2010,39(12):1041-1044.
    [47]戴振声,陈宝安,徐燕丽,等.人皮肤成纤维细胞原代培养方法的改良[J].东南大学学报(医学版),2004,23(4):236-238.
    [48]Kleinman HK, McGarvey ML, Liotta LA, et al. Isolation and characterization of type Ⅳ procollagen, laminin, and heparin sulfate proteoglycan from the EHS sarcoma[J]. Biochemistry,1982,21(24):6188-6193.
    [49]胡智兴,罗敏,周轶平,等.四种胞外基质支持人胚胎干细胞的生长:效果有差异吗?[J].中国组织工程研究与临床康复,2010,14(6):1027-1030.
    [50]于涛.诱导小鼠胚胎干细胞分化为肠上皮干细胞及其纯化的研究,博士学位论文,广州,中山大学,2009.
    [51]何丽娟,习佳飞,曾泉,等.一种新的人胚胎干细胞无饲养层培养方法的建立[J].生物技术通讯,2010,21(5):660-665.
    [52]Sharon N, Mor I, Golan-lev T, et aL Molecular and functional characterizations of gastrula organizer cells derived from human embryonic stem cells[J]. Stem Cells.2011,29(4): 600-608.
    [53]Robb L, Tam PP. Gastrula organiser and embryonic patterning in the mouse[J]. Semin Cell Dev Biol,2004,15(5)543-554.
    [54]Tam PP, Beddington RS. Establishment and organization of germlayers in the gastrulating mouse embryo[J]. Ciba Found Symp,1992,165:27-41.
    [55]Wang A, Sander M. Generating cells of the gastrointestinal system:current approaches and applications for the differentiation of human pluripotent stem cells [J]. J Mol Med (Berl), 2012,90(7):763-771.
    [56]Sekine K, Takebe T, Suzuki Y, et al. Highly efficient generation of definitive endoderm lineage from human induced pluripotent stem cells [J]. Transplant Proc,2012,44(4): 1127-1129.
    [57]Parameswaran M, Tam PP. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation[J]. Dev Genet,1995,17(1):16-28.
    [58]Hogan BL, Tilly R. Cell interactions and endoderm differentiation in cultured mouse embryos [J]. J Embryol Exp Morphol,1981,62379-394.
    [59]Liu P, Wakamiya M, Shea MJ, et al. Requirement for Wnt3 invertebrate axis formation[J]. Nat Genet,1999,22(4)361-365.
    [60]Conlon FL, Lyons K M, Takaesu N, et al. Aprimary requirement for Nodal in the formation and maintenance of the primitive streak in the mouse[J]. Development,1994,120(7): 1919-1928.
    [61]D1 Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nat Biotechnol,2005,23(12):1534-1541.
    [62]Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture[J]. Development and desease,2004,131 (7):1651-1662.
    [63]Gadue P, Huber TL, Paddison PJ, et al. Wnt and TGF-P signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells[J]. Proc NatlAcad Sci USA,2006,103(45):16806-16811.
    [64]Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo[J]. Nat Biotechnol,2008,26(4):443-452.
    [65]Yasunaga M, Tada S, Torikai-Nishikawa S, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells [J]. Nat Biotechnol,2005,23(12): 1542-1550.
    [66]Pan Y, Ouyang Z, Wong WH, et al. Anew FACS approach isolates hESC derived endoderm using transcription factors[J]. PLoS One,2011,6(3):el7536.
    [67]Sullivan GJ, Hay DC, Park IH, et al. Generation of Functional Human Hepatic Endoderm from Human iPS cells[J]. Hepatology,2010,51(1):329-335.
    [68]Xu X, Browning VL, Odorico JS. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells[J]. MechDev,2011,128(7-10):412-427.
    [69]Santamaria P, Rodriguez-Piza I. Clemente-Casares X, et al. Turning human epidermis into pancreatic endoderm[J]. Rev Diabet Stud,2010,7(2):158-167.
    [70]Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract[J]. Nature,1998,393 (6685) 591-594.
    [71]Mill JC, Gordon JI. The intestinal stem cell niche:There grows the neighborhood[J]. Proc Natl Acad Sci USA,2001,98(22):12334-12336.
    [72]Yen TH, Wright NA. The gastrointestinal tract stem cell niche[J]. Stem Cell Rev,2006, 2(3):203-212.
    [73]Stanger BZ, Datar R, Murtaugh LC, et al. Direct regulation of intestinal fate by Notch[J]. Proc Natl Acad Sci USA,2005,102(35):12443-12448.
    [74]Yang Q, Berminghan NA, Finegold MJ, et aL Requirement of Mathl for secretory cell lineage commitment in the mouse intestine[J]. Science,2001,294(5549)2155-2158.
    [75]Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine[J]. Biol Cell,2005,97(3): 185-196.
    [76]Gregorieff A, Pinto D, Begthel H, et al. Pattern of Wnt signaling components in the adult intestine[J]. Gastroenterology,2005,129(2):626-38.
    [77]Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine stem cells, signals and combinatorial control[J]. Nat Rev Genet,2006,7(5)349-359.
    [78]Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4[J]. Nat Genet,1998,19(4):379-383.
    [79]Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium[J]. Genes Dev,2003,17(14):1709-1713.
    [80]Bach S P, Renehan A G, Potten C S. Stem cells:the intestinal stem cell as a paradigm[J]. Carcinogenesis,2000,21(3):469-476.
    [81]Jiang J, Au M, Lu K, et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells[J]. Stem cell,2007,25(8):1940-1953.
    [82]Phillips BW, Hentze H, Rust WL, et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage[J]. Stem Cells Dev,2007,16(4):561-578.
    [83]Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling[J]. Proc Natl Acad Sci USA,2008, 105(34):12301-12306.
    [84]Mclean AB, D'Amour KA, Jones KL, et al. Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when phosphate-dylinositol 3-kinase signaling is suppressed[J]. Stem Cells,2007,25(1)29-38.
    [85]Turovets N, D'Amour KA, Agapov V, et al. Human parthenogenetic stem cells produce enriched populations of definitive endoderm cells after trichostatin a pretreatment[J]. Differentiation,2011,81(5)292-298.
    [86]Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders [J]. Cell,2000,103(2)295-309.
    [87]Mather JP, Moore A, Li RH. Activins, inhibins, and follistatins:further thoughts on a growing family of regulators [J]. Proc Soc Exp Biop Med,1997,215(3):209-222.
    [88]Ninomiya H, Takahashi S, Tanegashima K, et al. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus[J]. Develop Growth Differ,1999,41(4): 391-400.
    [89]Cadigan KM, Liu YI. Wnt signaling:Complexity at the surface[J]. J Cell Sci,2006,119 (Pt 3)395-402.
    [90]Kohn AD, Moon RT. Wnt and calcium signaling:Beta-catenin-independent pathways[J]. Cell Calcium,2005,38(3-4):439-446.
    [91]Willert K, Jones KA. Wnt signaling:Is the party in the nucleus?[J]. Genes Dev,2006, 20(11):1394-1404.
    [92]Tada M, Smith JC. Xwntll is a target of Xenopus Brachyury:Regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway[J]. Development, 2000,127(10)2227-2238.
    [93]周静,李进,林戈,等.诱导人孤雌胚胎干细胞分化为胰岛样细胞团[J].中国组织工程研究与临床康复,2010,14(27):5001-5005.
    [94]张镛镛.混合饲养层培养的人胚胎干细胞向胰岛素分泌细胞的诱导分化,硕士学位论文,郑州,郑州大学,2011.
    [95]Yu T, Chen QK, Gong Y, et al. Higher expression patterns of the intestinal stem cell markers Musashi-1 and hairy and enhancer of split 1 and their correspondence with proliferation patterns in the mouse jejunum[J]. Med Sci Monit,2010,16(2):BR68-74.
    [96]Abud HE, Watson N, Heath JK, et al. Growth of intestinal epithelium in organ culture is dependent on EGF signaling[J]. Exp Cell Res,2005,303(2)252-262.
    [97]Berlanga-Acosta J, Playford RJ, Mandir N, et al. Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats[J]. Gut,2001,48(6):803-807.
    [98]Threadgill DW, Dlugosz AA, Hansen LA, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype[J]. Science,1995,269(5221)230-234.
    [99]Foltzer-Jourdainne C, Garaud JC, Nsi-Emvo E, et al. Epidermal growth factor and the maturation of intestinal sucrase in suckling rats[J]. Am J Physiol,1993,265(3Pt1):G459-466.
    [100]Miettinen PJ, Berger JE, Meneses J, et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor[J]. Nature,1995,376(6538)337-341.
    [101]Lan SY, Yu T, Xia ZS, et al. Musashil-positive cells derived from mouse embryonic stem cells can differentiate into neural and intestinal epithelial-like cells in vivo[J]. Cell Biol Int, 2010,34(12):1171-1180.
    [102]Day RM. Epithelial stem cells and tissue engineered intestine[J]. Curr Stem Cell Res Ther, 2006,1(1):113-120.
    [103]樊利芳,董卫国.肠干细胞与结直肠肿瘤干细胞研究进展[R].世界华人消化杂志,2008,16(36):4075-4080.
    [104]Pollen CS, Martin K, Kirkwood TB. Ageing of murine small intestinal stem cells[J]. Novartis Found Symp,2001,235:66-79.
    [105]Clevers H. Searching for adult stem cells in the Intestine[J]. EMBO Mol Med,2009, 1(5)255-259.
    [106]胡建昆,陈心足,周总光.干细胞与组织工程在肠道的研究进展[J].中国修复重建外科杂志,2007,21(2):175-179.
    [107]Biteau B, Jasper H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophiila[J]. Development,2011,138(6):1045-1055.
    [108]Duh G. Mouri N, Warburton D, et al. EGF regulates early embryonic mouse gut development in chemically defined organ culture[J]. Pediatr Res,2000,48(6):794-802.
    [109]Suzuki A, Sekiya S, Gunshima E, et al. EGF signaling activates proliferation and blocks apoptosis of mouse and human intestinal stem/progenitor cells in long-term monolayer cell culture[J]. Lab Invest,2010,90(10):1425-1436.
    [110]Montgomery RK, Breault DT. Small intestinal stem cell markers[J]. J Anat,2008,213(1): 52-58.
    [111]Becker L, Huang Q, Mashimo H, et al. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue[J]. Scientific World Journal,2008,8:1168-1176.
    [112]Okano H, Kawahara H, Toriya M, et al. Function of RNA-binding protein Musashi-1 in stem cells[J]. Exp Cell Res,2005,306(2)349-356.
    [113]Ratti A, Fallini C, Cova L, et al. A role for the ELAV RNA-binding proteins in neural stem cells:stabilization of Msil mRNA[J]. J Cell Sci,2006,119(Pt 7):1442-1452.
    [114]Glazer RI, Vo DT, Penalva LO. Musashil:an RBP with versatile functions in normal and cancer stem cells[J]. Front Biosci,2012,17:54-64.
    [115]Nishimura S, Wakabayashi N, Toyoda K, et al. Expression of Musashi-1 in human normal colon crypt cells:a possible stem cell marker of human colonepithelium[J]. Dig Dis Sci, 2003,48(8):1523-1529.
    [116]Potten CS, Booth C, Tudor GL, et al. Identification of a putative intestinal stem cell and early lineage marker:musashi-1 [J]. Differentiation,2003,71(1)28-41.
    [117]Fujimoto K, Beauchamp RD, Whitehead RH. Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression[J]. Gastroenterology,2002,123(6):1941-1948.
    [118]Kayahara T, Sawada M, Takaishi S, et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hesl, are expressed in crypt base columnar cells of mouse small intestine[J]. FEBS Lett,2003,535(1-3):131-135.
    [119]Barker N, Clevers H. Tracking down the stem cells of the intestine:strategies to identify adult stem cells[J]. Gastroenterology,2007,133(6):1755-1760.
    [120]Tanese K, Fukuma M, Yamada T, et aL G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation[J]. Am J Pathol,2008,173(3):835-843.
    [121]Kudo M, Chen T, Nakabayashi K, et al. The nematode leucine-rich repeat-containing, G protein-coupled receptor(LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells [J]. Mol Endocrinol,2000, 14(2):272-284.
    [1]Softer D. From teratocarcinomas to embryonic stem cell and beyond:a history of embryonic stem cell research[J]. Nat Rev Genet,2006,7(4):319-327.
    [2]Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos [J]. Nature,1981,292(5819):154-156.
    [3]Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science,1998,82 (5391):1145-1147.
    [4]Shamblott MJ, Axelman J, Wang SP, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells[J]. Proc Natl Acad Sci USA,1998,95 (23):13726-13731.
    [5]Revazova ES, Turvets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts[J]. Cloning Stem Cells,2007,9 (3):432-449.
    [6]袁丁,林戈,卢光琇.人胚胎干细胞向神经上皮祖细胞的诱导分化[J].生命科学研究,2010,14(2):95-99.
    [7]Francis KR, Wei L. Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning[J]. Cell Death Dis,2010,1(2):e22.
    [8]石伦刚,唐郑雅,陆峻泓,等.人胚胎干细胞向类间充质干细胞的诱导分化及鉴定[J].上海交通大学学报(医学版),2009,29(3):307-311.
    [9]Fujiwara M. Yan P. Otsuji TG, et al. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-a[J]. PLoS One, 2011,6(2):e16734.
    [10]李向东,王纪文,魏国峰.人胚胎干细胞在无血清mTeSR(r)1培养基中维持培养和向内皮细胞的诱导分化[J].中国组织工程研究与临床康复,2011,15(10):129-133.
    [11]王彦,钱德俭,尉真,等.人胚胎干细胞定向分化为血管内皮细胞的初步研究[J].组织工程与重建外科杂志,2010,6(2):12-15.
    [12]赵芳,孙莹璞,王芳,等.罗格列酮对人胚胎干细胞向脂肪细胞分化的影响[J].生殖与避孕,2010,30(5):10-15.
    [13]Sulzbacher S, Schroeder IS, Truong TT, et al. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions[J]. Stem cell Rev Rep,2009,5(2):159-173.
    [14]Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multpotent stem cells that express insulin[J]. Cell Stem Cell,2011,8(3)281-293.
    [15]Wang P, Rodriguez RT, Wang J, et al. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm[J]. Cell Stem Cell, 2011,8(3)335-346.
    [16]Kaufman DS, Hanson ET, Lewis RL, et al. Hematopoietic colony-forming cells derived from human embryonic stemcells[J]. Proc Natl Acad Sci USA,2001,98 (19):10716-10721.
    [17]Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells[J]. Circ Res,2002,91(6):501-508.
    [18]Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells[J]. Nat Biotechnol,2001,19 (12):1129-1133.
    [19]Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells [J]. Diabetes,2001,50(8):1691-1697.
    [20]Levenberg S, Golub JS, Amit M, et al Endothelial cells derived from human embryonic stem cells[J]. Proc Natl Acad Sci USA,2002,99(7):4391-4396.
    [21]Rambhatla L, Chiu CP, Kundu P, et al. Generation of hepatocyte-like cells from human embryonic stem cells[J]. Cell Transplant,2003,12(1):1-11.
    [22]Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast[J]. Nature Biotechnology,2002,20(12):1261-1264.
    [23]刘芳宁,张彦明.哺乳动物肠上皮细胞的原代培养[J].动物医学进展,2007,28(4):53-57.
    [24]Yu T, Chen QK, Gong Y, et al. Higher expression patterns of the intestinal stem cell markers Musashi-1 and hairy and enhancer of split 1 and their correspondence with proliferation patterns in the mouse jejunum[J]. Med Sci Monit,2010,16(2):BR68-74.
    [25]于涛.诱导小鼠胚胎干细胞分化为肠上皮干细胞及其纯化的研究,博士学位论文,广州,中山大学,2009.
    [26]Lan SY, Yu T, Xia ZS, et al. Musashil-positive cells derived from mouse embryonic stem cells can differentiate into neural and intestinal epithelial-like cells in vivo[J]. Cell Biol Int, 2010,34(12):1171-1180.
    [27]Lu Z, Zhu W, Yu Y, et al. Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders[J]. J Assist Reprod Genet,2010,27(6): 285-291.
    [28]Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells [J]. Biol Reprod,2003,68(6):2150-2156.
    [29]Cheng L, Hammond H, Ye Zh, et al. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture[J]. Stem Cells,2003,21(2):131-142.
    [30]Lee JB, Lee JE, Park JH, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition[J]. Biol Reprod,2005,72(1):42-49.
    [31]Miyamoto K, Hayashi K, Suzuki T, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem c ells [J]. Stem Cells,2004,22(1):2-11.
    [32]Genbacev O, Krtolica A, Zdravkovic T, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders[J]. Fertil Steril,2005,83(5):1517-1529.
    [33]Xu C, Inokuma MS. Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells[J]. Nat Biotechnol,2001,19(10):971-974.
    [34]Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9,2001[J]. Stem Cells Dev,2004,13(6)585-597.
    [35]Ludwig T E, Levenstein M E, Jones J M, et al. Derivation of human embryonic stem cells in defined conditions[J]. Nat Biotechnol,2006,24(2):185-187.
    [36]Ludwig T E, Bergendahl V, Levenstein M E, et al. Feeder-independent culture of human embryonic stem cells[J]. Nat Methods,2006,3(8):637-646.
    [37]Kahan B, Magliocca J, Merriam F, et al. Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdxl+ foregut endoderm stem cell lineage[J]. Stem Cell Res,2011,6(2):143-57.
    [38]Pan Y, Ouyang Z, Wong WH, et al. A new FACS approach isolates hESC derived endoderm using transcription factors [J].PLoS One,2011,6(3):e17536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700