用户名: 密码: 验证码:
量子点红外探测器特性表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类探测领域的不断扩大和深入,人们对高性能探测器的需求也不断地增加。近年来出现的量子点红外探测器由于具有低暗电流、高增益、高探测率等优越特性,引起了人们的广泛关注。这种新型光电导探测器采用了量子点纳米结构,使影响其特性的因素发生了明显的变化,而以往光电导探测器特性表征方法没有充分考虑这些因素的影响,因此本文从四个方面开展了对量子点红外探测器特性表征问题的研究,以期为探测器的优化设计提供可靠的理论支持。具体工作主要包括:
     1.分析了量子点红外探测器中电子传输的特点,提出了新的暗电流模型。该模型考虑了微米尺度电子传输和纳米尺度电子传输共同对暗电流的影响,通过统计势垒中的移动载流子数,实现了对暗电流的预测和估算。在此基础上,通过考虑载流子漂移速度和探测器外加偏置电压之间的相互依赖关系,改进了这一暗电流模型,使探测器暗电流的计算更加准确。
     2.基于前面改进的暗电流模型,结合探测器光电导增益的算法,提出了量子点红外探测器的噪声模型。首先分析了扩散限系统下载流子从激发态返回到基态的再复合时间,结合量子点红外探测器的结构特点,得到了光电导增益的理论模型;之后通过分析探测器的噪声特点,指出噪声主要来源于电子的产生-复合过程,结合增益模型,建立了量子点红外探测器的噪声模型。结果显示,该模型使噪声的量化更加符合探测器的实际运行机制。
     3.基于前面提出的兼顾两种传输的暗电流模型,从电子激发和连续势能分布两个角度构建了探测器的性能模型。基于电子激发的性能模型认为电子激发有两种方式:热激发和场辅助隧穿激发。通过估算热激发和场辅助隧穿激发的速度来估算暗条件下的载流子数,得到了暗条件下的电流平衡关系,构建了光电流、响应率、探测率的理论模型。基于连续势能分布的探测器性能模型通过求解满足泊松方程的连续势能分布与穿过非平面小孔的电流之间的关系,与前面提出的暗电流模型一起建立了探测器的性能模型,主要包含光电流模型、探测率模型等。最后,把这两种模型进行了比较,指出了它们之间的差异性。
     4.分析了不同入射模式下量子点红外探测器的特性。首先建立了垂直入射时探测器的J.Phllips模型,对垂直入射暗电流和探测率进行了研究;其次比较了垂直入射模式和斜入射模式下探测器的特性;最后通过与量子阱红外探测器相比较,给出了不同入射模式下量子点红外探测器的特性优势。
With the expanding and deepending of the detecting application, there are moreand more demands for the high performance and high quality detectors. Due to itsspecial quantum dot nano-structure, quantum dot infrared photodetectors, which emergein recent year, show more efficiency properties such as a low dark current, a high gain,and thus attract a wide attention. Since traditional performance methods don’t considerthe influence of these factors, the performance characterization methods of quamtumdot infrared photodetectors are studied from four aspects in this paper, which willprovide us with reliable theoretical support for the detector optimization. Specifically,these works are as follows.
     1. Electron transports in quantum dot infrared photodetectors are analysised, and adark current model is proposed. In the model,the microscale and nanoscale electrontransports are considered, the dark current is forecasted and estimated by counting thecarriers in the barriers. This dark current model is improved with the consideration ofthe relationship between the drift velocity of electrons and the bias voltage of thephotodetector. As a result, the calculation of the dark current is more accurate than thatof the previous dark current.
     2. Based on the improved dark current model, the noise model of quantum dotinfrared photodetectors is proposed with the calculation method of photoconductivegain. Firstly,after the time from the extend state to gound state of carriers in thediffusion limited system is analysed, the photoconductive gain model is obtained withthe structure characteristics of quantum dot infrared photodetector. Sencodly, the noisefeatures of the photodetector are analysed, and it is pointed out that the noise come fromthe generation-recombination procession of carriers. in the end, the noise model of thequantum dot infrared photodetector is built with the consideration of the gain model.The calculated results show that the model makes the calculation of the noise moreconsistent with the work mechanism of the photodetector.
     3. Based on the dark current model including two electron transports, theperformance models of photodetectors are built from the two aspects which are theemission of and the continuous potential distribution of electrons. The performancemodel on the basis of electron emission supposes that there are two electron emissions:thermal emission and field-assisted tunneling emission. The number of carriers in aquantum dot is obtained by estimating the carriers rates of the thermal emission andfield–assisted tunneling emission, and the current balance relaition under the dark condition is obtained, thus the models for the photocurrent, responsivity and detectivityof the photodetectors is bulit. The performance model on the basis of the electronscontinuous potential distribution supposes that the potential distribution satisfied thepoisson distribution, by sloveling the Poisson equation and considering the relationbetween the current through the punctures in the planar potential barriers and potentialdistribution, the performance models of photodetectors such as photocurrent,detectivityare built together with the previous dark current model. Finally,the comparisionbetween two performance models is made,and the differences between them areillustrated.
     4. The properties of quantum dot infrared photodetectors under different incidentmodels are analyzed. Firstly, J.Phllips model of the photodetector under the normalincidence is built, and then the normal incidence dark current and detectivity are studied.Secondly, the properties of the quantum dot infrared photodetector under the normalnormal incidence and oblique incidence model are compared. In the end, the advantagesin properties of quantum dot infrared photodetectors under different incidence modelsare presented by the comparision between quantum well infrared photodetectors andquantum dot infrared photodetectors.
引文
[1]张建奇,方小平.红外物理.第一版.陕西:西安电子科技大学出版社.2004:2-4.
    [2]何国经.红外成像系统性能评估方法研究.西安电子科技大学博士学位论文.2008.10.1-3.
    [3]杨宜禾,岳敏,周维真.红外系统.第二版.北京:国防科技出版社.1995:1-5.
    [4]邱继进,梅建庭.烟幕对红外制导武器的干扰研究.红外与激光工程.2006.4.35(2):212-215.
    [5] Rogalski A. Infrared detectors: an overview. Infrared detectors&Technology.2002.43:187-210.
    [6] Pan Wei, Luo Zhizeng. A Design of Miniature Strong Anti-jamming ProximitySensor.2012International Conference on Computer Science and ElectronicsEngineering.2012.3:327-331.
    [7] Wang Weihua, Li Zhijun, Liu Jing et al. A Real-time Target Detection Algorithmfor Panorama Infrared Search and Track System. Procedia Engineering.2012.29:1201-1207.
    [8]陈胜哲,陈彪.红外技术在军事上的应用.光学技术.2006.32:581-583.
    [9]张义广,杨军,朱学平等.非制冷红外成像导引头.陕西:西北工业大学出版社.2009年第1版.
    [10]宗靖国.红外成像光谱数据获取及其在场景仿真中的应用.西安电子科技大学.2011.
    [11]刘德连.遥感遥感图像的目标检测方法研究.西安电子科技大学.2008.4.
    [12] Doleschel Dennis, Mundigl Olaf, Wessner Axel, et al. Targeted Near-InfraredImaging of the Erythropoietin Receptor in Human Lung Cancer Xenografts. TheJournal of Nuclear Medicine.2012.53(2):304-311.
    [13] Padhi J., Misra R.K., Payero J.O.. Estimation of soil water deficit in an irrigatedcotton field with infrared thermography. Field Crops Research.2012.126:45-55.
    [14] Chen Wenzhe, Dai Pinqiang, Chen Yonglu, etal. Multi-sensor Data Fusion forMEMS Gyroscope of seeker. Advanced Materials Research.2012.479-484:467-470.
    [15]姚秋霞,李民,莫崇典.红外技术探测原理及其在工业消防领域的应用.电气应用.2006.3(7):40-47.
    [16] Manolakis Dimitris, Marden David, Shaw Gary A.. Hyperspectral imageprocessing for automatic target detection applications. Lincoln Laboratory Journal.2003.14(1):79-116.
    [17] Reuter Dennis, Richcarcison carhy, Irons James, etal. The Thermal InfraredSensor on the Landsat Data Continuity Mission. Geoscience and Remote SensingSymposium (IGARSS),2010IEEE International.2010.9:754–757.
    [18]戴昌达,姜小光,唐伶俐.遥感图像应用处理分析.北京:清华大学出版社.2004.
    [19]童庆禧,张兵,郑兰芬.高光谱遥感的多科学应用.北京:电子工业出版社.2006.
    [20]王晓蕊.红外焦平面成像系统建模及TOD性能表征方法研究.西安电子科技大学.2005.
    [21]张健.宽带量子阱红外探测器(QWIP)的研究.山东大学.2006.
    [22] Rogalski A., Antoszewski J., Faraone L.. Third-generation infrared photodetectorarrays. Journal of Applied Physics.2009.105:091101-1:4.
    [23] Kinch Michael.A.. Fundamental physics of infrared detector materials. Journal ofElectronic Materials.2000.29(6):809-817.
    [24] Martyniuk P., Rogalski A.. Quantum-dot infrared photodetector: Status andoutlook, Progess in Quantum Electronics.2008.32:89-120.
    [25]杨臣华,梅遂生,林钧挺.激光与红外技术手册.北京:国防工业出版社.1990:777-843.
    [26] West L.C., Eglash S.J.. First observation of an extremely large-dipole infraredtransition within the conduction band of a GaAs quantum well. Applied PhysicsLetters.1985.46(12):1156-1159.
    [27] Levine B. F., Choi K. K., Bethea C. G., et al. New10μm infrared detector usingintersubband absorption in resonant tunneling GaAlAs superlattices. Appliedphysics letters.1987.50:1092-1094.
    [28] Levine B. F., Bethea C. G., Hasnain G., et a1. High‐detectivity D=1.0×1010cm√Hz/W GaAs/AlGaAs multiquantum well λ=8.3μm infrared detector. Appliedphysics letters.1988.53:296-298.
    [29] Gunapala S.D., Park J. S., Sarusi G., et al.15-μm128×128GaAs/AlxGa1-xAsquantum well infrared photodetector focal plane array camera. IEEE Transactionson Electron Devices.1997.44:45-50.
    [30] Arakawa Y., Sakaki H.. Multidimensional quantum well laser and temperaturedependence of its threshold current. Applied Physical Letter.1982.40:939-941.
    [31] Leonard D., Krishnamurthy M., M.Reaves C., et al. Direct formation ofquantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces.Applied Physics Letter.1993.63:3203-3205.
    [32] Phillips J., Kamath K., Bhattacharya P.. Far-infrared photoconductivity inself-organized InAs quantum dots. Applied Physics Letters.1998.72(16):2020-2022.
    [33] Tsao Stanley, Mi Kan, Szafraneic John, et al. High performance InGaAs/InGaPquantum dot infrared photodetector achieved through doping level optimization.Quantum Sensing and Nanophotonic Devices II. Proceedings of SPIE.2005.5732:334-341.
    [34] Lim H., Movaghar B., Tsao S., et al. Gain and recombination dynamics ofquantum-dot infrared photodetectors. Physical Review B.2006.74:205321.
    [35] Lim H., Zhang W., Tsao S., et al. Quantum dot infrared photodetectors:Comparison of experiment and theory. Physical Review B.2005,72:085332-1-15.
    [36] Razeghi M., Lim H., Tsao S., et al. Transport and photodetecttion inself-assembled semiconductor quantum dots. Nanotechnology.2005.16:219-229.
    [37] Tsao S., Mi K., Szafraniec J., et al. High performance InGaAs/InGaP quantum dotinfrared photodetector achieved through doping level optimization. Proceedings ofSPIE.2005.5732:334-341.
    [38] Movaghar B., Tsao S., Abdollahi Pour S., et al. Gain and recombination dynamicsin photodetectors made with quantum nanostructures: the quantum dot in a welland the quantum well. Physical Review B.2008.78:115320-1-10.
    [39] Kim E.T., Chen Zhonghui, and Madhukar Anupam.Tailoring detection bands ofInAs quamtum-dot infrered photodetectors using InxGa1-xAs strain-relievingquantum wells. Applied physics Letters.2001.79(20):3341-3343.
    [40] Ye Zhengmao, Campbell Joe C., Chen Zhonghui et al. InAs quantum dot infraredphotodetectors with In0.15Ga0.85As strain-relief cap layers. Journal of appliedphysics.2002.92(12):7462-7468.
    [41] Chen Z. H., Baklenov O., Kim E. T., et al. InAs/AlxGa1xAs quantum dot infraredphotodetectors with undoped active region. Infrared physics&Technology.2001.42(3-5):479-484.
    [42] Chen Zhonghui, Kim Eui-Tae, and Madhukar Anupam. Intraband and interbandphotocurrent spectroscopy and induced dipole moments of InAs/GaAs(001)quantum dots in n–i–n photodetector structures. Journal of Vacuum Science&Technology B. B.2002.20(3):1243-1246.
    [43] Kim Eui-Tae, Madhukar Anupam, and Ye Zhengmao, et al. High detectivity InAsquantum dot infrared photodetectors. Applied physics Letters.2004.84(17):3277-3279.
    [44] Lin Shih-Yen, Tsai Yau-Ren and Lee Si-Chen. Effect of Silicon Dopant on thePerformance of InAs/GaAs Quantum-Dot Infrared Photodetectors. Journal ofapplied physics.2004.43(2): L167–L169,.
    [45] Huang Chun-Yuan, Ou Tzu-Min, Chou Shu-Ting, et al. Temperature dependenceof carrier dynamics for InAs/GaAs quantum dot infrared photodetectors. Journalof vacuum science&technology B.2005.23(5):1909-1912.
    [46] Chou Shu-Ting, Tsai Cheng-Hsuan, Wu Meng-Chyi, et al. Quantum-Dot InfraredPhotodetectors with P-Type Doped GaAs Barrier Layers. IEEE PhotonicsTechnology Letters.2005.17(11):2409-2411.
    [47] Chang Wen-Ten, Chou Shu-Ting, Huang Chun-Yuan et al. The SurfaceMorphology and Optical Characteristics for InAs/GaAs Quantum Dots withDifferent Coverag. Journal of Taiwan Vacuum Society.2005.18(3):68-71.
    [48] Chi-Che Tseng, Tung-Hsun Chung, Shu-Cheng Mai, et al. The transitionmechanism of InAs/GaAs quantum-dot infrared photodetectors with differentInAs coverages. Journal of vacuum science&technology B.2010.28(3):C3G28-C3G31.
    [49] Huang Chun-Yuan, Cheng Shiau-Shin, Chou Shu-Ting, et al.Transportmechanisms and the effects of organic layer thickness on the performance oforganic Schottky diodes. Journal of vacuum science&technology B.2007.25(1):43-46.
    [50] Bhattacharya P., Su X.H., and Chakrabarti S., et al. Characteristics of a tunnellingquantum-dot infrared photodetector operating at room temperature. AppliedPhysics Letters.2005.86:191106-1-3.
    [51] Su H., Yang J., and Bhattacharya P., et al. Terahertz detection with tunnelingquantum dot intersublevel photodetector. Applied Physics letters.2006.89(3):031117-1-3.
    [52] Chakrabarti S., Su X.H., Ariyawansa G., et al. Room Temperature Operation ofResonant Tunneling Quantum Dot Infrared Detectors. Conference on Lasers&Electro-Optics.2005.2:1076-1078.
    [53] Ariyawansa G., Matsik S. G., and Perera A. G. U. et al. Tunneling Quantum DotSensors for Multi-band Infrared and Terahertz Radiation Detection. IEEE Sensors2007Conference.2007:503-506.
    [54] Krishna S., Gunapala S. D., Bandara S. V., et al. Quantum Dot Based infraredFocal Plane Arrays. Proceedings of the IEEE.2007.95:1-15.
    [55] Varley E., Lenz M., Lee S. J., et al. Single bump, two-color quantum dot camera,Applied Physics Letters.2007.91:081120-1:3.
    [56] Kim S. M., Harris J. S.. Multicolor InGaAs Quantum-Dot Infrared Photodetectors.IEEE Photonics Technology Letters.2004.16:2538-2540.
    [57] Kim S. M. and Harris J. S.. Multispectral operation of self-assembled InGaAsquantum-dot infrared photodetectors. Applied Physics Letters.2004.85:4154-4156.
    [58] Ryzhii V., Khmyrova I., Pipa V. et al. Device model for quantum dot infraredphotodetectors and their dark-current characteristic. Semiconductor science andtechnology.2001.16:331-338.
    [59] Liu H.C.. Quantum dot infrared photodetector. Opto-electronics Review.2003.1:1–5.
    [60] Carbone A., Introzzi R., Liu H.C.. Photo and dark current noise in self-assembledquantum dot infrared photodetectors. Infrared physics and Technology.2009.52:257-259.
    [61] Stiff-Robert A. D.. Contribution of Field-Assisted Tunneling Emission to DarkCurrent in InAs–GaAs Quantum Dot Infrared Photodetectors. IEEE photonicstechnology letters.2004.16:867-869.
    [62] Naser M. A., Deen M. J., and Thompson D. A.. Theoretical modeling of the darkcurrent in quantum dot infrared photodetectors using nonequilibrium Green'sfunctions. Journal of Applied Physics.2008.104:014511-1-11.
    [63] Naser M. A., Deen M. J., and Thompson D. A.. Spectral function of InAs/InGaAsquantum dots in a well detector using Green’s function. Journal of AppliedPhysics.2006.100(9):093102-093102-6
    [64] Lin L., Zhen H. L., Li N., et al. Sequential coupling transport for the dark currentof quantum dots-in-well infrared photodetectors, Applied physics letters.2010.97:193511-1:3.
    [65] Ryzhii V.. Physical model and analysis of quantum dot infrared photodetectorswith blocking layer. Journal of Applied physics.2001.89:5117-5224.
    [66] Martyniuk P., Rogalski A.. Insight into performance of quantum dot infraredphotodetectors. Bulletin the polish academy of sciences Technical sciences.2009.57:103-116.
    [67] Mahmoud Imbaby I., Konber Hussien A., El_Tokhy Mohamed S.. Performanceimprovement of quantum dot infrared photodetectors through modeling. Opticsand Laser technology.2010.42:1240-1249.
    [68] Dehdashti Jahromi H., Sheikhi M.H., Yousefi M.H.. Investigation of the quantumdot infrared photodetectors dark current. Optics and Laser technology.2011.43:1020-1025.
    [69] Kumar Subindu and Biswas Dipankar. Effects of a Gaussian size distribution onthe absorption spectra of III-V semiconductor quantum dots. Journal of AppliedPhysics.2007.102:084305-1-7.
    [70] Choi Won Jun, Hwang Sungho, Song Jin Dong, et al. Effect of size distribution inquantum dot infrared photodetectors. International Workshop on Photonics andApplications.2004.4:265-269.
    [71] Kochman Boaz, Stiff-Roberts Adrienne D., Chakrabarti Subhananda, et al.Absorption, Carrier Lifetime, and Gain in InAs–GaAs Quantum-Dot InfraredPhotodetectors. IEEE Journal of quantum electronics.2003.39(3):459-467.
    [72] Aslan B., Song C.Y., and Liu H.C.. On the spectral response of quantum dotinfrared photodetectors: Postgrowth annealing and polarization behaviors.Applied physics Letters.2008.92:253118-1-3.
    [73] Fafard S., Liu H. C., Wasilewski Z. R., et al. Quantum dot devices. Proceeding ofSPIE.2000.4078:100-115.
    [74] Ryzhii M., Ryzhii V., Mitin V.. Electric-field and space-charge distribution inInAs/GaAs quantum-dot infrared photodetectors: ensemble Monte Carlo particlemodeling. Microelectronics Journal.2003.34:411-414.
    [75] Phillips J.. Evaluation of the fundamental properties of quantum dot infrareddetectors. Journal of Applied physics.2002.91(7):4590-4594.
    [76] Martyniuk P., Krishna S., Rogalski A.. Assessment of quantum dot infraredphotodetectors for high temperature operation. Journal of Applied physics.2008.104:034314-1-6.
    [77] Ryzhii V., Khmyrova I., Mitin V. et al. On the detectivity of quantum-dot infraredphotodetectors. Applied Physics Letters.2001.78(32):3523-3525.
    [78]唐建顺.量子点光学性质及其在量子信息中的应用的实验研究.中国科学技术大学.2011.
    [79]陈乾旺.纳米科技基础.北京:高等教育出版社,2008:9-40.
    [80]张辉朝.掺杂胶体量子点的合成和荧光特性的研究.东南大学硕士论文.2010.2:1-6.
    [81]李芳芳. CdSe量子点及Fe3O4/CdSe复相量子点的制备与性能表征.浙江大学材料科学与工程学系.2010:1-2.
    [82] A.Rogalski, Infrared detectors.2nd ed. USA: Taylor and Francis Group and LLC.2010.485-570.
    [83] Liu H., Zhang F., Zhang J., He G.. Performance analysis of quantum dots infraredphotodetector. Proceedings of SPIE.2011.8193:81930J-1-7.
    [84] Martyniuk P., Rogalski A.. Quantum-dot infrared photodetectors: Status andoutlook,Progress in quantum Electronics.2008.32:89-120.
    [85] Rogalski A.. New material systems for third generation infrared photodetectors.Opto-Electronics Review.2008.16(4):458-482.
    [86]卢金军,童菊芳.半导体量子点的制备、性质和应用.孝感学院学报.2007.6:144-148.
    [87] http://baike.baidu.com/view/656914.htm.
    [88] http://baike.baidu.com/view/997070.htm.
    [89]向世明,倪国强.光电子成像器件.北京:国防工业出版社.1999:262-267.
    [90] Chang Chi-Yang, Chang Hsu-Yu, Chen Chia-Yi, et al. Wavelength selectivequantum dot infrared photodetector with periondic metal hole arrays. AppliedPhysics Letters.2007.91:163107-1-3.
    [91] Fu L., Mckerracher I., Tan H. H., et al. Effect of GaP strain compensation layerson rapid thermally annealed InGaAs/GaAs quantum dot infrared photodetectorgrown by metal-organic chemical-vapor deposition. Applied physics Letters.2007.91:073515-1-3.
    [92] Lu Xuejun, Vaillancourt Jarrod, Meisner Mark J et al. Long wave infraredInAs-InGaAs quantum-dot infrared photodetector with high operating temperatureover170K. Journal of physics D: applied physics.2007.40:5878
    [93] Xuejun Lu, Jarrod Vaillancourt and Mark J Meisner. A modulation-dopedlongwave infrared quantum dot photodetector with high photoresponsivity.Semiconductor Science and Technology.2007(9).22:993
    [94] Ryzhii Victor, Pipa Victor, Khmyrova Irina et al. Dark current in Quantum dotinfrared photodetectors. Jpnanese Journal of Applied Physics.2001.39:L1283-1285.
    [95] Ho-Chul Lim, Stanley Tsao, Maho Taguchi, Wei Zhang, Alain Andre Quivy,Manijeh Razeghi. InGaAs/InGaP Quantum-Dot Infrared Photodetector with aHigh Detectivity. Proceedings of SPIE.2006.6127:61270N-1-6.
    [96] Duboz J. Y., Liu H. C., Wasilewski Z. R., et al. Tunnel current in quantum dotinfrared photodetectors. Journal of Applied Physics.2003.93:1320-1322.
    [97] Zhao Z. Y., Yi C., Lantz K. R., et al. Effect of donor-complex-defect-induceddipole field on InAs/GaAs quantum dot infrared photodetector activation energy.Applied Physics Letters.2007.90:233511-1-3.
    [98] Ye Z., Campell J. C., Chen Z., et al. Voltage-controllable multiwavelength InAsquantum-dot infrared photodetector for mid-and far-infrared detection. Journal ofApplied Physics.2002.92(7):4141-4143.
    [99] Asano T., Madhukar A., Mahalingam K., et al. Dark current and band profiles inlow defect density thick multilayered GaAs/InAs self-assembled quantum dotstructures for infrared detectors. Journel of Applied Physics.2008.104:13115-1-5.
    [100] Lin S., Tsai Y.J., Lee S.C.. Transport characteristics of InAs/GaAs quantum-dotsinfrared photodetectors. Applied physics letters.2003.83(4):752-754.
    [101] Liu Hongmei, Zhang Jianqi. Physical Model for the Dark Current of Quantum DotInfrared Photodetectors. Optics and Laser Technology.2012.44:1536-1542.
    [102] Su X., Chakrabarti S., Bhattacharya P., et al. A Resonant Tunneling Quantum dotinfrared photodetector. IEEE Jouranl of Quantum Electronics.2005.41(7):974-979.
    [103] Campbell J.C., Madhukar A., Quantum-dot infrared photodetectors. Proceedingsof the IEEE.2007.95(9):1815-1827.
    [104] Ye Z., Campbell J. C., Chen Z., et al. Noise and photoconductive gain in InAsquantum-dot infrared photodetectors. Applied Physics Letters.2003.83(6):1234-1237.
    [105] Ghosh K.K., Zhao L.H, and Huber D.L.. Differential-equation approach to thetrapping of optical excitation. Physical Review B.1982.25:3851-3855.
    [106] D.L.Huber,“Fluorescence in the presence of traps”, Physical Review B,20,2307-2314(1979).
    [107] Grassberger P., Procaccia I.. Diffusion and drift in a medium with randomlydistributed traps. Physical review A.1982.26:3686-3688.
    [108] Satyanadh G., Joshi R. P., Abedin N. et al. Monte Carlo calculation of electrondrift characteristics and avalanche noise in bulk InAs. Journal of applied physics.2002.91:1331-1338。
    [109] Lu X., Vaillancourt J., J.Meisner M., Temperature-dependent photoresponsivityand high-temperature (190K) operation of a quantum dot infrared photodetector.Applied physics letters.2007.91(5):051115-1-3.
    [110] Wang S.Y., Lo M.C., Hsiao H.Y., et al. Temperature dependent responsivity ofquantum dot infrared photodetectors. Infrared Physics&Technology.2007.50:155-170.
    [111] Rogalski A.. Optical detectors for focal plane arrays. Opto-Electronics Review.2004.12(2):221–245.
    [112] Rogalski A.. HgCdTe infrared detector material: history, status andoutlook. Reports on progress in physics.2005.68:2267–2336.
    [113] Norton P.. HgCdTe infrared detectors. Opto-Electronics Review.2002.10(3):159–174.
    [114] X. Lu, M.J. Meisner, J. Vaillancourt, et al. Modulation-doped InAs-InGaAsquantum dot longwave infrared photodetector with high quantum efficiency.Electronics Letters.2007.43(10):589-590.
    [115] Zhang W., Lim H., Taguchi M., et al. High-detectivity InAs quantum-dot infraredphotodetectors grown on InP by metal–organic chemical–vapor deposition.Applied physics letters.2005.86:191103-1-3.
    [116] Lin Wei-Hsun, Tseng Chi-Che, Chao Kuang-Ping, et al. Broadband Quantum-DotInfrared Photodetector. IEEE Photonics technology letters.2010.22(13):963-966.
    [117] Zhang Wei, Lim Ho-Chul, Taguchi Maho, etal. High performance InAs quantumdot infrared photodetectors (QDIP) on InP by MOCVD. Proceedings of SPIE.2005.5732:326-333.
    [118] S. M. Sze. Physics of semiconductor devices.2nd. New York: John Wiley&SonsInc,1982.
    [119] Liu Hongmei, Zhang Jianqi. Performance investigations of Quantum DotsInfrared Photodetector. Infrared physics&Technology.2012.55:320-325.
    [120] Satyanadh G., Joshi R. P., Abedin N., et al. Monte Carlo calculation of electrondrift characteristics and avalanche noise in bulk InAs. Jpnanese Journal of AppliedPhysics.2002.91:1331-1338.
    [121] Dos Santos C.L., Piquini P., Lima E. N., et al. Low hole effective mass in thinInAs nanowires. Applied Physics Letters.2010.96:043111-1-043111-3.
    [122] Li Shu-Shen, Xia Jian-Bai, Yuan Z. L., et al. Effective-mass theory for InAs/GaAsstrained coupled quantum dots. Physical Review B.1996.54(16):575-581.
    [123] Schneider D., Brink C., Irmer G., etal. Effective mass and bandstructure of n-InAsfrom magneto phonon resonance and Raman scattering at temperatures betweenT=64and360K. Physica B.1998.256:625-628。
    [124] Lin S., Tsai Y., Lee S.. Comparison of InAs/GaAs Quantum Dot InfraredPhotodetector and GaAs/AlGaAs Superlattice Infrared Photodetector. JpnaneseJournal of Applied Physics.2001.40: L1290-L1292.
    [125] Liao C.C., Tang S., Chen T., et al. Electronic characteristics of doped InAs/GaAsquantum dot photodetector: temperature dependent dark current and noise density.Proceedings of the SPIE.2006.6119:611905-1-611905-7.
    [126] Phillips J., Bhattacharya P., Kennerly S. W., et al. Self-assembled InAs-GaAsquantum-dot intersubband detectors. IEEE Journal of Quantum Electron.1999.35:936-943.
    [127] Stiff Adrienne D.,Krishna Sanjay, Bhattacharya Pallab,et al. Normal-Incidence,High-Temperature, Mid-Infrared, InAs–GaAs Vertical Quantum-Dot InfraredPhotodetector. IEEE Journal of quantum electronics.2001.37(11):1412-1419.
    [128] Ye Zhengmao, Campbell Joe C., Chen Zhonghui, et al. Normal-Incidence InAsSelf-Assembled Quantum-Dot Infrared Photodetectors with a High Detectivity.IEEE journal of quantum electronics.2002.38(9):1234-1237.
    [129] Chou Shu-Ting, Wu Meng-Chyi, Lin Shih-Yen, et al. Influence of doping densityon the normal incident absorption of quantum-dot infrared photodetectors.Applied Physics Letters.2006.88:173511-1:173511-3.
    [130] S. D. Gunapala, S. V. Bandara, J. K. Liu, et al. Long-Wavelength Infrared (LWIR)Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array. Proceedings ofthe SPIE,2006.6206:62060J.
    [131] Tang Shiang-Feng, Chiang Cheng-Der, Weng Ping-Kuo, et al. High-TemperatureOperation Normal Incident256*256InAs-GaAs Quantum-Dot InfraredPhotodetector Focal Plane Array. IEEE photonics technology letters.2006.18(8):986-988.
    [132] Lu Xuejun,Vaillancourt Jarrod, Meisner Mark J et al. Long wave infraredInAs-InGaAs quantum-dot infrared photodetector with high operating temperatureover170K. Journal of physics D: applied physics.2007.40(19):5878.
    [133] Shao Jiayi, Vandervelde Thomas E., Barve Ajit, et al. Enhanced normal incidencephotocurrent in quantum dot infrared Photodetectors. Vac. Sci. Technol. B.2011.29(3):03C123-1:03C123-6.
    [134] Ji Yalin, Lu Wei, Chen Guibin, et al. InAs/GaAs quantum dot intermixinginduced by proton implantation. Journal of Applied Physics.2003.93(2):1208-1211.
    [135] S Chakrabarti, A D Stiff-Roberts, X H Su et al. High-performance mid-infraredquantum dot infrared photodetectors. Journal of physics D: applied physics.2005.83(13):2135.
    [136] Hing Tan Chee, Vines Peter, Hobbs Matthew, et al. Implementation of analgorithmic spectrometer using Quantum Dot Infrared Photodetectors. InfraredPhysics&Technology.2011.54:228–232.
    [137] Ajit V. Barve, Sang Jun Lee, Sam Kyu Noh, et al. Review of current progress inquantum dot infrared photodetectors. Laser﹠Photonics Reviews.2009.4(6):738-750.
    [138] Ryzhii V.. The theory of quantum-dot infared phototransistors. Semiconductorscience and technology.1996.11:759-765.
    [139] Ye Z., Campbell J. C., Chen Z., et al. Noise and photoconductive gain in InAsquantum-dot infrared photodetectors. Applied physics letters.2003.83(6):1234-1236.
    [140] Liu H. C.. Noise gain and operating temperature of quantum well infraredphotodetectors. Applied physics letters.1992.61(22):2703-2705.
    [141]刘恩科,朱秉升,罗晋生等.半导体物理学.第4版.北京:国防工业大学.1994:53.
    [142] H.C.Liu, Quantum well infrared photodetector physics and novel devices,Semiconductors and Semimetals,Vol.62,126-196.2000.
    [143] Bockelmann,U., Bastard, G., Phonon scattering and energy relaxation in two-,one-, and zero-dimensional electron gases, Physical Revivew,B42,8947-8951(1990).
    [144] Urayama J., Norris T. B., Singh J., et al. Temperature dependent carrier dynamicsin InGaAs self assembled quantum dots. Applied physics letters.2002.80(12):2162-2164.
    [145] Lu X., Vaillancourt J.. Temperature-dependent photoresponsivity andhigh-temperature (190K) operation of a quantum dot infrared photodetector.Applied Physics Letters.2007.91:051115-1-3.
    [146] Beck W. A.. Photoconductive gain and generation‐recombination noise inmultiple‐quantum‐well infrared detectors. Applied physics letters.1993.63(26):3589-3591.
    [147] Gunapala S.D. and Bandara S.V.. Quantum Well infared photodetectors focalplane arrays. Semiconductors and Semimetals.2000.62:197-282.
    [148] Vaillancourt Jarrod, Stintz Andreas, Meisner J. Mark, et al. Low-bias,high-temperature operation of an InAs–InGaAs quantum-dot infraredphotodetector with peak-detection wavelength of11.7μ m. Infrared Physics&Technology.2009.52:22–24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700