用户名: 密码: 验证码:
血浆HDL中蛋白质组分与冠心病的关系及应用他汀类药后的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     近年来已经对高密度脂蛋白(high density lipoprotein, HDL)蛋白质组分的含量及变化情况进行了研究。结果表明:冠心病(coronary heart disease, CHD)患者的HDL蛋白质组成发生变化,联合应用他汀类药物+烟酸后,CHD患者的HDL蛋白质组成趋向于“正常化”。不过,该领域的研究尚少,结果差异较大,验证性工作不足,有必要开展进一步的研究工作。
     本实验室前期应用蛋白质组学技术比较了CHD患者与非CHD患者(对照组)之间的HDL蛋白质组差异,发现与对照组相比,CHD组HDL中的载脂蛋白A-I(apolipoprotein A-Ⅰ, apoA-Ⅰ)水平显著下降,血清淀粉样蛋白A (serum amyloid A protein, SAA)水平显著升高,但是尚缺乏较大样本的验证性研究。目前国内外尚未报道单独应用他汀类药物治疗冠心病患者前后HDL蛋白质组的变化,且研究已显示他汀类药物可与HDL之间存在功能的相互作用,机制并不十分清楚。因此,本研究拟从两方面进行研究:①,验证上述实验室前期获得的结果,探讨HDL中SAA和apoA-Ⅰ蛋白水平的变化及与冠心病的关系;②,采用蛋白质组学技术比较他汀类药物使用前后HDL组分的变化,以探讨CHD患者在服用他汀类药物的调脂治疗过程中HDL蛋白组分是否有变化,这种变化是否与患者的疗效有关。同时也希望从另一角度即HDL组分的变化来探讨他汀类药物的作用机制。
     二、研究内容
     第一部分冠心病患者血浆HDL中apoA-Ⅰ与SAA组分变化的研究
     1.研究目的
     比较CHD患者与非CHD患者(对照组)血浆HDL中apoA-Ⅰ与SAA组分差异。
     2.研究方法
     2.1研究对象:
     2.1.1CHD组:至少有一支冠状动脉狭窄大于50%,未服用调脂药;
     2.1.2对照组:排除CHD,且年龄、性别与CHD组相匹配;
     2.2样品收集与HDL分离:收集空腹血浆,应用溴化钾超高速离心方法分离血浆中的HDL;
     2.3ELISA法检测血浆及其HDL中的apoA-Ⅰ和SAA的水平;
     2.4统计学分析:pearson相关性分析研究血浆及HDL中apoA-Ⅰ和SAA的相关性;logistic回归分析研究血浆及HDL中这两种蛋白与CHD的关联程度。
     3.研究结果
     3.1HDL中apoA-Ⅰ和SAA水平变化
     3.1.1CHD组(n=67)与对照组(n=67)相比,HDL-apoA-Ⅰ水平降低,差异有统计学意义(7.80±3.32g/mL vs.10.42±5.51g/mL,P=0.001);校正可能的混杂因素后,其在两组间的显著性差异消失(B=-0.109,P=0.088)。
     3.1.2CHD组与对照组相比,log (HDL-SAA)显著升高,差异有统计学意义(1.39±0.58vs.1.15±0.46,P=0.011);校正可能的混杂因素后,其在两组之间的差异仍有统计学意义(B=1.738,P=0.017),且log(HDL-SAA)每升高个单位,CHD的发生风险升高4.685倍(OR=5.685,95%CI:1.371,23.581)。
     3.2血浆中apoA-Ⅰ和SAA水平变化
     3.2.1CHD组(n=67)和对照组(n=67)相比,plasma-apoA-Ⅰ的差异无统计学意义(0.7±0.33g/mL vs.0.79±0.28g/mL,P=0.122)。
     3.2.2CHD组和对照组相比,log(plasma-SAA)水平升高,差异有统计学意义(1.13±0.54vs.0.88±0.48,P=0.005);校正可能的混杂因素后,其在两组之间的差异仍有统计学意义(B=1.646,P=0.038),且log(plasma-SAA)每升高1个单位,CHD的发生风险升高4.185倍(OR=5.185,95%CI;1.095,24.544)。
     3.3pearson相关性分析:在对照组及CHD组的血浆及HDL中apoA-Ⅰ与SAA的相关系数均无统计学意义。
     4.第一部分研究结论
     4.1与对照组相比,CHD患者HDL蛋白质组成发生改变:SAA水平明显升高,apoA-Ⅰ有下降趋势。
     4.2血浆中apoA-Ⅰ在两组之间无明显差异;CHD组血浆SAA明显升高。提示HDL及血浆中SAA均为CHD的危险因素。
     第二部分冠心病患者服用他汀类药物后血浆HDL蛋白质组分变化的研究
     (一)冠心病患者服用他汀类药物前后血浆HDL蛋白质组成变化的比较
     1.研究目的探索CHD患者服用他汀类药物前后HDL蛋白质的组成及各组分水平的差异。
     2.研究方法
     2.1研究对象:
     2.1.1CHD组(n=9);至少有一支冠状动脉狭窄大于50%,入组时未服用他汀等调脂药,参加随访;
     2.1.2对照组(n=10):排除CHD,且年龄、性别与CHD组相匹配;
     2.2样品的收集与分离:收集CHD组服用他汀类药物半年前后(药前组、药后组)及对照组的空腹血浆;溴化钾超高速离心法分离HDL样品;
     2.3iTRAQ-LC-MS技术:研究药前组、药后组及对照组之间HDL蛋白质组成及各组分水平的相对定量;
     2.4Gene Ontology (GO)功能分析:利用GO功能分析鉴定到的蛋白质分子功能、参与的生物过程及细胞组成分布的特点;
     2.5蛋白质聚类分析:三组之间HDL组分差异水平特点。
     3.研究结果
     3.1在药前组、药后组和对照组的HDL鉴定出196种高置信度的蛋白质组分。
     3.2GO分析发现这些蛋白具有多种分子活性,参与多种生物学过程。
     3.3聚类分析显示CHD患者服用他汀类药物前与对照组HDL蛋白水平之间的差异大于CHD患者药后与对照组HDL蛋白水平之间的差异。
     3.4CHD患者药前药后比较发现14种差异蛋白;在CHD组与对照组之间发现13种差异蛋白;其中serum amyloid A2isoform(SAA2)、complement C5preproprotein和histone H1.0三种蛋白的变化趋势均表现为在CHD组显著升高,服用他汀类药物后其在HDL中的含量显著下降,下降水平接近对照组。
     4.研究小结
     4.1在CHD药前、药后和对照组的HDL中共鉴定出196种高置信度的蛋白质组分;
     4.2GO分析发现这些蛋白具有多种分子活性,参与多种生物学过程;
     4.3聚类分析显示CHD患者服用他汀类药物前与对照组HDL蛋白水平之间的差异大于CHD患者药后与对照组HDL蛋白水平之间的差异。
     4.4CHD患者药前药后比较发现14种差异蛋白;在CHD组与对照组之间发现13种差异蛋白;其中serum amyloid A2isoform(SAA2)、complement C5preproprotein和histone H1.0三种蛋白的变化趋势均表现为在CHD组显著升高,服用他汀类药物后其在HDL中的含量显著下降,下降水平接近对照组
     (二)冠心病患者服用他汀类药物前后血浆HDL中SAA差异水平的变化
     1.研究目的
     比较CHD患者服用他汀类药物前后HDL中SAA的水平,初步验证iTRAQ-LC-MS中发现的候选差异蛋白SAA2的水平。
     2.研究方法
     2.1研究对象:
     2.1.1CHD组(n=44);至少有一支冠状动脉狭窄大于50%,入组时未服用他汀等调脂药,参加随访;
     2.1.2对照组(n=45):排除CHD,且年龄、性别与CHD患者相匹配;
     2.2样品的收集与分离:收集CHD组服用他汀类药物半年前后(药前组、药后组)及对照组的空腹血浆;溴化钾超高速离心法分离HDL样品;
     2.3ELISA法检测:CHD药前组与药后组HDL样品中SAA水平。
     3.研究结果
     与药前HDL中log(HDLSAA)的水平相比,CHD患者服用他汀类后HDL中的SAA水平明显下降(1.28±0.51vs.1.01±0.51,P=0.014),与iTRAQ结果一致。
     4.研究小结
     他汀类药物可显著下调HDL中SAA的水平。
     (三)服用他汀类药物与未服用他汀类药物的冠心病患者血浆HDL中SAA差异水平的研究
     1.研究目的
     比较服用他汀类药物半年的CHD患者与未服用他汀类药物的CHD患者血浆HDL中SAA的水平,再次验证iTRAQ-LC-MS中鉴定的候选差异蛋白SAA2水平。
     2.研究方法
     2.1研究对象:
     2.1.1CHD用药组(n=65):至少有一支冠状动脉狭窄大于50%,入组时已经规律服用他汀类药物半年左右,未合并使用其他调脂药;
     2.1.2CHD未用药组(n=67):至少有一支冠状动脉狭窄大于50%,未服用任何调脂药;
     2.2样品收集与HDL分离:收集空腹血浆:超高速离心分离HDL样品;
     2.3ELISA法检测:CHD用药组与CHD未用药组HDL样品中SAA水平;
     2.4统计学分析:利用协方差分析的方法校正两组之间的基线差异。
     3.研究结果
     3.1CHD用药组HDL中的log (HDL-SAA)水平与CHD未用药组相比,显著下降(1.34±0.58vs.1.04±0.46, P=0.0002)。
     3.2校正总胆固醇、低密度脂蛋白胆固醇、apoA-Ⅰ、载脂蛋白B、肌酐、血糖及高敏C反应蛋白的水平差异后,log(HDL-SAA)在两组之间的差异仍有统计学意义(P=0.005)。
     3.3进一步校正HDL-C的水平,log(HDL-SAA)在两组之间的差异仍有统计学意义(P=0.015)。
     4.研究小结
     HDL中的SAA水平与CHD患者服用他汀类药物有关。
     三、结论
     1.CHD患者HDL蛋白质组成发生改变:其中SAA水平明显升高,apoA-Ⅰ有下降趋势。SAA为CHD的危险因素。iTRAQ技术又新发现CHD组与对照组之间有13种差异蛋白(6种在CHD组HDL中上调,7种下调)。
     2.CHD患者他汀药治疗后,SAA水平下降至正常水平,且不受其他因素影响。iTRAQ技术又新发现CHD组药后与药前HDL样品中有14种差异蛋白(10种在药后HDL中上调,4种下调)。
     3.他汀类调脂药可改变HDL中某些蛋白水平。
     4.HDL由多种蛋白质成分组成,可以从HDL蛋白组成研究HDL所具有的生物学功能。
Background
     The alteration of proteins existing in high density lipoprotein (HDL) is found to affect its function. It will be helpful to comprehend the relationship between HDL and coronary heart disease (CHD) by studying the protein composition of HDL and to clarify the role of HDL in atherosclerosis further.
     Recently, there are several studies exploring the proteins in HDL by proteomics technology, showing that the protein composition in HDL isolated from patients with CHD was different from controls and combined statin and niacin therapy may remodel the HDL proteome. However, the related study was rare and insufficient.
     In our laboratory, we have conducted a preliminary study comparing the difference in HDL proteome between patients with CHD and controls and found that a significant decrease in the level of apolipoprotein A-I (apoA-I) and the increase in the level of serum amyloid A protein (SAA), which need to be validated in another independent group with larger sample size. In addition, there is no study exploring the effect of statins per se on HDL proteome at present, and the interaction between statins and HDL has been found in several studies.
     Part1:The relationship between apolipoprotein A-I and SAA in high density lipoprotein isolated from patients with coronary heart disease
     Object
     To compare the difference in the levels of apoA-I and SAA in HDL isolated form patient with CHD and controls and understand the relationship between apoA-I and SAA.
     Methods
     Patients with at least one coronary artery stenosis more that50%and never take statins and other lipids-lowing drugs (CHD group) and a group of age and sex-matched subjects (control group) were enrolled. HDL was isolated by ultracentrifugation. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of apoA-I and SAA in plasma and in HDL. Pearson correlation analysis was used to explore the relationship between apoA-Ⅰ and SAA in HDL. Logistic regression was used to study the association between apoA-Ⅰ and CHD and between SAA and CHD.
     Results
     1.67patients and67controls were enrolled in this part of study.
     2. Compared with controls, the level of apoA-Ⅰ was significantly decreased in HDL isolated from CHD patients (7.80±3.32g/mL vs.10.42±5.51g/mL, P=0.001). However, the difference was disappeared when adjusted by potential confounding factors (B=-0.109, P=0.088). The level of log (HDL-SAA) was significantly higher in CHD patient than the one in control group (1.39±0.58vs.1.15±0.46, P=0.011). The significance was still exist after adjustment for confounding factors (B=1.738, P=0.017). The OR value was5.685, which means that the risk of CHD will increase4.685when the log(HDL-SAA) increase1unit (OR=5.685,95%CI:1.371,23.581).
     3. Compared with controls, the level of apoA-Ⅰ in plasma was not different between the two groups (0.7±0.33g/mL vs.0.79±0.28g/mL, P=0.122). The level of log(plasma-SAA) was significantly higher in CHD group than in control group (1.13±0.54vs.0.88±0.48, P=0.005) independently from confounding factors (B=1.646, P=0.038). The OR value for log(plasma-SAA) was5.185(OR=5.185,95%CI:1.095,24.544).
     4. The level of apoA-I and SAA did not show any correlation in HDL or in plasma both in the two groups.
     Part2:The alteration in HDL proteome by statins among patients with coronary heart disease
     Objectives
     To study the alteration in HDL proteome by statins among patients with coronary heart disease and the difference of the level of each protein in HDL isolated from CHD patient before and about half year after statins therapy.
     Methods
     HDL isolated from9patients with CHD before and about half year after statins therapy and10age-sex matched controls was analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography-mass spectrometry. GO analysis was performed to understand the function classification and molecular activity of all detected proteins in HDL. Cluster analysis was used to clarify the difference characteristic of all proteins in HDL among the three groups. Treatment-induced decrease in SAA2level of HDL were validated in a second group of44CHD patients and45controls and in a third group of67CHD patients never using statins or other lipid-lowing drugs and65CHD patients who had already taken statins for about half year.
     Results
     1.196proteins with high confidence coefficient (FDR=0.01and at least two peptides matched) were detected by iTRAQ-LC-MS.
     2. The GO analysis indicated that these detected proteins maybe involved in many biological processes, such as lipids-transport, inflammation, innate immune defence, and so on. These proteins also showed multiple activities, for example lipids-binding activity, enzyme inhibitor activity, peptide-chain hydrolysis activity, and so on.
     3.14proteins were found different with significance in HDL isolated from CHD patients before statins therapy and after about half year therapy.13proteins were found different between CHD and control. There3proteins, serum amyloid A2isoform(SAA2)、complement C5preproprotein and histone H1.0, showed the same alteration trend in these three groups, which increased in CHD patients when compared with controls, and decreased in CHD patients after statins therapy.
     4. The level of SAA was significantly decreased after statins therapy. The level of SAA in HDL among CHD patients was correlated with statins therapy.
     Conclusion
     1. HDL is composed of many proteins, and these proteins showed multiple activities, for example lipids-binding activity, enzyme inhibitor activity, peptide-chain hydrolysis activity, etc. and may be involved many biological processes, such as lipids-transport, inflammation, innate immune defence, and so on.
     2. The HDL proteome is altered in patients with CHD. When compared with control, the level of SAA was significantly increased and there is a decrease trend in the level of apoA-I.13new proteins were found to be different between CHD group and control group in the present study.
     3. Level of SAA was significantly decreased after statins therapy.14new proteins altered after statins therapy in the present study, which maybe the new targets of statins.
     4. Statins may remodel the HDL proteome.
     5. HDL is composed of many proteins, and the alteration of protein composition in HDL may be helpful to study the HDL functions.
引文
[I]Van Lenten B J, Navab M, Shih D, et al. The role of high-density lipoproteins in oxidation and inflammation[J]. Trends Cardiovasc Med,2001,11(3-4):155-161.
    [2]Nissen S E, Tsunoda T, Tuzcu E M, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes:a randomized controlled trial[J]. JAMA,2003,290(17):2292-2300.
    [3]Durrington P N, Mackness B, Mackness M I. Paraoxonase and atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2001,21(4):473-480.
    [4]Han C Y, Chiba T, Campbell J S, et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes[J]. Arterioscler Thromb Vasc Biol,2006,26(8):1806-1813.
    [5]Riwanto M, Rohrer L, Roschitzki B, et al. Altered Activation of Endothelial Anti-and Pro-Apoptotic Pathways by High-Density Lipoprotein from Patients with Coronary Artery Disease:Role of HDL-Proteome Remodeling[J]. Circulation,2013.
    [6]Gordon S, Durairaj A, Lu J L, et al. High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality [J]. Curr Cardiovasc Risk Rep,2010,4(1):1-8.
    [7]Vaisar T. Proteomics investigations of HDL:challenges and promise[J], Curr Vasc Pharmacol,2012,10(4):410-421.
    [8]Vaisar T, Pennathur S, Green P S, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL[J]. J Clin Invest,2007,117(3):746-756.
    [9]Alwaili K, Bailey D, Awan Z, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile[J]. Biochim Biophys Acta,2011.
    [10]Green P S, Vaisar T, Pennathur S, et al. Combined statin and niacin therapy remodels the high-density lipoprotein proteome[J]. Circulation,2008,118(12):1259-1267-
    [11]Reilly M P, Tall A R. HDL proteomics:pot of gold or Pandora's box?[J]. J Clin Invest,2007,117(3):595-598.
    [12]Ansell B J, Navab M, Hama S, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment[J]. Circulation,2003,108(22):2751-2756.
    [13]Harangi M, Mirdamadi H Z, Seres I, et al. Atorvastatin effect on the distribution of high-density lipoprotein subfractions and human paraoxonase activity [J]. Transl Res,2009,153(4):190-198.
    [14]Martyniuk C J, Alvarez S, Denslow N D. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology[J]. Ecotoxicol Environ Saf,2012,76(2):3-10.
    [15]Castelli W P, Garrison R J, Wilson P W, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study [J]. JAMA,1986,256(20):2835-2838.
    [16]Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease[J]. JAMA,2009,302(18):1993-2000.
    [17]Glomset J A. High-density lipoproteins in human health and disease[J]. Adv Intern Med,1980,25:91-116.
    [18]Tall A R, Wang N, Mucksavage P. Is it time to modify the reverse cholesterol transport model?[J]. J Clin Invest,2001,108(9):1273-1275.
    [19]Norata G D, Pirillo A, Ammirati E, et al. Emerging role of high density lipoproteins as a player in the immune system[J]. Atherosclerosis,2012,220(1):11-21.
    [20]Saemann M D, Poglitsch M, Kopecky C, et al. The versatility of HDL:a crucial anti-inflammatory regulator [J]. Eur J Clin Invest,2010,40(12):1131-1143.
    [21]Navab M, Hama S Y, Anantharamaiah G M, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:steps 2 and 3[J]. J Lipid Res,2000,41(9):1495-1508.
    [22]Navab M, Hama S Y, Cooke C J, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:step 1[J]. J Lipid Res,2000,41(9):1481-1494.
    [23]Nissen S E, Tardif J C, Nicholls S J, et al. Effect of torcetrapib on the progression of coronary atherosclerosis[J]. N Engl J Med,2007,356(13):1304-1316.
    [24]Landmesser U, von Eckardstein A, Kastelein J, et al. Increasing high-density lipoprotein cholesterol by cholesteryl ester transfer protein-inhibition:a rocky road and lessons learned? The early demise of the dal-HEART programme[J]. Eur Heart J,2012,33(14):1712-1715.
    [25]Rezaee F, Casetta B, Levels J H, et al. Proteomic analysis of high-density lipoprotein[J]. Proteomics,2006,6(2):721-730.
    [26]Urieli-Shoval S, Meek R L, Hanson R H, et al. Human serum amyloid A genes are expressed in monocyte/macrophage cell lines[J]. Am J Pathol,1994,145(3):650-660.
    [27]Hua S, Song C, Geczy C L, et al. A role for acute-phase serum amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and atherosclerosis[J]. Redox Rep,2009,14(5):187-196.
    [28]Hoffman J S, Benditt E P. Secretion of serum amyloid protein and assembly of serum amyloid protein-rich high density lipoprotein in primary mouse hepatocyte culture[J]. J Biol Chem,1982,257(17):10518-10522.
    [29]Benditt E P, Hoffman J S, Eriksen N, et al. SAA, an apoprotein of HDL:its structure and function[J]. Ann N Y Acad Sci,1982,389:183-189.
    [30]Coetzee G A, Strachan A F, van der Westhuyzen D R, et al. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition[J]. J Biol Chem,1986,261 (21):9644-9651.
    [31]Schreiber B M, Veverbrants M, Fine R E, et al. Apolipoprotein serum amyloid A down-regulates smooth-muscle cell lipid biosynthesis[J]. Biochem J,1999,344 Pt 1:7-13.
    [32]Wang X, Chai H, Wang Z, et al. Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cellsfJ]. Am J Physiol Heart Circ Physiol,2008,295(6):H2399-H2408.
    [33]Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease[J]. Circulation,2001,104(22):2673-2678.
    [34]Ancsin J B, Kisilevsky R. The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis[J]. J Biol Chem,1999,274(11):7172-7181.
    [35]O'Brien K D, Mcdonald T O, Kunjathoor V, et al. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2005,25(4):785-790.
    [36]Kumon Y, Suehiro T, Faulkes D J, et al. Transcriptional regulation of serum amyloid Al gene expression in human aortic smooth muscle cells involves CCAAT/enhancer binding proteins (C/EBP) and is distinct from HepG2 cells[J]. Scand J Immunol,2002,56(5):504-511.
    [37]Lee H Y, Kim S D, Shim J W, et al. Activation of formyl peptide receptor like-1 by serum amyloid A induces CCL2 production in human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun,2009,380(2):313-317.
    [38]Jylhava J, Haarala A, Eklund C, et al. Serum amyloid A is independently associated with metabolic risk factors but not with early atherosclerosis:the Cardiovascular Risk in Young Finns Study[J]. J Intern Med,2009,266(3):286-295.
    [39]Ridker P M, Hennekens C H, Buring J E, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women[J]. N Engl J Med,2000,342(12):836-843.
    [40]Jousilahti P, Salomaa V, Rasi V, et al. The association of c-reactive protein, serum amyloid a and fibrinogen with prevalent coronary heart disease--baseline findings of the PAIS project[J]. Atherosclerosis,2001,156(2):451-456.
    [41]Kosuge M, Ebina T, Ishikawa T, et al. Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes[J]. Circ J,2007,71(2):186-190.
    [42]Katayama T, Nakashima H, Takagi C, et al. Prognostic value of serum amyloid A protein in patients with acute myocardial infarction[J]. Circ J,2005,69(10):1186-1191.
    [43]Liuzzo G, Biasucci L M, Gallimore J R, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina[J]. N Engl J Med,1994,331(7):417-424.
    [44]Filep J G, El K D. Serum amyloid A as a marker and mediator of acute coronary syndromes[J]. Future Cardiol,2008,4(5):495-504.
    [45]Zheng L, Nukuna B, Brennan M L, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease[J]. J Clin Invest,2004,114(4):529-541.
    [46]Burger D. Cell contact-mediated signaling of monocytes by stimulated T cells:a major pathway for cytokine induction[J]. Eur Cytokine Netw,2000,11(3):346-353.
    [47]Hyka N, Dayer J M, Modoux C, et al. Apolipoprotein A-I inhibits the production of interleukin-lbeta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes[J]. Blood,2001,97(8):2381-2389.
    [48]Moore R E, Kawashiri M A, Kitajima K, et al. Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor[J]. Arterioscler Thromb Vasc Biol,2003,23(10):1914-1920.
    [49]Francis M C, Frohlich J J. Coronary artery disease in patients at low risk--apolipoprotein Al as an independent risk factor[J]. Atherosclerosis,2001,155(1):165-170.
    [50]Ansell B J. The two faces of the 'good' cholesterol[J]. Cleve Clin J Med,2007,74(10):697-700,703-705.
    [51]Fogelman A M. When good cholesterol goes bad[J]. Nat Med,2004,10(9):902-903.
    [52]Kisilevsky R, Subrahmanyan L. Serum amyloid A changes high density lipoprotein's cellular affinity. A clue to serum amyloid A's principal function[J]. Lab Invest,1992,66(6):778-785.
    [53]Harb T S, Zareba W, Moss A J, et al. Association of C-reactive protein and serum amyloid A with recurrent coronary events in stable patients after healing of acute myocardial infarction[J]. Am J Cardiol,2002,89(2):216-221.
    [54]Van Lenten B J, Hama S Y, de Beer F C, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures[J]. J Clin Invest,1995,96(6):2758-2767.
    [55]Banka C L, Yuan T, de Beer M C, et al. Serum amyloid A (SAA):influence on HDL-mediated cellular cholesterol efflux[J]. J Lipid Res,1995,36(5):1058-1065.
    [56]Rye K A, Barter P J. Antiinflammatory actions of HDL:a new insight[J]. Arterioscler Thromb Vasc Biol,2008,28(11):1890-1891.
    [57]Murphy A J, Chin-Dusting J P, Sviridov D, et al. The anti inflammatory effects of high density lipoproteins[J]. Curr Med Chem,2009,16(6):667-675.
    [58]Li X A, Guo L, Dressman J L, et al. A novel ligand-independent apoptotic pathway induced by scavenger receptor class B, type I and suppressed by endothelial nitric-oxide synthase and high density lipoprotein[J]. J Biol Chem,2005,280(19):19087-19096.
    [59]Rye K A, Bursill C A, Lambert G, et al. The metabolism and anti-atherogenic properties of HDL[J]. J Lipid Res,2009,50 Suppl:S195-S200.
    [60]Holzer M, Birner-Gruenberger R, Stojakovic T, et al. Uremia alters HDL composition and function[J]. J Am Soc Nephrol,2011,22(9):1631-1641.
    [61]Weichhart T, Kopecky C, Kubicek M, et al. Serum amyloid A in uremic HDL promotes inflammation[J]. J Am Soc Nephrol,2012,23(5):934-947.
    [62]Watanabe J, Charles-Schoeman C, Miao Y, et al. Proteomic profiling following immunoaffinity capture of high-density lipoprotein:association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis[J]. Arthritis Rheum,2012,64(6):1828-1837.
    [63]Holzer M, Wolf P, Curcic S, et al. Psoriasis alters HDL composition and cholesterol efflux capacity[J]. J Lipid Res,2012,53(8):1618-1624.
    [64]Artl A, Marsche G, Lestavel S, et al. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages[J]. Arterioscler Thromb Vasc Biol,2000,20(3):763-772.
    [65]Nakamura H, Arakawa K, Itakura H, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study):a prospective randomised controlled trial[J]. Lancet,2006,368(9542):1155-1163.
    [66]Pedersen T R, Faergeman O, Kastelein J J, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction:the IDEAL study:a randomized controlled trial[J]. JAMA,2005,294(19):2437-2445.
    [67]Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Tern Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group[J]. N Engl Med,1998,339(19):1349-1357.
    [68]Kwak B R, Mulhaupt F, Mach F. Atherosclerosis:anti-inflammatory am immunomodulatory activities of statins [J]. Autoimmun Rev,2003,2(6):332-338.
    [69]Vaughan C J, Gotto A J, Basson C T. The evolving role of statins in th management of atherosclerosis[J]. J Am Coll Cardiol,2000,35(1):1-10.
    [70]O'Driscoll G, Green D, Taylor R R. Simvastatin, an HMG-coenzyme A reductasi inhibitor, improves endothelial function within 1 month[J] Circulation,1997,95(5):1126-1131.
    [71]Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxid synthase by HMG CoA reductase inhibitors[J]. Circulation,1998,97(12):1129-1135.
    [72]Liuni A, Luca M C, Di Stolfo G, et al. Coadministration of atorvastatin prevent nitroglycerin-induced endothelial dysfunction and nitrate tolerance in healthy humans[J] J Am Coll Cardiol,2011,57(1):93-98.
    [73]Zelvyte I, Dominaitiene R, Crisby M, et al. Modulation of inflammatory mediator: and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro[J]. Pharmacol Res,2002,45(2):147-154.
    [74]Sparrow C P, Burton C A, Hernandez M, et al. Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering[J] Arterioscler Thromb Vasc Biol,2001,21(1):115-121.
    [75]Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator[J]. Nat Med,2000,6(12):1399-1402.
    [76]Kwak B, Mulhaupt F, Veillard N, et al. The HMG-CoA reductase inhibiton simvastatin inhibits IFN-gamma induced MHC class Ⅱ expression in human vasculam endothelial cells[J]. Swiss Med Wkly,2001,131(3-4):41-46.
    [77]Sadeghi M M, Tiglio A, Sadigh K, et al. Inhibition of interferon-gamma-mediated microvascular endothelial cell major histocompatibility complex class Ⅱ gene activation by HMG-CoA reductase inhibitors[J]. Transplantation,2001,71(9):1262-1268.
    [78]Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells[J]. Arterioscler Thromb Vasc Biol,2000,20(2):556-562.
    [79]Fujino M, Miura S, Tanigawa H, et al. Counteracting effects of high density lipoprotein-cholesterol subfractions on statin-induced growth arrest[J]. Cardiovasc Drugs Ther,2005,19(2):113-118.
    [80]Zhao S P, Wu Z H, Hong S C, et al. Effect of atorvastatin on SR-BI expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits[J]. Clin Chim Acta,2006,365(1-2):119-124.
    [81]Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009,4(1):44-57.
    [82]Ashburner M, Ball C A, Blake J A, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet,2000,25(1):25-29.
    [83]Gordon D J, Probstfield J L, Garrison R J, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies[J]. Circulation,1989,79(1):8-15.
    [84]Movva R, Rader D J. Laboratory assessment of HDL heterogeneity and function[J]. Clin Chem,2008,54(5):788-800.
    [85]Wu W W, Wang G, Baek S J, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF[J]. J Proteome Res,2006,5(3):651-658.
    [86]Zhang H, Yan W, Aebersold R. Chemical probes and tandem mass spectrometry:a strategy for the quantitative analysis of proteomes and subproteomes[J]. Curr Opin Chem Biol,2004,8(1):66-75.
    [87]Kondo T, Hirohashi S. Application of 2D-DIGE in cancer proteomics toward personalized medicine[J]. Methods Mol Biol,2009,577:135-154.
    [88]Choe L, D'Ascenzo M, Relkin N R, et al.8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease[J]. Proteomics,2007,7(20):3651-3660.
    [89]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社,2004.432.
    [90]Gygi S P, Rist B, Gerber S A, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J]. Nat Biotechnol,1999,17(10):994-999.
    [91]Ross P L, Huang Y N, Marchese J N, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3(12):1154-1169.
    [92]Zieske L R. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies[J]. J Exp Bot,2006,57(7):1501-1508.
    [93]Desouza L V, Taylor A M, Li W, et al. Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues[J]. J Proteome Res,2008,7(8):3525-3534.
    [94]Van'T H F, Havel R J. Metabolism of apolipoprotein E in plasma high density lipoproteins from normal and cholesterol-fed rats[J]. J Biol Chem,1982,257(18):10996-11001.
    [95]Schafer H, Mathey D, Hugo F, et al. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium[J]. J Immunol,1986,137(6):1945-1949.
    [96]Verrier E D, Shernan S K, Taylor K M, et al. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass:a randomized trial[J]. JAMA,2004,291(19):2319-2327.
    [97]Gordon S M, Deng J, Lu L J, et al. Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography[J]. J Proteome Res,2010,9(10):5239-5249.
    [1]Scanu A M, Wisdom C. Serum lipoproteins structure and function[J]. Annu Rev Biochem,1972,41:703-730.
    [2]Gofman J W, Lindgren F T, Elliott H. Ultracentrifugal studies of lipoproteins of human serum[J]. J Biol Chem,1949,179(2):973-979.
    [3]Gordon S, Durairaj A, Lu J L, et al. High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality [J]. Curr Cardiovasc Risk Rep,2010,4(1):1-8.
    [4]Vaisar T, Pennathur S, Green P S, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL[J]. J Clin Invest,2007,117(3):746-756.
    [5]Kontush A, Chantepie S, Chapman M J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress[J]. Arterioscler Thromb Vasc Biol,2003,23(10):1881-1888.
    [6]Cheung M C, Albers J J. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II[J]. J Biol Chem,1984,259(19):12201-12209.
    [7]Asztalos B F, Sloop C H, Wong L, et al. Two-dimensional electrophoresis of plasma lipoproteins:recognition of new apo A-I-containing subpopulations[J]. Biochim Biophys Acta,1993,1169(3):291-300.
    [8]Warnick G R, Nauck M, Rifai N. Evolution of methods for measurement of HDL-cholesterol:from ultracentrifugation to homogeneous assays[J]. Clin Chem,2001,47(9):1579-1596.
    [9]Duong P T, Weibel G L, Lund-Katz S, et al. Characterization and properties of pre beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I[J]. J Lipid Res,2008,49(5):1006-1014.
    [10]Haginaka J, Yamaguchi Y, Kunitomo M. Anion-exchange high-performance liquid chromatography assays of plasma lipoproteins and modified low-density lipoproteins using a ProtEx-DEAE column[J]. J Chromatogr B Biomed Sci Appl,2001,751 (1):161-167.
    [11]Gordon D J, Rifkind B M. High-density lipoprotein--the clinical implications of recent studies[J]. N Engl J Med,1989,321(19):1311-1316.
    [12]Movva R, Rader D J. Laboratory assessment of HDL heterogeneity and function[J]. Clin Chem,2008,54(5):788-800.
    [13]Glomset J A. High-density lipoproteins in human health and disease[J]. Adv Intern Med,l 980,25:91-116.
    [14]Tall A R, Wang N, Mucksavage P. Is it time to modify the reverse cholesterol transport model?[J]. J Clin Invest,2001,108(9):1273-1275.
    [15]Glomset J A. The plasma lecithins:cholesterol acyltransferase reaction[J]. J Lipid Res,1968,9(2):155-167.
    [16]Rosenson R S, Brewer H J, Davidson W S, et al. Cholesterol efflux and atheroprotection:advancing the concept of reverse cholesterol transport[J]. Circulation,2012,125(15):1905-1919.
    [17]Main L A, Okumura-Noji K, Ohnishi T, et al. Cholesteryl ester transfer protein reaction between plasma lipoproteins[J]. J Biochem,1998,124(1):237-243.
    [18]Zhang L, Yan F, Zhang S, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein[J]. Nat Chem Biol,2012,8(4):342-349.
    [19]van Tol A. Phospholipid transfer protein[J]. Curr Opin Lipidol,2002,13(2):135-139.
    [20]Annema W, Tietge U J. Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport[J]. Curr Atheroscler Rep,2011,13(3):257-265.
    [21]Kathiresan S, Melander O, Anevski D, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events[J]. N Engl J Med,2008,358(12):1240-1249.
    [22]Kathiresan S, Musunuru K, Orho-Melander M. Defining the spectrum of alleles that contribute to blood lipid concentrations in humans[J]. Curr Opin Lipidol,2008,19(2):122-127.
    [23]Marsche G, Saemann M D, Heinemann A, et al. Inflammation alters HDL composition and function:Implications for HDL-raising therapies [J]. Pharmacol Ther,2013,137(3):341-351.
    [24]Mackey R H, Greenland P, Goff D J, et al. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events:MESA (multi-ethnic study of atherosclerosis)[J]. J Am Coll Cardiol,2012,60(6):508-516.
    [25]Reilly M P, Tall A R. HDL proteomics:pot of gold or Pandora's box?[J]. J Clin Invest,2007,117(3):595-598.
    [26]Rezaee F, Casetta B, Levels J H, et al. Proteomic analysis of high-density lipoprotein[J]. Proteomics,2006,6(2):721-730.
    [27]Heller M, Stalder D, Schlappritzi E, et al. Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins[J]. Proteomics,2005,5(10):2619-2630.
    [28]Karlsson H, Leanderson P, Tagesson C, et al. Lipoproteomics Ⅱ:mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry[J]. Proteomics,2005,5(5):1431-1445.
    [29]Hortin G L, Shen R F, Martin B M, et al. Diverse range of small peptides associated with high-density lipoprotein[J]. Biochem Biophys Res Commun,2006,340(3):909-915.
    [30]Bowry V W, Stanley K K, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors[J]. Proc Natl Acad Sci U S A,1992,89(21):10316-10320.
    [31]Sattler W, Stocker R. Greater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl esters[J]. Biochem J,1993,294 (Pt 3):771-778.
    [32]Navab M, Hama S Y, Cooke C J, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:step 1[J]. J Lipid Res,2000,41 (9):1481-1494.
    [33]Durrington P N, Mackness B, Mackness M I. Paraoxonase and atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2001,21(4):473-480.
    [34]Garner B, Waldeck A R, Witting P K, et al. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII[J]. J Biol Chem,1998,273(11):6088-6095.
    [35]Levine D M, Parker T S, Donnelly T M, et al. In vivo protection against endotoxin by plasma high density lipoprotein[J]. Proc Natl Acad Sci U S A,1993,90(24):12040-12044.
    [36]Barter P J, Nicholls S, Rye K A, et al. Antiinflammatory properties of HDL[J]. Circ Res,2004,95(8):764-772.
    [37]Saemann M D, Poglitsch M, Kopecky C, et al. The versatility of HDL:a crucial anti-inflammatory regulator[J]. Eur J Clin Invest,2010,40(12):1131-1143.
    [38]Norata G D, Pirillo A, Ammirati E, et al. Emerging role of high density lipoproteins as a player in the immune system[J]. Atherosclerosis,2012,220(l):11-21.
    [39]Grunfeld C, Feingold K R. HDL and innate immunity:a tale of two apolipoproteins[J]. J Lipid Res,2008,49(8):1605-1606.
    [40]Navab M, Anantharamaiah G M, Hama S, et al. D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice[J]. Arterioscler Thromb Vasc Biol,2005,25(7):1426-1432.
    [41]Navab M, Ananthramaiah G M, Reddy S T, et al. The double jeopardy of HDL[J]. Ann Med,2005,37(3):173-178.
    [42]Cockerill G W, Rye K A, Gamble J R, et al. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules[J]. Arterioscler Thromb Vasc Biol,1995,15(11):1987-1994.
    [43]Calabresi L, Franceschini G, Sirtori C R, et al. Inhibition of VCAM-1 expression in endothelial cells by reconstituted high density lipoproteins[J]. Biochem Biophys Res Commun,1997,238(1):61-65.
    [44]Feig J E, Rong J X, Shamir R, et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells [J]. Proc Natl Acad Sci U S A,2011,108(17):7166-7171.
    [45]Patel P J, Khera A V, Jafri K, et al. The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease[J]. J Am Coll Cardiol,2011,58(20):2068-2075.
    [46]Julve J, Escola-Gil J C, Rotllan N, et al. Human apolipoprotein A-Ⅱ determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome[J]. Arterioscler Thromb Vasc Biol,2010,30(2):232-238.
    [47]Galle J, Ochslen M, Schollmeyer P, et al. Oxidized lipoproteins inhibit endothelium-dependent vasodilation. Effects of pressure and high-density lipoprotein[J]. Hypertension,1994,23(5):556-564.
    [48]Nofer J R, van der Giet M, Tolle M, et al. HDL induces NO-dependent vasorelaxation via the lysophospho lipid receptor S1P3[J]. J Clin Invest,2004,113(4):569-581.
    [49]Terasaka N, Yu S, Yvan-Charvet L, et al. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet[J]. J Clin Invest,2008,118(11):3701-3713.
    [50]Riwanto M, Rohrer L, Roschitzki B, et al. Altered Activation of Endothelial Anti-and Pro-Apoptotic Pathways by High-Density Lipoprotein from Patients with Coronary Artery Disease:Role of HDL-Proteome Remodeling[J]. Circulation,2013.
    [51]Van Lenten B J, Hama S Y, de Beer F C, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures[J]. J Clin Invest,1995,96(6):2758-2767.
    [52]Van Lenten B J, Wagner A C, Nayak D P, et al. High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection[J]. Circulation,2001,103(18):2283-2288.
    [53]Artl A, Marsche G, Lestavel S, et al. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages[J]. Arterioscler Thromb Vasc Biol,2000,20(3):763-772.
    [54]Ansell B J, Navab M, Hama S, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment[J]. Circulation,2003,108(22):2751-2756.
    [55]Alwaili K, Bailey D, Awan Z, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile[J]. Biochim Biophys Acta,2012,1821(3):405-415.
    [56]Holzer M, Birner-Gruenberger R, Stojakovic T, et al. Uremia alters HDL composition and function[J]. J Am Soc Nephrol,2011,22(9):1631-1641.
    [57]Weichhart T, Kopecky C, Kubicek M, et al. Serum amyloid A in uremic HDL promotes inflammation[J]. J Am Soc Nephrol,2012,23(5):934-947.
    [58]Watanabe J, Charles-Schoeman C, Miao Y, et al. Proteomic profiling following immunoaffinity capture of high-density lipoprotein:association of acute-phase proteins and complement factors with pro inflammatory high-density lipoprotein in rheumatoid arthritis[J]. Arthritis Rheum,2012,64(6):1828-1837.
    [59]Holzer M, Wolf P, Curcic S, et al. Psoriasis alters HDL composition and cholesterol efflux capacity[J]. J Lipid Res,2012,53(8):1618-1624.
    [60]Coetzee G A, Strachan A F, van der Westhuyzen D R, et al. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition[J]. J Biol Chem,1986,261(21):9644-9651.
    [61]Kawakami A, Osaka M, Tani M, et al. Apolipoprotein CⅢ links hyperlipidemia with vascular endothelial cell dysfunction[J]. Circulation,2008,118(7):731-742.
    [62]Kawakami A, Osaka M, Aikawa M, et al. Toll-like receptor 2 mediates apolipoprotein CⅢ-induced monocyte activation[J]. Circ Res,2008,103(12):1402-1409.
    [63]Feingold K R, Grunfeld C. Psoriasis:it's more than just the skin[J]. J Lipid Res,2012,53(8):1427-1429.
    [64]Voight B F, Peloso G M, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction:a mendelian randomisation study [J]. Lancet,2012,380(9841):572-580.
    [65]Landmesser U, von Eckardstein A, Kastelein J, et al. Increasing high-density lipoprotein cholesterol by cholesteryl ester transfer protein-inhibition:a rocky road and lessons learned? The early demise of the dal-HEART programme[J]. Eur Heart J,2012,33(14):1712-1715.
    [66]Khera A V, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis[J]. N Engl J Med,2011,364(2):127-135.
    [67]Degoma E M, Degoma R L, Rader D J. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches[J]. J Am Coll Cardiol,2008,51(23):2199-2211.
    [68]Tolle M, Huang T, Schuchardt M, et al. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A[J]. Cardiovasc Res,2012,94(1):154-162.
    [69]Holzer M, Zangger K, El-Gamal D, et al. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein[J]. Antioxid Redox Signal,2012,17(8):1043-1052.
    [70]Van'T H F, Havel R J. Metabolism of apolipoprotein E in plasma high density lipoproteins from normal and cholesterol-fed rats[J]. J Biol Chem,1982,257(18):10996-11001.
    [71]Stahlman M, Davidsson P, Kanmert I, et al. Proteomics and lipids of lipoproteins isolated at low salt concentrations in D2O/sucrose or in KBr[J]. J Lipid Res,2008,49(2):481-490.
    [72]Karlsson H, Leanderson P, Tagesson C, et al. Lipoproteomics I:mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry[J]. Proteomics,2005,5(2):551-565.
    [73]Santos R D, Schaefer E J, Asztalos B F, et al. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency [J]. J Lipid Res,2008,49(2):349-357.
    [74]Davidson W S, Jonas A, Clayton D F, et al. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes[J]. J Biol Chem,1998,273(16):9443-9449.
    [75]Shao B, Heinecke J W. Using tandem mass spectrometry to quantify site-specific chlorination and nitration of proteins:model system studies with high-density lipoprotein oxidized by myeloperoxidase[J]. Methods Enzymol,2008,440:33-63.
    [76]Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport[J]. Proc Natl Acad Sci U S A,2004,101(35):13032-13037.
    [77]Zheng L, Nukuna B, Brennan M L, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease[J]. J Clin Invest,2004,114(4):529-541.
    [78]Hoang A, Murphy A J, Coughlan M T, et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties [J]. Diabetologia,2007,50(8):1770-1779.
    [79]Ansell B J. The two faces of the 'good' cholesterol[J]. Cleve Clin J Med,2007,74(10):697-700,703-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700