用户名: 密码: 验证码:
单核苷酸多态性和miRNA对CARM1基因表达的调控机制及其在冠心病中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     阐明调控辅激活因子相关的精氨酸甲基转移酶1(coactivator-associated arginine methyl-transferase1, CARM1)基因表达的分子机制,探索其通过何种作用方式参与冠心病的发生,试图揭示该基因在冠心病发生中的作用及机制,为冠心病的预防和治疗提供新的靶点。
     方法:
     1)利用real-time PCR和Western blot方法分别在mRNA和蛋白水平上检测冠心病病例和对照的外周血单个核细胞(PBMCs)中CARM1的表达水平;2)综合利用HapMap数据库中连锁不平衡(LD)分析和“DNA元件百科全书”(ENCODE)的功能注释数据,筛选CARM1基因上下游10kb内位于不同LD区域中的潜在功能性单核苷酸多态性(SNP);在234例健康个体的PBMCs样本中检测CARM1mRNA的表达水平,分析其与SNP基因型的关系;对影响CARM1表达的SNP进行生物学功能研究:应用双荧光素酶报告基因系统检测等位基因特异性的转录激活活性,利用电泳迁移率变更实验(EMSA)、多种转录因子冷竞争实验(MC-EMSA)、电泳超迁移率变更分析(supershift-EMSA)和染色质免疫沉淀(ChIP)分别在体外和细胞内筛选、鉴定等位基因特异性结合的转录因子;3)通过生物信息学预测调控CARM1的靶miRNA;利用real-time PCR检测其在冠心病病例和对照中的表达;通过共转染野生型或种子区突变的CARM13'-UTR区报告基因及靶miRNA模拟物(mimics)证明该miRNA结合CARM13'-UTR种子区;在细胞水平上过表达或敲减该miRNA,通过real-time PCR和Western blot检测CARM1的mRNA和蛋白水平,明确其对CARM1表达的调控;4)通过CARM1的功能性多态位点与血浆同型半胱氨酸(homocysteine, Hey)水平的关联研究,及细胞中过表达人源CARM1后ELISA检测细胞上清及胞内Hcy的水平,探索CARM1对Hcy的调控作用;5)在1010例冠心病病例和3998例对照中进行CARM1的功能性位点与冠心病的关联研究,使用加性模型分析少见等位基因对冠心病发生的效应。
     结果:
     1)与对照组相比,急性冠脉综合征(ACS)组PBMCs中CARM1的mRNA水平升高3.9倍,蛋白水平升高1.5倍;2)根据LD分析和ENCODE证据,筛选出4个潜在功能性SNP;在健康人群中3个SNP位点与CARM1的表达水平相关,即rsl2460421(A/G)、rsl17569851(T/C)和rs4804544(A/G),其中后两个位点完全连锁;报告基因实验结果表明,rsl2460421-rsl17569851单体型GC和单体型AT的转录活性分别是单体型GT的2.0倍和1.7倍;EMSA结果显示rs12460421的A等位基因与核蛋白的结合能力强于G,rsl17569851的C等位基因与核蛋白的结合能力强于T;MC-EMSA筛选出转录因子Egr-1与这两个位点结合;supershift-EMSA和ChIP实验分别在体外和细胞内水平证明Egr-1结合这两个位点且不同等位基因与Egr-1的亲和力不同;3)生物信息学预测与CARM1结合的靶miRNA为miR-15a和miR-16;与对照组相比,ACS病例组的PBMCs中1miR-15a的表达水平降低37%,而miR-16则表达升高;野生型和突变型CARM13'-UTR的报告基因与miR-15a mimic共转染细胞后,双荧光素酶报告基因检测结果显示miR-15a与CARM13'-UTR的两个种子区都发生结合;在293T细胞中过表达miR-15a不引起CARM1下调,但敲减]miR-15a后CARM1表达增加;4)在健康人群中,CARM1的功能性多态位点rs117569851与血浆Hcy水平存在关联(P=0.02),每增加一个少见等位基因T,Hcy的水平降低2.16μmol/L;5)rsl17569851与冠心病的关联研究未检出统计学差异(校正年龄、性别、BMI后P=-0.053)。
     结论:
     1)ACS患者PBMCs中CARM1基因的1mRNA和蛋白水平表达水平升高,提示该基因在冠心病的发生中可能起重要作用;
     2) CARM1启动子区功能性多态位点rs117569851的少见等位基因T通过降低与转录因子Egr-1的结合,下调CARM1的表达,降低血浆Hcy水平,从而可能潜在减少冠心病的发病风险;
     3) miR-15a在ACS患者PBMCs中表达下降,减轻了对CARM1mRNA的降解和蛋白翻译的抑制作用,从而使CARM1的表达水平升高;
     4)关联研究表明CARM1的功能性多态rs117569851通过调控Hcy代谢,可能参与冠心病的发生。
     目的:
     GWAS表明位于脂蛋白脂肪酶(lipoprotein lipase, LPL)3'-UTR的多态位点rs1059611与血脂水平关联,但其是否具有生物学功能尚不清楚。本研究初步探索该位点对转录活性及转录因子亲和力的影响。
     方法:
     1)在pGL-3promoter载体的报告基因下游插入含有rs1059611(C/T)位点的基因组序列,构建重组质粒;利用双荧光素酶报告基因系统,检测该位点对转录活性的影响;
     2)提取人内脏脂肪组织核蛋白,与含有rs1059611(C/T)位点的探针孵育后进行电泳迁移率变更实验(EMSA),比较两个等位基因与核蛋白结合形成的迁移带的差异;分别用C等位基因和T等位基因的冷竞争探针与核蛋白预孵育,再加入生物素标记的探针进行冷竞争EMSA实验,观察迁移带是否消失。
     结果:
     1)含有rs1059611位点的序列能够增强转录活性,常见等位基因T转换为少见等位基因C后转录活性显著增高(0.69vs1.00);2)rs1059611的T等位基因探针与脂肪组织核蛋白结合形成的迁移带在灰度上高于C等位基因;个体A的脂肪组织核蛋白与等位基因结合的差异比个体B更显著;200倍冷竞争探针预孵育使迁移带完全消失。
     结论:
     rs1059611的常见等位基因T转换为少见等位基因C后转录活性增高;rs1059611的常见等位基因T结合转录因子的亲和力大于少见等位基因C。说明rs1059611具有影响转录活性的生物学功能。
Objective:
     The study was designed to clarify the molecular regulation mechanism of coactivator-associated arginine methyltransferase1(CARM1) expression and explore its function in coronary artery disease (CAD). The attempt to uncover the function and mechanism of CARM1gene might provide a new target of prevention and treatment of CAD.
     Methods:
     1) The mRNA and protein expression levels of CARM1in PBMCs between CAD and control groups were detected with real-time PCR and Western blot;2) The potential functional SNPs in different linkage disequilibrium (LD) blocks were screened by integrating evidence of both HapMap project database and Encyclopedia Of DNA Elements (ENCODE) functional database; the relationship between these SNPs and CARM1mRNA expression levels in234healthy subjects was analyzed; the biological functional studies of the SNPs related with CARM1expression were conducted as follows:dual luciferase reporter activity assay to detect allele specific transcriptional activation activity; electrophoretic mobility shift assay (EMSA), multiplexed competitors EMSA (MC-EMSA), supershift-EMSA and ChIP to screen and determine the transcription factors specifically binding to different alleles, respectively in vitro and in vivo;3) Based on bioinformatics prediction of target miRNAs of CARM1, the miRNA expression level was detected in CAD cases and controls with real-time PCR; co-transfection of luciferase reporter gene containing CARM13'-UTR with or without seed mutations and miRNA mimics was performed to determine the binding of miRNA to CARM13'-UTR; the regulation of mRNA and protein expression level of CARM1with overexpression or knockdown of miRNA was detected;4) To explore the regulation of homocysteine (Hcy) by CARM1, we conducted the association study of the functional variant in CARM1with plasma Hcy levels and measured the concentration of Hcy in cell supernatants and lysates with ELISA after overexpression human CARM1plasmid;5) Association study of the functional variant in CARM1with CAD in1010cases and3998controls was conducted, and the effect of the minor allele on CAD risk was examined in an additive genetic model.
     Results:
     1) Compared with the control group, the mRNA and protein expression level of CARM1in PBMCs of acute coronary syndrome (ACS) group increased3.9fold and1.5fold, respectively;2) We seletcted4potential functional variants based on the evidence of LD analysis and ENCODE database,3of which were related with CARM1expression levels in healthy population. These3SNPs were rs12460421(A/G), rs117569851(T/C) and rs4804544(A/G), and the last two SNPs were completely linkage disequilibrium. The luciferase reporter activity assay showed that the transcriptional activity of rs12460421-rs117569851haplotype GC and AT was2.0fold and1.7fold of that of haplotype GT, repectively; EMS A demonstrated that A allele of rs12460421had greater binding affinity of nuclear protein than G allele, and C allele of rs117569851had greater binding affinity of nuclear protein than T allele; MC-EMSA showed that Egr-1might bind to both of the SNPs; supershift-EMSA and ChIP assay certified the identification of Egr-1binding to the two SNPs with allele specific binding affinity;3) miR-15a and miR-16was predicted to target CARM1using bioinformatics method; miR-15a expression level in PBMCs was decreased by37%in ACS cases compared with controls, while miR-16was upregulated in ACS cases; after co-transfected of luciferase reporter gene containing CARM13'-UTR with or without seed mutations and miR-15a mimics, the results of dual luciferase reporter assay system showed that miR-15a binded to both of the seeds of miRNA binding sites in CARM13'-UTR; CARM1expression was upregulated by the knockdown of miR-15a, however it was not downregulated by the overexpression of miR-15a;4) The functional variant rs117569851in CARM1was associated with plasma Hcy levels in a healthy population involving406subjects (P=0.02), and the Hcy levels decreased2.16μmol/L per minor allele T;5) Genetic analysis did not find the association of rs117569851with CAD (P=0.053, adjusted by age, sex and BMI).
     Conclusions:
     1) The mRNA and protein expression of CARM1in ACS patients increased compared with controls, which indicated that CARM1might play a role in CAD pathogenesis;
     2) The minor allele T of rs117569851locating in CARM1promoter downregulated the expression level of CARM1gene through lower binding affinity of transcription factor Egr-1, decreased the plasma Hcy level, and potentially reduced the risk of CAD;
     3) The decreased expression of miR-15a in PBMCs of CAD patients might reduce the inhibition effect on mRNA degradation and protein translation of CARM1, inducing CARM1expression upregulated;
     4) Association studies showed that CARM1might play a role in CAD pathogenesis through regulating Hcy metabolism.
     Objective
     rsl059611, located in3'-UTR of LPL, is associated with plasma lipid concentrations in GWAS, but its biological function is unclear. The study is designed for tentative exploration of its effect on transcriptional activity and transcription factor affinity.
     Methods
     1) The genomic sequence containing rs1059611was inserted into the downstream of the reporter gene in pGL-3promoter vector to construct a recombinant plasmid; the effect of rs1059611on transcriptional activity was illustrated with dual-luciferase reporter activity system;2) Incubation with nuclear extract from human visceral adipose tissue and probes containing rsl059611(C/T) sequence, followed by electrophoretic mobility shift assay (EMSA) was conducted to compare the differences of shift bands formed by probes and nuclear protein between two alleles; competitor EMSA was carried out with pre-incubation with competitors of allele C and T with nuclear extract respectively and adding biotin labeled probes later, to observe whether the shift bands vanish.
     Results
     1) The transcriptional activity was enhanced by sequence containing rsl059611, and increased significantly after major allele T converting to minor allele C (0.69vs.1.00);2) the greyscale of shift bands formed by probes of allele T for rsl059611binding with nuclear extract of adipose tissue was higher than allele C; the discrepancy of shift bands between two alleles with nuclear extract of adipose tissue from individual A was greater than that from individual B; the shift bands were completely abolished by pre-incubation with200fold competitor probes.
     Conclusion
     The transcriptional activity was increased after major allele T converting to minor allele C; the affinity of major allele T binding to transcription factor was greater than that of minor allele C. It declared that rsl059611might have biological functions of affecting transcriptional activity.
引文
[1]陆再英,钟南山.内科学(第7版)[.北京:人民卫生出版社;2004:274.
    [2]Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants[J]. Nat Genet.2009;41(3):334-341.
    [3]Tsoi LC, Spain SL, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet.2012;44(12):1341-1348.
    [4]Teslovich TM, Musunuru K, et al. Biological, clinical and population relevance of 95 loci for blood lipids[J]. Nature.2010;466(7307):707-713.
    [5]Hinohara K, Nakajima T, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations[J]. J Hum Genet.2008;53(4):357-359.
    [6]Mudd SH, Cantoni GL. Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers'yeast[J]. J Biol Chem.1958; 231 (1): 481-492.
    [7]Mato JM, Alvarez L, et al. S-adenosylmethionine synthesis:molecular mechanisms and clinical implications[J]. Pharmacol Ther.1997;73(3):265-280.
    [8]Schurter BT, Koh SS, et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1[J]. Biochemistry.2001;40(19):5747-5756.
    [9]Naeem H, Cheng D, et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation[J]. Mol Cell Biol.2007;27(1):120-134.
    [10]Wei Y, Horng JC, et al. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP[J]. Biochemistry.2003;42(23):7044-7049.
    [11]Chen D, Huang SM, et al. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300[J]. J Biol Chem.2000; 275 (52):40810-40816.
    [12]Yadav N, Cheng D, et al. CARM1 promotes adipocyte differentiation by coactivating PPARgamma[J]. EMBO Rep.2008;9(2):193-198.
    [13]Teyssier C, Chen D, et al. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function[J]. J Biol Chem.2002;277(48):46066-46072.
    [14]Hassa PO, Covic M, et al. Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1[J]. J Mol Biol.2008;377(3):668-678.
    [15]O'Brien KB, Alberich-Jorda M, et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells[J]. Development. 2010;137(13):2147-2156.
    [16]Fauquier L, Duboe C, et al. Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes[J]. FASEB J.2008;22(9):3337-3347.
    [17]Xu Z, Jiang J, et al. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells[J]. PLoS One.2013;8(1):e53146.
    [18]Doring Y, Noels H, et al. The use of high-throughput technologies to investigate vascular inflammation and atherosclerosis[J]. Arterioscler Thromb Vasc Biol. 2012;32(2):182-195.
    [19]Holvoet P, Sinnaeve P. Angio-associated migratory cell protein and smooth muscle cell migration in development of restenosis and atherosclerosis[J]. J Am Coll Cardiol.2008;52(4):312-314.
    [20]Sun X, Feinberg MW. NF-kappaB and hypoxia:a double-edged sword in atherosclerosis[J]. Am J Pathol.2012;181(5):1513-1517.
    [21]Gomez D, Owens GK. Smooth muscle cell phenotypic switching in athero-sclerosis[J]. Cardiovasc Res.2012;95(2):156-164.
    [22]McPherson R. From genome-wide association studies to functional genomics: new insights into cardiovascular disease[J]. Can J Cardiol.2013;29(1):23-29.
    [23]Boyle AP, Hong EL, et al. Annotation of functional variation in personal genomes using RegulomeDB[J]. Genome Res.2012;22(9):1790-1797.
    [24]Santovito D, Mezzetti A, et al. MicroRNAs and atherosclerosis:new actors for an old movie[J]. Nutr Metab Cardiovasc Dis.2012;22(11):937-943.
    [25]Hergenreider E, Heydt S, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol. 2012;14(3):249-256.
    [26]Pouliot LM, Chen YC, et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family[J]. Cancer Res.2012; 72 (22):5945-5955.
    [27]Cimmino A, Calin GA, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proc Natl Acad Sci U S A.2005;102(39):13944-13949.
    [28]Klein U, Lia M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia[J]. Cancer Cell.2010;17(1):28-40.
    [29]Xu T, Zhu Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells[J]. Hepatology.2009; 50 (1):113-121.
    [30]Rosa A, Ballarino M, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation[J]. Proc Natl Acad Sci U S A.2007;104(50):19849-19854.
    [311 Li T, Morgan MJ, et al. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation[J]. Nat Immunol.2010;11(9):799-805.
    [32]Hulsmans M, Sinnaeve P, et al. Decreased miR-181a Expression in Monocytes of Obese Patients Is Associated with the Occurrence of Metabolic Syndrome and Coronary Artery Disease[J]. J Clin Endocrinol Metab.2012;97(7):E1213-8.
    [33]Ferlazzo N, Gorgone G, et al. The 894G> T (Glu298Asp) variant in the endothelial NOS gene and MTHFR polymorphisms influence homocysteine levels in patients with cognitive decline[J]. Neuromolecular Med.2011; 13(3): 167-174.
    [34]Picker JD, Levy HL. Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency[M]. Gene Reviews. University of Washington, Seattle (WA); 2004.
    [35]Harmon DL, Woodside JV, et al. The common'thermolabile' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocys-teinaemia[J]. QJM.1996;89(8):571-577.
    [361 De Stefano V, Dekou V, et al. Linkage disequilibrium at the cystathionine beta synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. The Ears II Group. European Atherosclerosis Research Study[J]. Ann Hum Genet.1998;62(Pt 6):481-490.
    [37]Homocysteine and risk of ischemic heart disease and stroke:a meta-analysis[J]. JAMA.2002;288(16):2015-2022.
    [38]Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med.2005;352(16):1685-1695.
    [39]Humphrey LL, Fu R, et al. Homocysteine level and coronary heart disease incidence:a systematic review and meta-analysis[J]. Mayo Clin Proc. 2008;83(11):1203-1212.
    [401 de Ruijter W, Westendorp RG, et al. Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people:population based observational cohort study[J]. BMJ.2009;338(a3083.
    [41]Sun Y, Chien KL, et al. Use of serum homocysteine to predict stroke, coronary heart disease and death in ethnic Chinese.12-year prospective cohort study[J]. Circ J.2009;73(8):1423-1430.
    [42]McCully KS. Importance of homocysteine-induced abnormalities of proteoglycan structure in arteriosclerosis[J]. Am J Pathol.1970;59(1):181-194.
    [43]Suzuki K, Murakami K, et al. [A case of young adult presenting with cerebral infarction caused by homocystinuria][J]. No To Shinkei.2004;56(9):781-784.
    [44]Minkhorst AG, van Dongen PW, et al. Cerebral infarction after caesarean section due to heterozygosity for homocystinuria; a case report[J]. Eur J Obstet Gynecol Reprod Biol.1991;40(3):241-243.
    [45]Smith AJ, Humphries SE. Characterization of DNA-binding proteins using multiplexed competitor EMSA[J]. J Mol Biol.2009;385(3):714-717.
    [46]Yamamoto M, Hara H, et al. Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface[J]. FEBS Lett. 2000;486(2):159-162.
    [47]Xu D, Neville R, et al. Homocysteine accelerates endothelial cell senescence[J]. FEBS Lett.2000;470(1):20-24.
    [48]Chiang JK, Sung ML, et al. Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression[J]. J Cell Physiol.2011;226(4):1017-1026.
    [49]Coppola A, Davi G, et al. Homocysteine, coagulation, platelet function, and thrombosis[J]. Semin Thromb Hemost.2000;26(3):243-254.
    [50]Griffiths HR, Aldred S, et al. Homocysteine from endothelial cells promotes LDL nitration and scavenger receptor uptake[J]. Free Radic Biol Med.2006; 40 (3):488-500.
    [51]Kullo IJ, Ding K, et al. Novel genomic loci influencing plasma homocysteine levels[J]. Stroke.2006;37(7):1703-1709.
    [52]Selvi BR, Batta K, et al. Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARMl)-mediated methylation of histone H3 Arg-17[J]. J Biol Chem.2010;285(10):7143-7152.
    [53]Daujat S, Bauer UM, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3[J]. Curr Biol.2002;12(24):2090-2097.
    [54]Bauer UM, Daujat S, et al. Methylation at arginine 17 of histone H3 is linked to gene activation[J]. EMBO Rep.2002;3(1):39-44.
    [55]Xu W, Chen H, et al. A transcriptional switch mediated by cofactor methylation[J]. Science.2001;294(5551):2507-2511.
    [56]Klinge CM, Jernigan SC, et al. Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors[J]. J Mol Endocrinol.2004;33(2):387-410.
    [57]Ananthanarayanan M, Li S, et al. Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1[J]. J Biol Chem.2004;279(52):54348-54357.
    [58]Covic M, Hassa PO, et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression[J]. EMBO J.2005;24(1):85-96.
    [59]Miao F, Li S, et al. Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17[J]. Mol Endocrinol.2006;20(7):1562-1573.
    [60]Zhao X, Benveniste EN. Transcriptional activation of human matrix metallo-proteinase-9 gene expression by multiple co-activators[J]. J Mol Biol.2008; 383(5):945-956.
    [61]Cui R, Moriyama Y, et al. Serum total homocysteine concentrations and risk of mortality from stroke and coronary heart disease in Japanese:The JACC study[J]. Atherosclerosis.2008; 198(2):412-418.
    [62]Haim M, Tanne D, et al. Serum homocysteine and long-term risk of myocardial infarction and sudden death in patients with coronary heart disease[J]. Cardiology. 2007;107(1):52-56.
    [63]Zylberstein DE, Bengtsson C, et al. Serum homocysteine in relation to mortality and morbidity from coronary heart disease:a 24-year follow-up of the population study of women in Gothenburg [J]. Circulation.2004;109(5):601-606.
    [64]Troughton JA, Woodside JV, et al. Homocysteine and coronary heart disease risk in the PRIME study [J]. Atherosclerosis.2007;191(1):90-97.
    [65]Bazzano LA, Reynolds K, et al. Effect of folic acid supplementation on risk of cardiovascular diseases:a meta-analysis of randomized controlled trials[J]. JAMA.2006;296(22):2720-2726.
    [66]Weikert C, Hoffmann K, et al. A homocysteine metabolism-related dietary pattern and the risk of coronary heart disease in two independent German study populations[J]. J Nutr.2005; 135(8):1981-1988.
    [67]Rimm EB, Willett WC, et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women[J]. JAMA.1998; 279 (5):359-364.
    [68]Cesari M, Rossi GP, et al. Homocysteine-lowering treatment in coronary heart disease[J]. Curr Med Chem Cardiovasc Hematol Agents.2005;3(4):289-295.
    [69]Balasa W, Gruppo RA, et al. Correlation of the C677T MTHFR genotype with homocysteine levels in children with sickle cell disease[J]. J Pediatr Hematol Oncol.1999;21(5):397-400.
    [70]Balta G, Gurgey A. Methylenetetrahydrofolate reductase (MTHFR) C677T mutation in Turkish patients with thrombosis[J]. Turk J Pediatr.1999; 41 (2): 197-199.
    [71]Gemmati D, Serino ML, et al. C677T substitution in the methylenetetrahydro-folate reductase gene as a risk factor for venous thrombosis and arterial disease in selected patients[J]. Haematologica.1999;84(9):824-828.
    [72]Zhao JY, Yang XY, et al. Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the Han Chinese population[J]. Circulation.2012;125(3):482-490.
    [73]Yi P, Melnyk S, et al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation[J]. J Biol Chem.2000;275(38):29318-29323.
    [74]Harismendy O, Notani D, et al.9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response[J]. Nature.2011; 470(7333):264-268.
    [75]Musunuru K, Strong A, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus[J]. Nature.2010;466(7307):714-719.
    [1]Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med.2006;3(11):e442.
    [2]Mahn R, Heukamp LC, et al. Circulating microRNAs (miRNA) in serum of patients with prostate cancer[J]. Urology.2011;77(5):1265 e1269-1216.
    [3]Mudau M, Genis A, et al. Endothelial dysfunction:the early predictor of atherosclerosis[J]. Cardiovasc J Afr.2012;23(4):222-231.
    [4]Kozlov S, Balachonova T, et al. Carotid atherosclerosis, endothelial disfunction, and arterial stiffness in young and middle-aged men with coronary artery disease[J]. Int J Vasc Med.2012;950130.
    [5]Stancu CS, Toma L, et al. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis [J]. Cell Tissue Res.2012;349(2):433-446.
    [6]Te Boekhorst BC, van Tilborg GA, et al. Molecular MRI of Inflammation in Atherosclerosis[J]. Curr Cardiovasc Imaging Rep.2012;5(1):60-68.
    [7]Doring Y, Noels H, et al. The use of high-throughput technologies to investigate vascular inflammation and atherosclerosis[J]. Arterioscler Thromb Vasc Biol. 2012;32(2):182-195.
    [8]Holvoet P, Sinnaeve P. Angio-associated migratory cell protein and smooth muscle cell migration in development of restenosis and atherosclerosis[J]. J Am Coll Cardiol.2008;52(4):312-314.
    [9]Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers[J]. Int J Cardiol.1997;62 Suppl 2(S85-90.
    [10]Schwartz SM. Perspectives series:cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis[J]. J Clin Invest.1997; 99 (12):2814-2816.
    [11]Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis[J]. Cardiovasc Res.2012;95(2):156-164.
    [12]ten Cate H. Tissue factor-driven thrombin generation and inflammation in atherosclerosis[J]. Thromb Res.2012; 129 Suppl 2(S38-40).
    [13]Camera M, Brambilla M, et al. Tissue factor and atherosclerosis:not only vessel wall-derived TF, but also platelet-associated TF[J]. Thromb Res.2012; 129 (3): 279-284.
    [14]Ikeda U, Hojo Y, et al. Tissue factor overexpression in rat arterial neointima models:thrombosis and progression of advanced atherosclerosis[J]. Circulation. 2001;103(10):E59.
    [15]Asada Y, Marutsuka K, et al. The role of tissue factor in the pathogenesis of thrombosis and atherosclerosis[J]. J Atheroscler Thromb.1998;4(3):135-139.
    [16]Stanic B, Pandey D, et al. Increased epidermal growth factor-like ligands are associated with elevated vascular nicotinamide adenine dinucleotide phosphate oxidase in a primate model of atherosclerosis[J]. Arterioscler Thromb Vasc Biol. 2012;32(10):2452-2460.
    [17]Toma I, McCaffrey TA. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects[J]. Cell Tissue Res.2012; 347(1):155-175.
    [18]Luo W, Wang H, et al. P-selectin glycoprotein ligand-1 deficiency leads to cytokine resistance and protection against atherosclerosis in apolipoprotein E deficient mice[J]. Atherosclerosis.2012;220(1):110-117.
    [19]Papafaklis MI, Koskinas KC, et al. In-vivo assessment of the natural history of coronary atherosclerosis:vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression[J]. Curr Opin Cardiol.2010;25(6):627-638.
    [20]Koskinas KC, Feldman CL, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress:a serial, in vivo intravascular ultrasound study[J]. Circulation.2010;121(19): 2092-2101.
    [21]Koenen RR, Weber C. Platelet-derived chemokines in vascular remodeling and atherosclerosis[J]. Semin Thromb Hemost.2010;36(2):163-169.
    [22]Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure[J]. Science.2013;339(6116):161-166.
    [23]Levi M, van der Poll T, et al. Infection and inflammation as risk factors for thrombosis and atherosclerosis[J]. Semin Thromb Hemost.2012;38(5):506-514.
    [24]Li R, Bensen JT, et al. Family risk score of coronary heart disease (CHD) as a predictor of CHD:the Atherosclerosis Risk in Communities (ARIC) study and the NHLBI family heart study[J]. Genet Epidemiol.2000;18(3):236-250.
    [25]Nasir K, Budoff MJ, et al. Family history of premature coronary heart disease and coronary artery calcification:Multi-Ethnic Study of Atherosclerosis (MESA)[J]. Circulation.2007; 116(6):619-626.
    [26]Yarnell J, Yu S, et al. Family history, longevity, and risk of coronary heart disease: the PRIME Study[J]. Int J Epidemiol.2003;32(1):71-77.
    [27]Bachmann JM, Willis BL, et al. Association between family history and coronary heart disease death across long-term follow-up in men:the Cooper Center Longitudinal Study[J]. Circulation.2012;125(25):3092-3098.
    [28]Bensen JT, Li R, et al. Family history of coronary heart disease and pre-clinical carotid artery atherosclerosis in African-Americans and whites:the ARIC study: Atherosclerosis Risk in Communities[J]. Genet Epidemiol.1999;16(2):165-178.
    [29]Juonala M, Viikari JS, et al. Young adults with family history of coronary heart disease have increased arterial vulnerability to metabolic risk factors:the Cardiovascular Risk in Young Finns Study[J]. Arterioscler Thromb Vasc Biol. 2006;26(6):1376-1382.
    [30]Valdes AM, Wolfe ML, et al. Association of traditional risk factors with coronary calcification in persons with a family history of premature coronary heart disease: the study of the inherited risk of coronary atherosclerosis[J]. J Investig Med. 2001;49(4):353-361.
    [31]Fox CS, Polak JF, et al. Genetic and environmental contributions to atherosclerosis phenotypes in men and women:heritability of carotid intima-media thickness in the Framingham Heart Study[J]. Stroke.2003; 34 (2): 397-401.
    [32]Wang TJ, Nam BH, et al. Carotid intima-media thickness is associated with premature parental coronary heart disease:the Framingham Heart Study [J]. Circulation.2003;108(5):572-576.
    [33]Marenberg ME, Risch N, et al. Genetic susceptibility to death from coronary heart disease in a study of twins[J]. N Engl J Med.1994;330(15):1041-1046.
    [34]Zdravkovic S, Wienke A, et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins[J]. J Intern Med.2002; 252 (3): 247-254.
    [35]Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J]. Nature.2007;447(7145):661-678.
    [36]Preuss M, Konig IR, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study:A Genome-wide association meta-analysis involving more than 22 000 cases and 60 000 controls[J]. Circ Cardiovasc Genet.2010;3(5):475-483.
    [37]A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease[J]. Nat Genet.2011;43(4):339-344.
    [38]Lu X, Wang L, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease[J]. Nat Genet.2012; 44 (8):890-894.
    [39]Harismendy O, Notani D, et al.9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response[J]. Nature.2011; 470 (7333):264-268.
    [40]Deng Y, Zhao J, et al. MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus[J]. PLoS Genet.2013;9(2):e1003336.
    [41]Kumar V, Westra HJ, et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression[J]. PLoS Genet.2013; 9(1): el003201.
    [42]Pasmant E, Laurendeau I, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF[J]. Cancer Res.2007;67(8):3963-3969.
    [43]Jarinova O, Stewart AF, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus[J]. Arterioscler Thromb Vasc Biol.2009; 29 (10):1671-1677.
    [44]Visel A, Zhu Y, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature.2010;464(7287):409-412.
    [45]Wightman B, Ha I, et al. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell. 1993;75(5):855-862.
    [46]Lee RC, Feinbaum RL, et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell.1993; 75(5):843-854.
    [47]Liu H, Kohane IS. Tissue and process specific microRNA-mRNA co-expression in mammalian development and malignancy[J]. PLoS One.2009;4(5):e5436.
    [48]Mica E, Piccolo V, et al. Correction:High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera[J]. BMC Genomics.2010;11:109.
    [49]Sempere LF, Sokol NS, et al. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity[J]. Dev Biol.2003;259(1):9-18.
    [50]Ziu M, Fletcher L, et al. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury[J]. PLoS One.2011;6(2):e14724.
    [51]Wu T, Wieland A, et al. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation [J]. Proc Natl Acad Sci U S A.2012;109(25):9965-9970.
    [52]Liu M, Lang N, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells[J]. Cancer Lett.2011; 301 (2):151-160.
    [53]Yang SM, Huang C, et al. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN[J]. Toxicology.2013;306C(162-168.
    [54]Wang N, Zhang CQ, et al. miR-21 Down-Regulation Suppresses Cell Growth, Invasion and Induces Cell Apoptosis by Targeting FASL, TIMP3, and RECK Genes in Esophageal Carcinoma[J]. Dig Dis Sci.
    [55]Wang XF, Shi ZM, et al. MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2[J]. J Cancer Res Clin Oncol.2012;138(4):573-584.
    [56]Shen J, Wan R, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro[J]. Pancreatology.2012; 12 (2):91-99.
    [57]Li L, Yuan L, et al. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1[J]. Clin Exp Med.2012.
    [58]Li H, Hui L, et al. miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2[J]. Acta Biochim Biophys Sin (Shanghai).2012;44(3):269-277.
    [59]Zhao Y, Srivastava D. A developmental view of microRNA function[J]. Trends Biochem Sci.2007;32(4):189-197.
    [60]Lagos-Quintana M, Rauhut R, et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol.2002;12(9):735-739.
    [61]Ji R, Cheng Y, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J]. Circ Res.2007;100(11):1579-1588.
    [62]Dong S, Cheng Y, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem. 2009;284(43):29514-29525.
    [63]Tie Y, Liu B, et al. Circulating miRNA and cancer diagnosis[J]. Sci China C Life Sci.2009;52(12):1117-1122.
    [64]Xie L, Qian XP, et al. [Novel tumor markers-circulating miRNA][J]. Zhonghua Zhong Liu Za Zhi.2011;33(9):641-642.
    [65]Wang GK, Zhu JQ, et al. Circulating microRNA:a novel potential biomarker for early diagnosis of acute myocardial infarction in humans[J]. Eur Heart J. 2010;31(6):659-666.
    [66]D'Alessandra Y, Devanna P, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction[J]. Eur Heart J.2010;31(22):2765-2773.
    [67]Devaux Y, Vausort M, et al. Use of circulating microRNAs to diagnose acute myocardial infarction[J]. Clin Chem.2012;58(3):559-567.
    [68]Olivieri F, Antonicelli R, et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction[J]. Int J Cardiol.2012.
    [69]Corsten MF, Dennert R, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease[J]. Circ Cardiovasc Genet. 2010;3(6):499-506.
    [70]Adachi T, Nakanishi M, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction[J]. Clin Chem.2010;56(7):1183-1185.
    [71]Gidlof O, Smith JG, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction[J]. BMC Cardiovasc Disord.2013;13:12.
    [72]Hulsmans M, De Keyzer D, et al. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis[J]. FASEB J.2011; 25 (8):2515-2527.
    [73]Weber M, Baker MB, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity[J]. Biochem Biophys Res Commun. 2010;393(4):643-648.
    [74]Fang Y, Shi C, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro[J]. Proc Natl Acad Sci U S A. 2010;107(30):13450-13455.
    [75]Zhu S, Deng S, et al. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2[J]. Circ Res. 2013;112(1):152-164.
    [76]Li D, Yang P, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells[J]. J Hypertens.2010;28(8):1646-1654.
    [77]Wagner-Ecker M, Schwager C, et al. MicroRNA expression after ionizing radiation in human endothelial cells[J]. Radiat Oncol.2010;5:25.
    [78]Sun YQ, Zhang F, et al. [miR-126 modulates the expression of epidermal growth factor-like domain 7 in human umbilical vein endothelial cells in vitro][J]. Nan Fang Yi Ke Da Xue Xue Bao.2010;30(4):767-770.
    [79]Wang S, Aurora AB, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell.2008;15(2):261-271.
    [80]Wang HJ, Lo WY, et al. Angiotensin-(1-7) decreases glycated albumin-induced endothelial interleukin-6 expression via modulation of miR-146a[J]. Biochem Biophys Res Commun.2013;430(3):1157-1163.
    [81]Vasa-Nicotera M, Chen H, et al. miR-146a is modulated in human endothelial cell with aging[J]. Atherosclerosis.2011;217(2):326-330.
    [82]Pulkkinen KH, Yla-Herttuala S, et al. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells[J]. Free Radic Biol Med. 2011;51(11):2124-2131.
    [83]Liu X, Cheng Y, et al. Cell-specific effects of miR-221/222 in vessels:molecular mechanism and therapeutic application[J]. J Mol Cell Cardiol. 2012;52(1):245-255.
    [84]Forrest AR, Kanamori-Katayama M, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation[J]. Leukemia.2010;24(2):460-466.
    [85]Salvatori B, Iosue I, et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells[J]. Cell Death Dis.2012;3:e413.
    [86]Munoz-Pacheco P, Ortega-Hernandez A, et al. Ezetimibe inhibits PMA-induced monocyte/macrophage differentiation by altering microRNA expression:a novel anti-atherosclerotic mechanism[J]. Pharmacol Res.2012;66(6):536-543.
    [87]Graff JW, Dickson AM, et al. Identifying functional microRNAs in macrophages with polarized phenotypes[J]. J Biol Chem.2012;287(26):21816-21825.
    [88]Louafi F, Martinez-Nunez RT, et al. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta} [J]. J Biol Chem.2010;285(53):41328-41336.
    [89]Duan M, Yao H, et al. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy[J]. PLoS One. 2013;8(3):e60170.
    [90]Sharbati S, Sharbati J, et al. Quantification and accurate normalisation of small RNAs through new custom RT-qPCR arrays demonstrates Salmonella-induced microRNAs in human monocytes[J]. BMC Genomics.2012; 13:23.
    [91]Rosa A, Ballarino M, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation[J]. Proc Natl Acad Sci U S A.2007;104(50):19849-19854.
    [92]Najafi-Shoushtari SH. MicroRNAs in cardiometabolic disease[J]. Curr Atheroscler Rep.2011;13(3):202-207.
    [93]Cremer TJ, Ravneberg DH, et al. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response[J]. PLoS One.2009;4(12):e8508.
    [94]O'Connell RM, Taganov KD, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci U S A.2007; 104 (5): 1604-1609.
    [95]Zhu J, Chen T, et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10[J]. PLoS One.2012;7(11): e46551.
    [96]Bhaumik D, Scott GK, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8[J]. Aging (Albany NY).2009;1(4):402-411.
    [97]Yang K, He YS, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4[J]. FEBS Lett.2011;585(6):854-860.
    [98]Khaidakov M, Mehta JL. Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21[J]. PLoS One.2012;7(10):e46973.
    [99]Yang G, Pei Y, et al. MicroRNA-21 represses human cystathionine gamma-lyase expression by targeting at specificity protein-1 in smooth muscle cells[J]. J Cell Physiol.2012;227(9):3192-3200.
    [100]Mohamed JS, Hajira A, et al. Desmin regulates airway smooth muscle hypertrophy through early growth-responsive protein-1 and microRNA-26a[J]. J Biol Chem.2011;286(50):43394-43404.
    [101]Nazari-Jahantigh M, Wei Y, et al. The role of microRNAs in arterial remodelling[J]. Thromb Haemost.2012;107(4):611-618.
    [102]Elia L, Quintavalle M, et al. The knockout of miR-143 and-145 alters smooth muscle cell maintenance and vascular homeostasis in mice:correlates with human disease[J]. Cell Death Differ.2009; 16(12):1590-1598.
    [103]Cordes KR, Sheehy NT, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity [J]. Nature.2009;460(7256):705-710.
    [104]Dentelli P, Rosso A, et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression[J]. Arterioscler Thromb Vasc Biol.2010;30(8):1562-1568.
    [105]Dews M, Homayouni A, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster[J]. Nat Genet.2006;38(9):1060-1065.
    [106]Kuhnert F, Kuo CJ. miR-17-92 angiogenesis micromanagement[J]. Blood. 2010;115(23):4631-4633.
    [107]Doebele C, Bonauer A, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells[J]. Blood. 2010;115(23):4944-4950.
    [108]Dews M, Fox JL, et al. The myc-miR-17-92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors[J]. Cancer Res.2010;70(20):8233-8246.
    [109]Melo SA, Kalluri R. Angiogenesis is controlled by miR-27b associated with endothelial tip cells[J]. Blood.2012;119(11):2439-2440.
    [110]Urbich C, Kaluza D, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A[J]. Blood.2012;119(6):1607-1616.
    [111]Huang F, Zhu X, et al. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival[J]. Int J Mol Med.2013;31(2):484-492.
    [112]Sasahira T, Kurihara M, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer[J]. Br J Cancer. 2012;107(4):700-706.
    [113]Chen JJ, Zhou SH. Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway [J]. Cardiol J. 2011;18(6):675-681.
    [114]Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5[J]. Blood. 2008;111(3):1217-1226.
    [115]Mulik S, Xu J, et al. Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus[J]. Am J Pathol.2012;181(2):525-534.
    [116]Kong W, He L, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer[J]. Oncogene.2013.
    [117]Lou YL, Guo F, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia[J]. Mol Cell Biochem.2012;370(1-2):45-51.
    [118]Alaiti MA, Ishikawa M, et al. Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis[J]. J Cell Mol Med.2012; 16(10):2413-2421.
    [119]Zhao T, Li J, et al. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1[J]. Am J Physiol Endocrinol Metab.2010;299(1):E110-116.
    [120]Ito T, Yagi S, et al. MicroRNA-34a regulation of endothelial senescence[J]. Biochem Biophys Res Commun.2010;398(4):735-740.
    [121]Menghini R, Casagrande V, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1[J]. Circulation.2009;120(15): 1524-1532.
    [122]Zernecke A, Bidzhekov K, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection [J]. Sci Signal.2009;2(100):ra81.
    [123]Ranghino A, Cantaluppi V, et al. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia[J]. Int J Immunopathol Pharmacol.2012;25(1):75-85.
    [124]Zhang Y, Liu D, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Mol Cell.2010;39(1):133-144.
    [125]Wei Y, Nazari-Jahantigh M, et al. MicroRNA-126,-145, and-155:a therapeutic triad in atherosclerosis?[J]. Arterioscler Thromb Vasc Biol.2013;33(3):449-454.
    [126]Tsoi LC, Spain SL, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet.2012;44(12):1341-1348.
    [127]Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants[J]. Nat Genet.2009;41(3):334-341.
    [128]Hinohara K, Nakajima T, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations[J]. J Hum Genet.2008;53(4):357-359.
    [129]Teslovich TM, Musunuru K, et al. Biological, clinical and population relevance of 95 loci for blood lipids[J]. Nature.2010;466(7307):707-713.
    [130]Teyssier C, Chen D, et al. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function[J]. J Biol Chem.2002;277(48):46066-46072.
    [131]Teyssier C, Ou CY, et al. Transcriptional intermediary factor 1 alpha mediates physical interaction and functional synergy between the coactivator-associated arginine methyltransferase 1 and glucocorticoid receptor-interacting protein 1 nuclear receptor coactivators[J]. Mol Endocrinol.2006;20(6):1276-1286.
    [132]Troffer-Charlier N, Cura V, et al. Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains[J]. EMBO J. 2007;26(20):4391-4401.
    [133]Warfel NA, Newton AC. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP):a new player in cell signaling[J]. J Biol Chem. 2012;287(6):3610-3616.
    [134]Fan S, Ma YX, et al. The multisubstrate adapter Gabl regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair [J]. Mol Cell Biol.2001;21(15):4968-4984.
    [135]Yue WW, Hassler M, et al. Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase[J]. EMBO J. 2007;26(20):4402-4412.
    [136]Mudd SH, Cantoni GL. Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers' yeast[J]. J Biol Chem.1958;231(1): 481-492.
    [137]Mato JM, Alvarez L, et al. S-adenosylmethionine synthesis:molecular mechanisms and clinical implications[J]. Pharmacol Ther.1997;73(3):265-280.
    [138]Kullo IJ, Ding K, et al. Novel genomic loci influencing plasma homocysteine levels[J]. Stroke.2006;37(7):1703-1709.
    [139]Schurter BT, Koh SS, et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1[J]. Biochemistry.2001;40(19):5747-5756.
    [140]Chen D, Huang SM, et al. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300[J]. J Biol Chem.2000;275 (52):40810-40816.
    [141]An W, Kim J, et al. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53[J]. Cell.2004;117(6):735-748.
    [142]Covic M, Hassa PO, et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression[J]. EMBO J.2005;24(1):85-96.
    [143]Wei Y, Horng JC, et al. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP[J]. Biochemistry.2003;42(23):7044-7049.
    [144]Naeem H, Cheng D, et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation [J]. Mol Cell Biol.2007;27(1):120-134.
    [145]Lee J, Bedford MT. PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays[J]. EMBO Rep.2002;3(3):268-273.
    [146]Fujiwara T, Mori Y, et al. CARM1 regulates proliferation of PC12 cells by methylating HuD[J]. Mol Cell Biol.2006;26(6):2273-2285.
    [147]Li H, Park S, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase[J]. J Biol Chem.2002;277(47):44623-44630.
    [148]Ohkura N, Takahashi M, et al. Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner[J]. J Biol Chem.2005;280(32):28927-28935.
    [149]Cheng D, Cote J, et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing[J]. Mol Cell.2007;25(1):71-83.
    [150]Kutuk O, Basaga H. Inflammation meets oxidation:NF-kappaB as a mediator of initial lesion development in atherosclerosis [J]. Trends Mol Med. 2003;9(12):549-557.
    [151]Martin-Ventura JL, Blanco-Colio LM, et al. NF-kappaB activation and Fas ligand overexpression in blood and plaques of patients with carotid atherosclerosis: potential implication in plaque instability[J]. Stroke.2004;35(2):458-463.
    [152]Sun X, Feinberg MW. NF-kappaB and hypoxia:a double-edged sword in atherosclerosis[J]. Am J Pathol.2012;181(5):1513-1517.
    [153]Hassa PO, Covic M, et al. Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1[J]. J Mol Biol.2008;377(3):668-678.
    [154]Wu Q, Bruce AW, et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation[J]. Stem Cells.2009;27(11):2637-2645.
    [155]Yadav N, Lee J, et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice[J].Proc Natl Acad Sci U S A.2003;100(11):6464-6468.
    [156]O'Brien KB, Alberich-Jorda M, et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells[J]. Development. 2010;137(13):2147-2156.
    [157]Fauquier L, Duboe C, et al. Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes[J]. FASEB J.2008;22(9):3337-3347.
    [158]Yadav N, Cheng D, et al. CARM1 promotes adipocyte differentiation by coactivating PPARgamma[J]. EMBO Rep.2008;9(2):193-198.
    [159]Xu Z, Jiang J, et al. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells[J]. PLoS One.2013;8(1):e53146.
    [1]Tsoi LC, Spain SL, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet.2012;44(12):1341-1348.
    [2]Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants[J]. Nat Genet.2009;41(3):334-341.
    [3]Hinohara K, Nakajima T, et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations[J]. J Hum Genet.2008;53(4):357-359.
    [4]Teslovich TM, Musunuru K, et al. Biological, clinical and population relevance of 95 loci for blood lipids[J]. Nature.2010;466(7307):707-713.
    [5]Teyssier C, Chen D, et al. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function[J]. J Biol Chem.2002;277(48):46066-46072.
    [6]Teyssier C, Ou CY, et al. Transcriptional intermediary factor 1 alpha mediates physical interaction and functional synergy between the coactivator-associated arginine methyltransferase 1 and glucocorticoid receptor-interacting protein 1 nuclear receptor coactivators[J]. Mol Endocrinol.2006;20(6):1276-1286.
    [7]Troffer-Charlier N, Cura V, et al. Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains[J]. EMBO J.2007; 26(20):4391-4401.
    [8]Warfel NA, Newton AC. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP):a new player in cell signaling[J]. J Biol Chem. 2012;287(6):3610-3616.
    [9]Fan S, Ma YX, et al. The multisubstrate adapter Gabl regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNArepair[J]. Mol Cell Biol.2001;21(15):4968-4984.
    [101 Yue WW, Hassler M, et al. Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase[J]. EMBO J.2007;26 (20): 4402-4412.
    [11]Mudd SH, Cantoni GL. Activation of methionine for transmethylation. Ⅲ. The methionine-activating enzyme of Bakers' yeast[J]. J Biol Chem.1958;231 (1): 481-492.
    [12]Mato JM, Alvarez L, et al. S-adenosylmethionine synthesis:molecular mechanisms and clinical implications [J]. Pharmacol Ther.1997;73(3):265-280.
    (13] Kullo IJ, Ding K, et al. Novel genomic loci influencing plasma homocysteine levels[J]. Stroke.2006;37(7):1703-1709.
    [14]Schurter BT, Koh SS, et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1[J]. Biochemistry.2001;40(19):5747-5756.
    [15]Chen D, Huang SM, et al. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300[J]. J Biol Chem.2000;275 (52):40810-40816.
    [16]An W, Kim J, et al. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53[J]. Cell.2004;117(6):735-748.
    [17]Covic M, Hassa PO, et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression[J]. EMBO J.2005;24(1):85-96.
    [18]Wei Y, Horng JC, et al. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP[J]. Biochemistry.2003;42(23):7044-7049.
    [19]Naeem H, Cheng D, et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation[J]. Mol Cell Biol.2007;27(1):120-134.
    [20]Lee J, Bedford MT. PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays[J]. EMBO Rep.2002;3(3):268-273.
    [21]Fujiwara T, Mori Y, et al. CARM1 regulates proliferation of PC12 cells by methylating HuD[J]. Mol Cell Biol.2006;26(6):2273-2285.
    [22]Li H, Park S, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase[J]. J Biol Chem.2002;277(47):44623-44630.
    [23]Ohkura N, Takahashi M, et al. Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner [J]. J Biol Chem.2005;280(32):28927-28935.
    [24]Cheng D, Cote J, et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing[J]. Mol Cell.2007;25(1):71-83.
    [25]Kutuk O, Basaga H. Inflammation meets oxidation:NF-kappaB as a mediator of initial lesion development in atherosclerosis[J]. Trends Mol Med.2003; 9(12): 549-557.
    [26]Martin-Ventura JL, Blanco-Colio LM, et al. NF-kappaB activation and Fas ligand overexpression in blood and plaques of patients with carotid atherosclerosis: potential implication in plaque instability [J]. Stroke.2004;35(2):458-463.
    [27]Sun X, Feinberg MW. NF-kappaB and hypoxia:a double-edged sword in atherosclerosis[J]. Am J Pathol.2012;181(5):1513-1517.
    [28]Hassa PO, Covic M, et al. Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1[J]. J Mol Biol.2008;377(3):668-678.
    [29]Wu Q, Bruce AW, et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation[J]. Stem Cells.2009;27(11):2637-2645.
    [30]Yadav N, Lee J, et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice[J]. Proc Natl Acad Sci U S A.2003; 100(11):6464-6468.
    [31]O'Brien KB, Alberich-Jorda M, et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells[J]. Development. 2010;137(13):2147-2156.
    [32]Fauquier L, Duboe C, et al. Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes[J]. FASEB J.2008;22(9):3337-3347.
    [33]Yadav N, Cheng D, et al. CARM1 promotes adipocyte differentiation by coactivating PPARgamma[J]. EMBO Rep.2008;9(2):193-198.
    [34]Xu Z, Jiang J, et al. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells[J]. PLoS One.2013;8(1):e53146.
    [1]Grover SA, Abrahamowicz M, et al. The benefits of treating hyperlipidemia to prevent coronary heart disease. Estimating changes in life expectancy and morbidity[J]. JAMA.1992; 267 (6):816-822.
    [2]Wilson DE, Hata A, et al. Mutations in exon 3 of the lipoprotein lipase gene segregating in a family with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabetes[J]. J Clin Invest.1993;92(1):203-211.
    [3]Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases[J]. N Engl J Med.1989;320(16):1060-1068.
    [4]Goldberg IJ, Merkel M. Lipoprotein lipase:physiology, biochemistry, and molecular biology [J]. Front Biosci.2001;6(D):388-405.
    [5]Seo T, Al-Haideri M, et al. Lipoprotein lipase-mediated selective uptake from low density lipoprotein requires cell surface proteoglycans and is independent of scavenger receptor class B type 1[J]. J Biol Chem.2000;275(39):30355-30362.
    [61 Page S, Judson A, et al. Interaction of lipoprotein lipase and receptor-associated protein[J]. J Biol Chem.2006;281(20):13931-13938.
    [71 Montalto MB, Bensadoun A. Lipoprotein lipase synthesis and secretion:effects of concentration and type of fatty acids in adipocyte cell culture[J]. J Lipid Res. 1993;34(3):397-407.
    [81 Camps L, Reina M, et al. Lipoprotein lipase in lungs, spleen, and liver:synthesis and distribution[J]. J Lipid Res.1991;32(12):1877-1888.
    [9]Vilaro S, Llobera M, et al. Lipoprotein lipase uptake by the liver:localization, turnover, and metabolic role[J]. Am J Physiol.1988;254(5 Pt 1):G711-722.
    [101 Sparkes RS, Zollman S, et al. Human genes involved in lipolysis of plasma lipoproteins:mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21[J]. Genomics.1987; 1(2):138-144.
    [11]Wittrup HH, Andersen RV, et al. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease:cross-sectional, prospective, and case-control studies from the Copenhagen City Heart Study[J]. J Clin Endocrinol Metab.2006; 91(4):1438-1445.
    [12]Sagoo GS, Tatt I, et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease:a HuGE association review and meta-analysis[J]. Am J Epidemiol.2008; 168 (11):1233-1246.
    [13]Chen JM, Ferec C, et al. A systematic analysis of disease-associated variants in the 3'regulatory regions of human protein-coding genes Ⅱ:the importance of mRNA secondary structure in assessing the functionality of 3'UTR variants[J]. Hum Genet.2006; 120(3):301-333.
    [14]Goodarzi MO, Wong H, et al. The 31 untranslated region of the lipoprotein lipase gene:haplotype structure and association with post-heparin plasma lipase activity[J]. J Clin Endocrinol Metab.2005;90(8):4816-4823.
    [15]Garcia-Rios A, Delgado-Lista J, et al. Genetic variations at the lipoprotein lipase gene influence plasma lipid concentrations and interact with plasma n-6 polyunsaturated fatty acids to modulate lipid metabolism[J]. Atherosclerosis. 2011;218(2):416-422.
    [16]Marques-Vidal P, Bochud M, et al. No interaction between alcohol consumption and HDL-related genes on HDL cholesterol levels[J]. Atherosclerosis. 2010;211(2):551-557.
    [17]Voruganti VS, Cole SA, et al. Genetic variation in APOJ, LPL, and TNFRSF10B affects plasma fatty acid distribution in Alaskan Eskimos[J]. Am J Clin Nutr. 2010;91(6):1574-1583.
    [18]Shi Y, Seto E, et al. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein[J]. Cell. 1991;67(2):377-388.
    [19]Kathiresan S, Melander O, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans[J]. Nat Genet.2008;40(2):189-197.
    [20]Gaudet D, Methot J, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency:an open-label trial[J]. Gene Ther.2013;20(4):361-369.
    [21]Gaudet D, Methot J, et al. Gene therapy for lipoprotein lipase deficiency [J]. Curr Opin Lipidol.2012;23(4):310-320.
    [22]Ranganathan G, Unal R, et al. The lipoprotein lipase (LPL) S447X gain of function variant involves increased mRNA translation[J]. Atherosclerosis.2011; 221(1):143-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700