用户名: 密码: 验证码:
ABCG1基因功能调节在动脉粥样硬化及巨噬细胞胆固醇外流中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:ABCG1基因多态性对巨噬细胞胆固醇外流功能的影响及机制研究
     胆固醇逆向转运是机体拮抗动脉粥样硬化的重要防御机制。巨噬细胞胆固醇外流是胆固醇逆向转运过程的起始,也是关键限速步骤。胆固醇外流是受到严格调控的主动转运过程。膜转运蛋白ABCG1在其中发挥重要作用,介导巨噬细胞内游离胆固醇和7-酮基胆固醇向胞外成熟高密度脂蛋白颗粒转运。特异性敲除ABCG1基因导致小鼠体内脂质代谢紊乱、外周组织内胆固醇沉积和大量泡沫细胞形成。目前研究显示多种因素可能影响ABCG1基因功能,包括基因多态性、microRNA及他汀类药物等。最近我们实验室对ABCG1基因单核苷酸多态性与冠心病发病的相关性研究显示,ABCG1启动子区-367G>A多态性与人群冠心病发生呈负相关,首次发现人ABCG1基因可能具有致动脉粥样硬化作用。据此,本研究将在这一发现的基础上更深入探讨ABCG1启动子区-367G>A多态性对基因表达与介导巨噬细胞胆固醇外流功能的影响,及其作用机制。
     研究目的
     1.调查ABCG1启动子区-367G>A多态性对ABCG1mRNA及蛋白表达的影响;调查ABCG1-367G>A多态性对ABCG1介导巨噬细胞胆固醇外流功能的影响;探讨相关发生机制;
     2.评价ABCG1启动子区-367G>A多态性对转录因子结合及基因启动子转录活性影响;
     3.调查ABCG1启动子区-367G>A多态性对凋亡相关基因表达的影响;
     方法
     1.采集健康受试者外周血,通过Ficoll密度梯度离心法分离人外周血单个核细胞(PBMCs),体外培养并诱导巨噬细胞分化;
     2.通过荧光实时定量PCR及Western blotting技术检测PBMCs巨噬细胞中ABCG1和ABCA1表达水平;
     3.通过测定巨噬细胞NBD胆固醇外流率,评价不同基因型PBMCs巨噬细胞胆固醇外流功能;
     4.构建Luciferase报告基因载体,转染培养细胞后检测报告基因表达水平,评价ABCG1-367G>A位点改变对基因启动子转录活性的影响;
     5.采用EMSA凝胶迁移实验分析ABCG1-367G>A位点改变对ABCG1启动子与转录因子结合的影响;
     6.使用荧光实时定量PCR分析不同基因型PBMCs巨噬细胞中凋亡相关基因mRNA表达水平;
     结果
     1.体外培养HEK293T细胞中分别转染携带-367G或-367A序列的报告基因质粒载体,测定Luciferase报告基因表达水平。结果显示,基础状态-367A载体Luciferase报告基因活性显著低于-367G载体(12±1.5vs.22±2,n=4,p<0.01),LXR激动剂TO-901317刺激状态下-367A和-367G载体Luciferase报告基因活性均增加,但-367A报告基因活性显著低于-367G (21±2vs.32±3,n=4,p<0.01)。体外培养的HepG2细胞与THP-1细胞中,实验结果与HEK293T细胞结果相似;
     2.将志愿者按照ABCG1-367G>A基因型不同分为三组:G/G型、G/A型和A/A型。与G/G型(n=25)相比,G/A型(0.87±0.04,n=22,p<0.01)和A/A型(0.41±0.10,n=5,p<0.01)单核巨噬细胞ABCG1mRNA表达明显降低;
     3. PBMCs巨噬细胞中ABCG1蛋白水平在三组间比较:与G/G型(n=10)相比,G/A型(n=8,p<0.05)ABCG1表达明显降低,A/A型亦明显降低(p<0.01):另外,膜转运蛋白ABCA1及SR-B1蛋白表达水平在三组之间未见明显差异;
     4. ABCG1介导的巨噬细胞胆固醇外流率测定结果显示,与G/G组相比,G/A组与A/A组ABCG1介导的巨噬细胞胆固醇外流率均明显降低(p<0.01):G/G组外流率为29.6%±2.1%,n=15;G/A组外流率24.9%±2.9%,n=10;A/A组外流率22.9%±3.8%,n=4。G/A组与A/A组外流率之间未见明显差异(p>0.05);
     5.EMSA实验中,分别使用包含位点-367G(G)或者-367A(A)的合成生物素标记探针与THP-1细胞核蛋白提取物反应,结果显示G探针区域可见一主要条带,条带强度随加入核蛋白量的增加而呈现增强,显示G探针可与核蛋白结合。而在A探针区域,未见明显结合条带,提示-367G>A位点改变影响DNA序列与核蛋白结合;
     6. PBMCs巨噬细胞与50μg/ml ox-LDL预孵育48小时后通过荧光实时定量PCR检测各组细胞中凋亡相关基因Bok和Bid基因表达水平。结果显示与G/G组(n=8)相比,G/A组和A/A组(G/A+A/A:n=7,p<0.01) PBMCs细胞中Bok基因表达水平明显增高,Bid基因表达水平同样呈现增高(p<0.01);
     结论
     1. ABCG1-367G>A位点改变削弱转录因子与ABCG1启动子结合作用,降低基因启动子转录活性,进而降低巨噬细胞中ABCG1表达水平及其介导的胆固醇外流功能。
     2. ABCG1-367G>A位点改变上调巨噬细胞内凋亡相关基因表达水平,后者可能与巨噬细胞凋亡增加及动脉粥样硬化发生降低相关。
     第二部分:他汀对ABCG1介导的巨噬细胞胆固醇外流的影响及机制研究
     他汀类药物是目前临床应用最为广泛的一类调脂药物,1995年以来多项大规模临床研究结果显示他汀对于冠心病的一级、二级预防有明显作用,显著减少重要心血管事件及死亡率。其主要通过竞争性抑制3-羟基3-甲基戊二酰辅酶A (HMG-CoA)还原酶来减少胆固醇的生物合成,从而有效地降低机体总胆固醇和低密度脂蛋白胆固醇水平。除此以外,他汀类药物还存在改善内皮功能、减少斑块部位的炎症及氧化应激、稳定斑块及减少血栓形成等多种作用。最近研究显示,他汀影响膜蛋白ABCA1表达水平及其介导的巨噬细胞胆固醇外流过程。巨噬细胞胆固醇外流是胆固醇逆向转运过程中的关键限速步骤。机体通过胆固醇逆向转运将动脉壁过多的胆固醇运送回到肝脏,促进其经胆道排泄,从而拮抗动脉粥样硬化发生。ABCG1介导的胆固醇外流与ABCA1途径同为巨噬细胞胆固醇外流的两大重要途径。目前对于他汀类药物是否影响ABCG1介导的巨噬细胞胆固醇外流过程尚无报道。本研究拟通过评价他汀类药物对膜蛋白ABCG1表达及功能的影响,来全面了解他汀对巨噬细胞胆固醇外流过程的影响,并探讨其可能的作用机制。
     研究目的
     1.评价他汀类药物对巨噬细胞中ABCG1mRNA及蛋白表达水平的影响;
     2.评价他汀类药物对ABCG1介导的巨噬细胞胆固醇外流功能的影响,并探讨可能的作用机制;
     方法
     1.分别使用不同浓度阿托伐他汀和辛伐他汀孵育体外培养的THP-1和PBMCs巨噬细胞。通过测定胆固醇外流率,评价他汀类药物对巨噬细胞胆固醇外流功能的影响;
     2.通过荧光实时定量PCR以及免疫印迹Western blotting方法分别检测他汀作用前后细胞中ABCG1和ABCA1mRNA及蛋白表达水平的变化;
     3.使用荧光实时定量PCR检测巨噬细胞中ABCG1两种亚型ABCG1-S和ABCG1-L在他汀作用前后mRNA水平变化;分别测定胆固醇外流率来评价ABCG1-S与ABCG1-L之间的功能差异;
     4.通过生物素标记巨噬细胞膜表面蛋白,结合亲和素免疫共沉淀方法,分析他汀作用下巨噬细胞膜表面ABCG1蛋白表达变化;
     5.使用LXR激动剂TO-901317联合他汀孵育THP-1巨噬细胞,测定药物作用前后巨噬细胞胆固醇外流率变化,并检测ABCG1两种亚型mRNA水平变化。比较联合使用LXR激动剂与单用他汀时,ABCG1基因表达和功能的改变。探讨相关作用机制。
     结果
     1.辛伐他汀孵育THP-1巨噬细胞24小时后,ABCG1介导的巨噬细胞胆固醇外流率显著降低,对照组外流率17.3%±0.8%,1μM辛伐他汀组降至13.5%±1.2%(n=4,p<0.01)。当使用10μM辛伐他汀孵育细胞,胆固醇外流率进一步下降至11.5%±0.6%(n=4,p<0.01);使用阿托伐他汀孵育THP-1细胞24小时,ABCG1介导的胆固醇外流率亦呈显著降低,对照组外流率17.3%±0.8%,1μM阿托伐他汀组外流率降至14.4%±1.1%(n=4,p<0.01),10μM阿托伐他汀组外流率11.6%±1.4%(n=4,p<0.01);PBMCs巨噬细胞中实验结果与THP-1结果相似;
     2.阿托伐他汀孵育细胞24小时,THP-1或PBMCs巨噬细胞内ABCG1蛋白表达未见明显改变;换用辛伐他汀孵育细胞,所观察到的结果与之类似;与ABCG1表达结果相对,他汀孵育24小时后THP-1或PBMCs巨噬细胞中ABCA1蛋白水平呈现明显降低,显示他汀对两种膜转运蛋白表达可能存在不同作用;
     3.阿托伐他汀10μM或辛伐他汀10μM孵育细胞24小时,THP-1巨噬细胞膜表面的ABCG1表达水平未见明显改变,说明他汀并没有影响ABCG1在巨噬细胞膜表面的表达;
     4.他汀孵育THP-1细胞24小时后,使用荧光实时定量PCR检测细胞中ABCG1两种亚型-ABCG1-S和ABCG1-L mRNA表达水平,结果显示1μM辛伐他汀组ABCG1-S/ABCG1-L mRNA比值从孵育前1.4±0.17降为0.7±0.13(n=4,p<0.01),10μM辛伐他汀组降为0.14±0.03(n=4,p<0.01);而10μM阿托伐他汀孵育24小时后ABCG1-S/ABCG1-L mRNA比值降为0.24±0.05(n=4,p<0.01)。表明他汀类药物显著影响ABCG1两种亚型的表达水平;
     5.他汀联合TO-901317组与单用他汀组相比,ABCG1-S/ABCG1-L mRNA表达比值显著增加;提示小剂量TO-901317(lnM)能够拮抗他汀所导致ABCG1亚型表达变化;
     6.巨噬细胞胆固醇外流率测定结果显示,单用10μM辛伐他汀组胆固醇外流率为12.4%±1.2%,联用1nM TO-901317后胆固醇外流率增至16%±2.5%;单用10μM阿托伐他汀组胆固醇外流率为11.3%±0.5%,联用1nM TO-901317后胆固醇外流率增至15.2%±1.5%(n=4p<0.05);提示小剂量TO-901317能够改善他汀引起的ABCG1胆固醇外流率降低。
     结论
     1.阿托伐他汀和辛伐他汀降低ABCG1介导的巨噬细胞胆固醇外流功能。其作用可能通过LXR依赖性方式进行;
     2.他汀作用不改变ABCG1,总蛋白表达水平,但是改变了具有功能差异的两种ABCG1蛋白亚型在巨噬细胞中的表达比例,从而影响ABCG1总体功能,这可能代表了ABCG1基因一种新的功能调节方式;
     3.他汀与LXR激动剂联合使用可能能够减少他汀类药物影响巨噬细胞胆固醇外流的副作用,从而增加临床获益。
Part Ⅰ
     Background:
     Macrophage cholesterol efflux is the initial step of reverse cholesterol transport, and provides protection against atherosclerosis. Lipid transporters ABCA1and ABCG1are essential components of macrophage cholesterol efflux, and play important but different roles in this process. Both in vitro and in vivo studies show that ABCA1functions in transporting cellular cholesterol from macrophage to lipid-poor apoA-1lipoprotein, whereas ABCG1transports cholesterol to mature HDL. Although studies have demonstrated anti-atherosclerosis effect of ABCA1, functional role of ABCG1in atherosclerosis remains controversial, mostly because of inconsistent results from animal studies. Recently, our lab performed an association study on ABCG1gene polymorphisms with coronary artery disease in humans. We found that human ABCG1-367G>A polymorphism located in the gene promote region was significantly associated with decreased risk for coronary artery disease and myocardial infarction. For the first time, our findings showed that ABCG1gene may promote development of atherosclerosis in humans. In this project, we further investigate whether the ABCG1genetic variant may alter the gene function, and explore the underlying mechanisms.
     Objective:
     1. To determine if ABCG1-367G>A polymorphism have an influence on the gene expression.
     2. To evaluate if ABCG1-367G>A polymorphism have an influence on function of ABCG1-mediated cholesterol efflux.
     3. To determine if ABCG1-367G>A polymorphism impair transcription factor binding and promoter activity.
     Methods and Results:
     1. Peripheral blood mononuclear cells were isolated from healthy subjects through Ficoll-Paque density gradient centrifugation and differentiated into macrophages using human macrophage colony-stimulating factor. We measured ABCG1mRNA level in macrophages from human subjects with different genotypes for ABCG1-367G>A using quantitative real-time PCR. Our results showed that ABCG1mRNA expression was significantly lower in macrophages from subjects with AA genotype than that in subjects with GG genotype (0.41±0.10of A/A, n=5; vs. G/G, n=25; p<0.01). ABCG1mRNA expression was also decreased in subjects with G/A genotype (0.87±0.04, n=22, p<0.01).
     2. Through Western blot analysis, ABCG1protein level appeared significantly lower in macrophages from A/A subjects compared to that of G/G subjects (p<0.01). G/A subjects also showed a significantly lower ABCG1protein level compared to G/G subjects (p<0.05). On the other hand, ABCA1and SR-B1protein levels showed no significant difference between G/G, G/A and A/A subject groups.
     3. We evaluate effect of ABCG1-367G>A polymorphism on the gene function by measuring ABCG1-mediated cholesterol efflux. The results showed that percentage cholesterol efflux of macrophages from A/A subjects (22.9%±3.8%, n=4) was lower than that of macrophages from either G/G (29.6%±2.1%, n=15, p<0.01) or G/A subjects (24.9%±2.9%, n=10,p<0.01). There was no significant difference between G/G and G/A subjects (p>0.05).
     4. To examine whether the ABCG1-367G>A affect promoter transcriptional activity, we measured luciferase activity of ABCG1promoter construct containing the substitution. Our results showed that relative luciferase activity of p-A construct was significantly lower than that of wild-type p-G construct in HEK293T cells under either basal or TO-901317activated conditions. The results were confirmed in another two different cell lines, HepG2and THP-1cells.
     5. We performed electrophoretic mobility shift assay and evaluated whether ABCG1-367G>A polymorphism may affect specific transcription factor binding. The results showed that one major DNA-protein complex was detected using the probe corresponding to the G allele, and its band intensity was markedly reduced in the presence of unlabelled G allele. There was no major band detected in the assay using the A allele probe.
     6. We examined mRNA expressions of proapoptotic genes using quantitative real-time PCR. The results showed that bok mRNA level was significantly increased in macrophages from A/A and G/A subjects compared to that of G/G subjects. The bid mRNA level was also increased in A/A and G/A macrophages compared to that of G/G macrophages.
     Conclusion:
     The ABCG1-367G>A variant impaired transcription factor binding of the promoter and decreased its transcriptional activity. The genetic variant has an allele-specific effect on ABCG1gene expression and function in human macrophages, which provide evidence of a genotypic effect on atherosclerosis.
     Part II
     Background:
     Statins are competitive inhibitors for3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme in cholesterol synthesis. They are the most widely used cholesterol-lowering agents for lowering low-density lipoprotein (LDL) cholesterol concentration and for prevention of coronary artery disease. They reduce LDL-cholesterol concentration through the blockade of mevalonate pathway, the metabolic pathway that produces cholesterol, and the increases of LDL catabolism. Besides the effects on lowering LDL-cholesterol, statins showed pleiotropic effects including improving endothelial function, enhancing the stability of atherosclerotic plaques, decreasing oxidative stress and inflammation, and inhibiting the thrombogenic response. In addition, recent studies show that statins treatment may have influence on macrophage cholesterol efflux. Statins reduce ABCA1expression and ABCA1-mediated cholesterol efflux in macrophages. While statins effect on ABCG1, another important lipid transporter for macrophage cholesterol efflux, is still unclear. Here, we investigated statins effect on expression and functionality of ABCG1in human macrophages, and explore the underlying mechanism.
     Objective:
     1. To determine statins effect on ABCG1expression level in human macrophages.
     2. To examine statins effect on ABCG1function, and explore the underlying mechanism.
     Methods and Results:
     Statins treatment significantly decreased ABCG1-mediated cholesterol efflux in human macrophages (From33.8%±2.8%of control to22.9%±1.7%of10μM simvastatin; or to23.3%±3.3%of10μM atorvastatin,p<0.01, n=4), whereas the protein expression of ABCG1remained unaltered on statins. The cell surface expression of ABCG1was also unaltered on statins. Further analysis revealed that two major ABCG1isoforms responded to statins differently. The expression of ABCG1-S,which exhibited higher activity in cholesterol efflux than that of ABCG1-L, was significantly decreased on statins compared to increased expression of ABCG1-L. The mRNA ratio of ABCG1-S/ABCG1-L was significantly decreased in THP-1cells under either1μM simvastatin (1.4±0.17of control to0.69±0.06of1μM simvastatin, n=4,p<0.01), or1μM atorvastatin (0.7±0.13,/p<0.01). Further changes on ABCG1-S/ABCG1-L ratio were observed under either10μM simvastatin (0.14±0.03, n=4, p<0.01), or10μM atorvastatin (0.24±0.05, n=4, p<0.01). Similar results were observed in PBMCs. The results suggested that the proportion change of ABCG1isoforms expressions could contribute to reduced ABCG1functionality under statins treatment. The statins effects on ABCG1isoforms expression and functionality was reversed by low-dose LXR agonist, TO-901317, indicating that statins down-regulation of ABCG1functionality was likely through LXR dependent pathway.
     Conclusion:
     In conclusion, simvastain and atorvastain decreased ABCG1-mediated cholesterol efflux in human macrophages without alteration of total ABCG1protein level. The proportion change of ABCG1isoforms expressions may be involved in the down-regulation of ABCG1functionality by statins, which provided a novel mechanism for the regulation of ABCG1function.
引文
1. Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis:Part i: New genes and pathways. Circulation.2004; 110:1868-1873
    2. Lusis AJ, Fogelman AM, Fonarow GC. Genetic basis of atherosclerosis:Part ii: Clinical implications. Circulation.2004; 110:2066-2071
    3. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med.1999;340:115-126
    4. Stephens JW, Humphries SE. The molecular genetics of cardiovascular disease: Clinical implications. J Intern Med.2003;253:120-127
    5. Kuivenhoven JA, Jukema JW, Zwinderman AH, de Knijff P, McPherson R, Bruschke AV, Lie KI, Kastelein JJ. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The regression growth evaluation statin study group. N Engl J Med.1998;338:86-93
    6. Altshuler D, Kruglyak L, Lander E. Genetic polymorphisms and disease. N Engl JMed.1998;338:1626
    7. Simons K, Ikonen E. How cells handle cholesterol. Science.2000;290:1721-1726
    8. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73:1303-1310
    9. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999;96:11041-11048
    10. Maxfield FR. Plasma membrane microdomains. Curr Opin Cell Biol. 2002;14:483-487
    11. Stocco DM. Star protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol.2001;63:193-213
    12. Stocco DM. A review of the characteristics of the protein required for the acute regulation of steroid hormone biosynthesis:The case for the steroidogenic acute regulatory (star) protein. Proc Soc Exp Biol Med.1998;217:123-129
    13. Rader DJ. Molecular regulation of hdl metabolism and function:Implications for novel therapies. JClin Invest.2006;116:3090-3100
    14. Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, Jiang XC, Shear CL, Tall AR. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to hdl. Arterioscler Thromb Vasc Biol.2007;27:1132-1138
    15. Fielding PE, Fielding CJ, Havel RJ, Kane JP, Tun P. Cholesterol net transport, esterification, and transfer in human hyperlipidemic plasma. J Clin Invest. 1983;71:449-460
    16. Hoang A, Drew BG, Low H, Remaley AT, Nestel P, Kingwell BA, Sviridov D. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur Heart J.2012;33:657-665
    17. Shaw JA, Bobik A, Murphy A, Kanellakis P, Blombery P, Mukhamedova N, Woollard K, Lyon S, Sviridov D, Dart AM. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res. 2008;103:1084-1091
    18. Rader DJ, Tall AR. The not-so-simple hdl story:Is it time to revise the hdl cholesterol hypothesis? Nat Med.2012;18:1344-1346
    19. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res.1995;36:211-228
    20. Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM.2005;98:845-856
    21. Duffy D, Rader DJ. Update on strategies to increase hdl quantity and function. Nat Rev Cardiol.2009;6:455-463
    22. Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet.1975;1:16-19
    23. Chapman MJ, Assmann G, Fruchart JC, Shepherd J, Sirtori C. Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk:The role of nicotinic acid-a position paper developed by the european consensus panel on hdl-c. Curr Med Res Opin.2004;20:1253-1268
    24. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of hdl. Circ Res.2004;95:764-772
    25. Lewis GF, Rader DJ. New insights into the regulation of hdl metabolism and reverse cholesterol transport. Circ Res.2005;96:1221-1232
    26. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of hdl. Circ Res.2006;98:1352-1364
    27. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B. Hdl induces no-dependent vasorelaxation via the lysophospholipid receptor slp3. J Clin Invest.2004;113:569-581
    28. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The framingham study. Am J Med.1977;62:707-714
    29. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Jr., Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective american studies. Circulation. 1989;79:8-15
    30. von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vase Biol.2001;21:13-27
    31. Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, Subbanagounder G, Faull KF, Reddy ST, Miller NE, Fogelman AM. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:Step 1. J Lipid Res.2000;41:1481-1494
    32. Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD, Reddy ST, Sevanian A, Fonarow GC, Fogelman AM. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:Steps 2 and 3. J Lipid Res.2000;41:1495-1508
    33. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R. Effect of recombinant apoa-i milano on coronary atherosclerosis in patients with acute coronary syndromes:A randomized controlled trial. JAMA. 2003;290:2292-2300
    34. Rader DJ. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA.2003;290:2322-2324
    35. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor sr-bi as a high density lipoprotein receptor. Science. 1996;271:518-520
    36. Steinberg D. A docking receptor for hdl cholesterol esters. Science. 1996;271:460-461
    37. Cuchel M, Rader DJ. Macrophage reverse cholesterol transport:Key to the regression of atherosclerosis? Circulation.2006;113:2548-2555
    38. Rader DJ, Pure E. Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell? Cell Metab.2005; 1:223-230
    39. Fielding CJ, Fielding PE. Cellular cholesterol efflux. Biochim Biophys Acta. 2001;1533:175-189
    40. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. Hdl, abc transporters, and cholesterol efflux:Implications for the treatment of atherosclerosis. Cell Metab.2008;7:365-375
    41. Tall AR, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest.2002;110:899-904
    42. Wang N, Silver DL, Thiele C, Tall AR. Atp-binding cassette transporter al (abcal) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001 ;76:23742-23747
    43. Attie AD, Kastelein JP, Hayden MR. Pivotal role of abcal in reverse cholesterol transport influencing hdl levels and susceptibility to atherosclerosis. J Lipid Res. 2001;42:1717-1726
    44. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ. Macrophage abcal and abcgl, but not sr-bi, promote macrophage reverse cholesterol transport in vivo. J Clin Invest.2007; 117:2216-2224
    45. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA. Abcgl has a critical role in mediating cholesterol efflux to hdl and preventing cellular lipid accumulation. Cell Metab.2005; 1:121-131
    46. Wang N, Lan D, Chen W, Matsuura F, Tall AR. Atp-binding cassette transporters gl and g4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A.2004; 101:9774-9779
    47. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G, Kapinsky M, Diederich W, Drobnik W, Dean M, Allikmets R, Schmitz G. Abcgl (abc8), the human homolog of the drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A. 2000;97:817-822
    48. Shachter NS. Abcgl:How critical for cholesterol transport? Cell Metab. 2005;1:87-88
    49. Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJ, Van Eck M. Macrophage abcgl deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in ldl receptor-deficient mice. Arterioscler Thromb Vase Biol. 2006;26:2295-2300
    50. Baldan A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, Frank J, Li AC, Tontonoz P, Edwards PA. Impaired development of atherosclerosis in hyperlipidemic ldlr-/-and apoe-/-mice transplanted with abcgl-/-bone marrow. Arterioscler Thromb Vase Biol.2006;26:2301-2307
    51. Ranalletta M, Wang N, Han S, Yvan-Charvet L, Welch C, Tall AR. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with abcgl-/-bone marrow. Arterioscler Thromb Vase Biol.2006;26:2308-2315
    52. Curtiss LK. Is two out of three enough for abcgl? Arterioscler Thromb Vase Biol. 2006;26:2175-2177
    53. Burgess B, Naus K, Chan J, Hirsch-Reinshagen V, Tansley G, Matzke L, Chan B, Wilkinson A, Fan J, Donkin J, Balik D, Tanaka T, Ou G, Dyer R, Innis S, McManus B, Lutjohann D, Wellington C. Overexpression of human abcgl does not affect atherosclerosis in fat-fed apoe-deficient mice. Arterioscler Thromb Vase Biol.2008;28:1731-1737
    54. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet.2005;366:1036-1044
    55. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet.2005;37:1217-1223
    56. Cordell HJ, Clayton DG. Genetic association studies. Lancet.2005;366:1121-1131
    57. Furuyama S, Uehara Y, Zhang B, Baba Y, Abe S, Iwamoto T, Miura S, Saku K. Genotypic effect of abcgl gene promoter-257t>g polymorphism on coronary artery disease severity in japanese men. JAtheroscler Thromb.2009;16:194-200
    58. Xu Y, Wang W, Zhang L, Qi LP, Li LY, Chen LF, Fang Q, Dang AM, Yan XW. A polymorphism in the abcgl promoter is functionally associated with coronary artery disease in a Chinese han population. Atherosclerosis.2011;219:648-654
    59. Le Goff W, Dallinga-Thie GM. Abcgl:Not as good as expected? Atherosclerosis. 2011;219:393-394
    60. Engel T, Kannenberg F, Fobker M, Nofer JR, Bode G, Lueken A, Assmann G, Seedorf U. Expression of atp binding cassette-transporter abcgl prevents cell death by transporting cytotoxic 7beta-hydroxycholesterol. FEBS Lett. 2007;581:1673-1680
    61. Yvan-Charvet L, Pagler TA, Seimon TA, Thorp E, Welch CL, Witztum JL, Tabas I, Tall AR. Abcal and abcgl protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res.2010;106:1861-1869
    62. Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via abcgl. Proc Natl Acad Sci U S A. 2007; 104:15093-15098
    63. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis:The importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol.2005;25:2255-2264
    64. Gerrity RG. The role of the monocyte in atherogenesis:I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol.1981;103:181-190
    65. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein e. Proc Natl Acad Sci U S A.1995;92:8264-8268
    66. Kockx MM. Apoptosis in the atherosclerotic plaque:Quantitative and qualitative aspects.Arterioscler Thromb Vasc Biol.1998;18:1519-1522
    67. Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR. Combined deficiency of abcal and abcgl promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest.2007;117:3900-3908
    68. Ye D, Lammers B, Zhao Y, Meurs I, Van Berkel TJ, Van Eck M. Atp-binding cassette transporters al and g1, hdl metabolism, cholesterol efflux, and inflammation:Important targets for the treatment of atherosclerosis. Curr Drug Targets.2011;12:647-660
    69. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH. The roles of different pathways in the release of cholesterol from macrophages. JLipid Res.2007;48:2453-2462
    70. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W. Abcal and abcgl synergize to mediate cholesterol export to apoa-i. Arterioscler Thromb Vase Biol.2006;26:534-540
    71. Vaughan AM, Oram JF. Abcal and abcgl or abcg4 act sequentially to remove cellular cholesterol and generate cholesterol-rich hdl. J Lipid Res.2006;47:2433-2443
    72. Tarling EJ, Bojanic DD, Tangirala RK, Wang X, Lovgren-Sandblom A, Lusis AJ, Bjorkhem I, Edwards PA. Impaired development of atherosclerosis in abcgl-/-apoe-/-mice:Identification of specific oxysterols that both accumulate in abcgl-/-appe-/-tissues and induce apoptosis. Arterioscler Thromb Vase Biol. 2010;30:1174-1180
    73. Basso F, Amar MJ, Wagner EM, Vaisman B, Paigen B, Santamarina-Fojo S, Remaley AT. Enhanced abcgl expression increases atherosclerosis in ldlr-ko mice on a western diet. Biochem Biophys Res Commun.2006;351:398-404
    74. Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C. A novel mutation in the upstream open reading frame of the cdknlb gene causes a men4 phenotype. PLoS Genet. 2013;9:e1003350
    75. Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted ifitm-like (bril) gene transcription by sp and gli family members and cpg methylation. J Biol Chem.2013
    76. Orimoto A, Suzuki T, Ueno A, Kawai T, Nakamura H, Kanamori T. Effect of 2-hydroxyethyl methacrylate on antioxidant responsive element-mediated transcription:A possible indication of its cytotoxicity. PLoS One.2013;8:e58907
    77. Schou J, Frikke-Schmidt R, Kardassis D, Thymiakou E, Nordestgaard BG, Jensen G, Grande P, Tybjaerg-Hansen A. Genetic variation in abcgl and risk of myocardial infarction and ischemic heart disease. Arterioscler Thromb Vase Biol. 2012;32:506-515
    78. Kyriakou T, Hodgkinson C, Pontefract DE, Iyengar S, Howell WM, Wong YK, Eriksson P, Ye S. Genotypic effect of the-565c>t polymorphism in the abcal gene promoter on abcal expression and severity of atherosclerosis. Arterioscler Thromb Vase Biol.2005;25:418-423
    79. Hellman LM, Fried MG. Electrophoretic mobility shift assay (emsa) for detecting protein-nucleic acid interactions. Nat Protoc.2007;2:1849-1861
    80. Lim KH, Choi HS, Park YK, Park ES, Shin GC, Kim DH, Ahn SH, Kim KH. Hbx-induced nf-kappab signaling in liver cells is potentially mediated by the ternary complex of hbx with p22-flip and nemo. PLoS One.2013;8:e57331
    81. Udofa EA, Stringer BW, Gade P, Mahony D, Buzza MS, Kalvakolanu DV, Antalis TM. The transcription factor c/ebp-beta mediates constitutive and 1ps-inducible transcription of murine serpinb2. PLoS One.2013;8:e57855
    82. Choi JW, Park CS, Hwang M, Nam HY, Chang HS, Park SG, Han BG, Kimm K, Kim HL, Oh B, Kim Y. A common intronic variant of cxcr3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. JAllergy Clin Immunol.2008;122:1119-1126 e1117
    83. Endo A, Tsujita Y, Kuroda M, Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ml-236a and ml-236b, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme a reductase. Eur JBiochem.1977;77:31-36
    84. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation. 2000;101:207-213
    85. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R. Efficacy and safety of cholesterol-lowering treatment:Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet.2005;366:1267-1278
    86. Abraha I, Bonacini I, Montedori A. Efficacy and safety of cholesterol-lowering treatment. Lancet.2006;367:469; author reply 470-461
    87. Law M, Wald NJ. Efficacy and safety of cholesterol-lowering treatment. Lancet. 2006;367:469-470; author reply 470-461
    88. Clemenson ND. Statins and risk of coronary heart disease. JAMA.2000;283:2935; author reply 2936
    89. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89-118
    90. Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet.1996;348:1079-1082
    91. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425-430
    92. Sone H, Shimano H, Shu M, Nakakuki M, Takahashi A, Sakai M, Sakamoto Y, Yokoo T, Matsuzaka K, Okazaki H, Nakagawa Y, Iida KT, Suzuki H, Toyoshima H, Horiuchi S, Yamada N. Statins downregulate atp-binding-cassette transporter al gene expression in macrophages. Biochem Biophys Res Commun. 2004;316:790-794
    93. Wong J, Quinn CM, Brown AJ. Statins inhibit synthesis of an oxysterol ligand for the liver x receptor in human macrophages with consequences for cholesterol flux. Arterioscler Thromb Vase Biol.2004;24:2365-2371
    94. Bjorkhem I, Diczfalusy U.24(s),25-epoxycholesterol--a potential friend. Arterioscler Thromb Vasc Biol.2004;24:2209-2210
    95. Argmann CA, Edwards JY, Sawyez CG, O'Neil CH, Hegele RA, Pickering JG, Huff MW. Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-coa reductase inhibition:A role for rhoa in abcal-mediated cholesterol efflux. J Biol Chem.2005;280:22212-22221
    96. Tall AR. An overview of reverse cholesterol transport. Eur Heart J.1998;19 SupplA:A31-35
    97. Mahley RW, Huang Y, Weisgraber KH. Putting cholesterol in its place:Apoe and reverse cholesterol transport. JClin Invest.2006;116:1226-1229
    98. Small DM. Role of abc transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci U S A.2003;100:4-6
    99. Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C, Horwitz A, Oda MN. Abcal mediates concurrent cholesterol and phospholipid efflux to apolipoprotein a-i. JLipid Res.2004;45:635-644
    100. Tall AR. Role of abcal in cellular cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol.2003;23:710-711
    101. Nakamura K, Kennedy MA, Baldan A, Bojanic DD, Lyons K, Edwards PA. Expression and regulation of multiple murine atp-binding cassette transporter g1 mrnas/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. JBiol Chem.2004;279:45980-45989
    102. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding atp-binding cassette transporter 1 is mutated in tangier disease. Nat Genet.1999;22:347-351
    103. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J, Jr., Hayden MR. Mutations in abcl in tangier disease and familial high-density lipoprotein deficiency. Nat Genet.1999;22:336-345
    104. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by mutations in the gene encoding atp-binding cassette transporter 1. Nat Genet.1999;22:352-355
    105. Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, Yu L, Collins JA, van Dam M, Molhuizen HO, Loubster O, Ouellette BF, Sensen CW, Fichter K, Mott S, Denis M, Boucher B, Pimstone S, Genest J, Jr., Kastelein JJ, Hayden MR. Mutations in the abcl gene in familial hdl deficiency with defective cholesterol efflux. Lancet.1999;354:1341-1346
    106. Bertolini S, Pisciotta L, Seri M, Cusano R, Cantafora A, Calabresi L, Franceschini G, Ravazzolo R, Calandra S. A point mutation in abcl gene in a patient with severe premature coronary heart disease and mild clinical phenotype of tangier disease. Atherosclerosis.2001;154:599-605
    107. Clee SM, Kastelein JJ, van Dam M, Marcil M, Roomp K, Zwarts KY, Collins JA, Roelants R, Tamasawa N, Stulc T, Suda T, Ceska R, Boucher B, Rondeau C, DeSouich C, Brooks-Wilson A, Molhuizen HO, Frohlich J, Genest J, Jr., Hayden MR. Age and residual cholesterol efflux affect hdl cholesterol levels and coronary artery disease in abcal heterozygotes. J Clin Invest.2000; 106:1263-1270
    108. Cenarro A, Artieda M, Castillo S, Mozas P, Reyes G, Tejedor D, Alonso R, Mata P, Pocovi M, Civeira F. A common variant in the abcal gene is associated with a lower risk for premature coronary heart disease in familial hypercholesterolaemia. J Med Genet.2003;40:163-168
    109. Frikke-Schmidt R, Nordestgaard BG, Schnohr P, Steffensen R, Tybjaerg-Hansen A. Mutation in abcal predicted risk of ischemic heart disease in the Copenhagen city heart study population. J Am Coll Cardiol.2005;46:1516-1520
    110. Wong J, Quinn CM, Gelissen IC, Jessup W, Brown AJ. The effect of statins on abcal and abcgl expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis.2008; 196:180-189
    111. Genvigir FD, Hirata MH, Hirata RD. Abcal expression and statins:Inhibitory effect in peripheral blood mononuclear cells. Pharmacogenomics.2009; 10:997-1005
    112. Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol.2012;32:575-581
    113. Lusis AJ. Atherosclerosis. Nature.2000;407:233-241
    114. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell.2001;104:503-516
    115. Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJ, Van Eck M. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett.2006;580:5588-5596
    116. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. NEngl J Med.2011;364:127-135
    117. Heinecke J. Hdl and cardiovascular-disease risk--time for a new approach? N Engl J Med.2011;364:170-171
    118. de Vries R, Groen AK, Dullaart RP. Cholesterol efflux capacity and atherosclerosis. NEngl J Med.2011;364:1473-1474; author reply 1474-1475
    119. Frohlich J, Al-Sarraf A. Cholesterol efflux capacity and atherosclerosis. N Engl J Med.2011;364:1474; author reply 1474-1475
    120. Wang N, Silver DL, Costet P, Tall AR. Specific binding of apoa-i, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing abcl. J Biol Chem.2000;275:33053-33058
    121. Wustner D. Fluorescent sterols as tools in membrane biophysics and cell biology. Chem Phys Lipids.2007;146:1-25
    122. Ramirez DM, Ogilvie WW, Johnston LJ. Nbd-cholesterol probes to track cholesterol distribution in model membranes. Biochim Biophys Acta. 2010;1798:558-568
    123. Wustner D. Following intracellular cholesterol transport by linear and non-linear optical microscopy of intrinsically fluorescent sterols. Curr Pharm Biotechnol. 2012;13:303-318
    124. Storey SM, Atshaves BP, Mclntosh AL, Landrock KK, Martin GG, Huang H, Ross Payne H, Johnson JD, Macfarlane RD, Kier AB, Schroeder F. Effect of sterol carrier protein-2 gene ablation on hdl-mediated cholesterol efflux from cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2010;299:G244-254
    125. Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH. A sensitive assay for abcal-mediated cholesterol efflux using bodipy-cholesterol. J Lipid Res.2011;52:2332-2340
    126. Adams MR, Konaniah E, Cash JG, Hui DY. Use of nbd-cholesterol to identify a minor but npc 111-independent cholesterol absorption pathway in mouse intestine. Am J Physiol Gastrointest Liver Physiol.2011;300:G164-169
    127. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (thp-1). Int J Cancer.1980;26:171-176
    128. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res.1982;42:1530-1536
    129. Liu XH, Xiao J, Mo ZC, Yin K, Jiang J, Cui LB, Tan CZ, Tang YL, Liao DF, Tang CK. Contribution of d4-f to abcal expression and cholesterol efflux in thp-1 macrophage-derived foam cells. J Cardiovasc Pharmacol.2010;56:309-319
    130. Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, Giral P, Chapman MJ, Guerin M, Le Goff W. Stimulation of cholesterol efflux by lxr agonists in cholesterol-loaded human macrophages is abcal-dependent but abcgl-independent. Arterioscler Thromb Vasc Biol.2009;29:1930-1936
    131. Patel S, Drew BG, Nakhla S, Duffy SJ, Murphy AJ, Barter PJ, Rye KA, Chin-Dusting J, Hoang A, Sviridov D, Celermajer DS, Kingwell BA. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J Am Coll Cardiol.2009;53:962-971
    132. Qin Z. The use of thp-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221:2-11
    133. Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR. Scavenger receptor bi promotes high density lipoprotein-mediated cellular cholesterol efflux. JBiol Chem.1997;272:20982-20985
    134. de la Llera-Moya M, Rothblat GH, Connelly MA, Kellner-Weibel G, Sakr SW, Phillips MC, Williams DL. Scavenger receptor bi (sr-bi) mediates free cholesterol flux independently of hdl tethering to the cell surface. J Lipid Res. 1999;40:575-580
    135. Qiu G, Hill JS. Atorvastatin inhibits abcal expression and cholesterol efflux in thp-1 macrophages by an lxr-dependent pathway. J Cardiovasc Pharmacol. 2008;51:388-395
    136. Genvigir FD, Rodrigues AC, Cerda A, Arazi SS, Willrich MA, Oliveira R, Hirata MH, Dorea EL, Bernik MM, Curi R, Hirata RD. Effects of lipid-lowering drugs on reverse cholesterol transport gene expressions in peripheral blood mononuclear and hepg2 cells. Pharmacogenomics.2010;11:1235-1246
    137. Genvigir FD, Rodrigues AC, Cerda A, Hirata MH, Curi R, Hirata RD. Abcal and abcgl expressions are regulated by statins and ezetimibe in caco-2 cells. Drug Metabol Drug Interact.2011;26:33-36
    138. Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR. Lxr-induced redistribution of abcgl to plasma membrane in macrophages enhances cholesterol mass efflux to hdl. Arterioscler Thromb Vasc Biol.2006;26:1310-1316
    139. Smith JD. Insight into abcgl-mediated cholesterol efflux. Arterioscler Thromb Vase Biol.2006;26:1198-1200
    140. Croop JM, Tiller GE, Fletcher JA, Lux ML, Raab E, Goldenson D, Son D, Arciniegas S, Wu RL. Isolation and characterization of a mammalian homolog of the drosophila white gene. Gene.1997;185:77-85
    141. Venkateswaran A, Repa J J, Lobaccaro JM, Bronson A, Mangelsdorf D J, Edwards PA. Human white/murine abc8 mrna levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols.J Biol Chem. 2000;275:14700-14707
    142. Hori N, Hayashi H, Sugiyama Y. Calpain-mediated cleavage negatively regulates the expression level of abcgl. Atherosclerosis.2011;215:383-391
    143. Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA. Characterization of the human abcgl gene:Liver x receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem.2001;276:39438-39447
    144. Langmann T, Porsch-Ozcurumez M, Unkelbach U, Klucken J, Schmitz G. Genomic organization and characterization of the promoter of the human atp-binding cassette transporter-gl (abcgl) gene. Biochim Biophys Acta. 2000;1494:175-180
    145. Lorkowski S, Rust S, Engel T, Jung E, Tegelkamp K, Galinski EA, Assmann G, Cullen P. Genomic sequence and structure of the human abcgl (abc8) gene. Biochem Biophys Res Commun.2001;280:121-131
    146. Chen H, Rossier C, Lalioti MD, Lynn A, Chakravarti A, Perrin G, Antonarakis SE. Cloning of the cdna for a human homologue of the drosophila white gene and mapping to chromosome 21q22.3. Am J Hum Genet.1996;59:66-75
    147. Engel T, Bode G, Lueken A, Knop M, Kannenberg F, Nofer JR, Assmann G, Seedorf U. Expression and functional characterization of abcgl splice variant abcgl(666). FEBS Lett.2006;580:4551-4559
    148. Gao X, Gu H, Li G, Rye KA, Zhang DW. Identification of an amino acid residue in atp-binding cassette transport g1 critical for mediating cholesterol efflux. Biochim Biophys Acta.2012; 1821:552-559
    149. Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, Ueda K, Matsuo M. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by abcgl. J Lipid Res.2006;47:1791-1802
    150. Gelissen IC, Cartland S, Brown AJ, Sandoval C, Kim M, Dinnes DL, Lee Y, Hsieh V, Gaus K, Kritharides L, Jessup W. Expression and stability of two isoforms of abcgl in human vascular cells. Atherosclerosis.2010;208:75-82
    151. Tangirala RK, Bischoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL, Thomas D, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Schulman IG. Identification of macrophage liver x receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci U S A.2002;99:11896-11901
    152. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A ppar gamma-lxr-abcal pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell.2001;7:161-171
    153. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P. Control of cellular cholesterol efflux by the nuclear oxysterol receptor lxr alpha. Proc Natl Acad Sci USA.2000;97:12097-12102
    154. Cha JY, Repa JJ. The liver x receptor (lxr) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of lxr. J Biol Chem.2007;282:143-751
    155. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P. Synthetic Ixr ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99:7604-7609
    156. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR. Large-scale transcriptional activity in chromosomes 21 and 22. Science.2002;296:916-919
    157. Pagani F, Baralle FE. Genomic variants in exons and introns:Identifying the splicing spoilers. Nat Rev Genet.2004;5:389-396
    158. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing:Towards a cellular code. Nat Rev Mol Cell Biol.2005;6:386-398
    159. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008;24:167-177
    160. Zhang J, Cai S, Peterson BR, Kris-Etherton PM, Heuvel JP. Development of a cell-based, high-throughput screening assay for cholesterol efflux using a fluorescent mimic of cholesterol. Assay Drug Dev Technol.2011;9:136-146
    161. Ohashi M, Murata M, Ohnishi S. A novel fluorescence method to monitor the lysosomal disintegration of low density lipoprotein. Eur J Cell Biol. 1992;59:116-126
    162. Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through rabl 1. Mol Biol Cell 2007; 18:2667-2677
    163. Frolov A, Petrescu A, Atshaves BP, So PT, Gratton E, Serrero G, Schroeder F. High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact 1-cell fibroblasts. A single-and multiphoton fluorescence approach. J Biol Chem.2000;275:12769-12780
    164. Portioli Silva EP, Peres CM, Roberto Mendonca J, Curi R. Nbd-cholesterol incorporation by rat macrophages and lymphocytes:A process dependent on the activation state of the cells. Cell Biochem Funct.2004;22:23-28
    165. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized ldl regulates macrophage gene expression through ligand activation of ppargamma. Cell. 1998;93:229-240
    166. Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, Horkko S, Palinski W, Quehenberger O, Shaw P, Steinberg D, Terpstra V, Witztum JL. Scavenger receptors, oxidized 1d1, and atherosclerosis. Ann N Y Acad Sci.2001;947:214-222; discussion 222-213
    167. Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux:Integration of old and new observations provides new insights. J Lipid Res.1999;40:781-796
    168. Yvan-Charvet L, Wang N, Tall AR. Role of hdl, abcal, and abcgl transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vase Biol. 2010;30:139-143
    1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med.1999;340:115-126
    2. Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med.2002;8:1235-1242
    3. Ory DS. Nuclear receptor signaling in the control of cholesterol homeostasis: Have the orphans found a home? Circ Res.2004;95:660-670
    4. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev.2004;25:947-970
    5. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport.J Lipid Res.1995;36:211-228
    6. Glomset JA. The plasma lecithins:Cholesterol acyltransferase reaction. J Lipid Res.1968;9:155-167
    7. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science.1973,180:1332-1339
    8. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vase Biol.2003;23:712-719
    9. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res.2007;48:2453-2462
    10. Fielding CJ, Fielding PE. Cellular cholesterol efflux. Biochim Biophys Acta. 2001;1533:175-189
    11. Cuchel M, Rader DJ. Macrophage reverse cholesterol transport:Key to the regression of atherosclerosis? Circulation.2006; 113:2548-2555
    12. Eriksson M, Carlson LA, Miettinen TA, Angelin B. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein a-i. Potential reverse cholesterol transport in humans. Circulation.1999; 100:594-598
    13. Spady DK. Reverse cholesterol transport and atherosclerosis regression. Circulation.1999;100:576-578
    14. Klein I, Sarkadi B, Varadi A. An inventory of the human abc proteins. Biochim Biophys Acta.1999; 1461:237-262
    15. Luciani MF, Denizot F, Savary S, Mattei MG, Chimini G. Cloning of two novel abc transporters mapping on human chromosome 9. Genomics.1994;21:150-159
    16. Allikmets R, Gerrard B, Glavac D, Ravnik-Glavac M, Jenkins NA, Gilbert DJ, Copeland NG, Modi W, Dean M. Characterization and mapping of three new mammalian atp-binding transporter genes from an est database. Mamm Genome. 1995;6:114-117
    17. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE, Schmitz G. Molecular cloning of the human atp-binding cassette transporter 1 (habcl):Evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun.1999;257:29-33
    18. Lawn RM, Wade DP, Couse TL, Wilcox JN. Localization of human atp-binding cassette transporter 1 (abc1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol.2001;21:378-385
    19. Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, Francone OL. The correlation of atp-binding cassette 1 mrna levels with cholesterol efflux from various cell lines. J Biol Chem.2000;275:28634-28640
    20. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG.27-hydroxycholesterol is an endogenous ligand for liver x receptor in cholesterol-loaded cells. J Biol Chem.2001;276:38378-38387
    21. Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S, Lee YH, Ricote M, Glass CK, Brewer HB, Jr., Gonzalez FJ. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of abcal, abcgl, and apoe in macrophages and reduced cholesterol efflux. Mol Cell Biol.2002;22:2607-2619
    22. Claudel T, Leibowitz MD, Fievet C, Tailleux A, Wagner B, Repa JJ, Torpier G, Lobaccaro JM, Paterniti JR, Mangelsdorf DJ, Heyman RA, Auwerx J. Reduction of atherosclerosis in apolipoprotein e knockout mice by activation of the retinoid x receptor. Proc Natl Acad Sci U S A.2001;98:2610-2615
    23. Oliver WR, Jr., Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA.2001;98:5306-5311
    24. Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of atp-binding cassette transporter al. J Biol Chem.2002;277:5692-5697
    25. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, Goldstein JL, Brown MS. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-lc (srebp-lc) gene by antagonizing ligand-dependent activation of the lxr. Proc Natl Acad Sci USA.2001;98:6027-6032
    26. Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux:Integration of old and new observations provides new insights. J Lipid Res.1999;40:781-796
    27. Arakawa R, Yokoyama S. Helical apolipoproteins stabilize atp-binding cassette transporter al by protecting it from thiol protease-mediated degradation. J Biol Chem.2002;277:22426-22429
    28. Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the atp-binding cassette transporters abcal and abcgl. Biochim Biophys Acta. 2006;1761:655-666
    29. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA. Abcgl has a critical role in mediating cholesterol efflux to hdl and preventing cellular lipid accumulation. Cell Metab.2005; 1:121-131
    30. Sakr SW, Williams DL, Stoudt GW, Phillips MC, Rothblat GH. Induction of cellular cholesterol efflux to lipid-free apolipoprotein a-i by camp. Biochim Biophys Acta.1999;1438:85-98
    31. Oram JF, Lawn RM, Garvin MR, Wade DP. Abcal is the camp-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem.2000;275:34508-34511
    32. Wang N, Silver DL, Costet P, Tall AR. Specific binding of apoa-i, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing abcl. J Biol Chem.2000;275:33053-33058
    33. Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW. Naturally occurring mutations in the largest extracellular loops of abcal can disrupt its direct interaction with apolipoprotein a-i. J Biol Chem. 2002;277:33178-33187
    34. Chen H, Rossier C, Lalioti MD, Lynn A, Chakravarti A, Perrin G, Antonarakis SE. Cloning of the cdna for a human homologue of the drosophila white gene and mapping to chromosome 21q22.3. Am J Hum Genet.1996;59:66-75
    35. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding atp-binding cassette transporter 1 is mutated in tangier disease. Nat Genet.1999;22:347-351
    36. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by mutations in the gene encoding atp-binding cassette transporter 1. Nat Genet.1999;22:352-355
    37. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J, Jr., Hayden MR. Mutations in abcl in tangier disease and familial high-density lipoprotein deficiency. Nat Genet.1999;22:336-345
    38. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, Seilhamer JJ, Vaughan AM, Oram JF. The tangier disease gene product abcl controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest. 1999;104:R25-31
    39. McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, Hoppe KL, Roach ML, Royer LJ, de Wet J, Broccardo C, Chimini G, Francone OL. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of atp-binding cassette transporter-1. Proc Natl Acad Sci U S A. 2000;97:4245-4250
    40. Haghpassand M, Bourassa PA, Francone OL, Aiello RJ. Monocyte/macrophage expression of abcal has minimal contribution to plasma hdl levels. J Clin Invest. 2001;108:1315-1320
    41. Rader DJ, Pure E. Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell? Cell Metab.2005; 1:223-230
    42. Aiello RJ, Brees D, Bourassa PA, Royer L, Lindsey S, Coskran T, Haghpassand M, Francone OL. Increased atherosclerosis in hyperlipidemic mice with inactivation of abcal in macrophages. Arterioscler Thromb Vasc Biol. 2002;22:630-637
    43. Francone OL, Royer L, Boucher G, Haghpassand M, Freeman A, Brees D, Aiello RJ. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in abcal-deficient macrophages. Arterioscler Thromb Vasc Biol.2005;25:1198-1205
    44. Langmann T, Porsch-Ozcurumez M, Unkelbach U, Klucken J, Schmitz G. Genomic organization and characterization of the promoter of the human atp-binding cassette transporter-g1 (abcg1) gene. Biochim Biophys Acta. 2000;1494:175-180
    45. Kennedy MA, Venkateswaran A, Tarr PT, Xenarios I, Kudoh J, Shimizu N, Edwards PA. Characterization of the human abcgl gene:Liver x receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. JBiol Chem.2001;276:39438-39447
    46. Lorkowski S, Rust S, Engel T, Jung E, Tegelkamp K, Galinski EA, Assmann G, Cullen P. Genomic sequence and structure of the human abcgl (abc8) gene. Biochem Biophys Res Commun.2001;280:121-131
    47. Nakamura K, Kennedy MA, Baldan A, Bojanic DD, Lyons K, Edwards PA. Expression and regulation of multiple murine atp-binding cassette transporter g1 mrnas/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. JBiol Chem.2004;279:45980-45989
    48. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G, Kapinsky M, Diederich W, Drobnik W, Dean M, Allikmets R, Schmitz G. Abcgl (abc8), the human homolog of the drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A. 2000;97:817-822
    49. Dean M, Rzhetsky A, Allikmets R. The human atp-binding cassette (abc) transporter superfamily. Genome Res.2001; 11:1156-1166
    50. Venkateswaran A, Repa JJ, Lobaccaro JM, Bronson A, Mangelsdorf DJ, Edwards PA. Human white/murine abc8 mrna levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem. 2000;275:14700-14707
    51. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P. Control of cellular cholesterol efflux by the nuclear oxysterol receptor lxr alpha. Proc Natl Acad Sci U S A.2000;97:12097-12102
    52. Sabol SL, Brewer HB, Jr., Santamarina-Fojo S. The human abcgl gene: Identification of lxr response elements that modulate expression in macrophages and liver. JLipid Res.2005;46:2151-2167
    53. Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the abcl promoter by the liver x receptor/retinoid x receptor. J Biol Chem. 2000;275:28240-28245
    54. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA, Willson TM. Activation of the nuclear receptor lxr by oxysterols defines a new hormone response pathway. JBiol Chem.1997;272:3137-3140
    55. Peet DJ, Janowski BA, Mangelsdorf DJ. The lxrs:A new class of oxysterol receptors. Curr Opin Genet Dev.1998;8:571-575
    56. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor lxr alpha. Nature. 1996;383:728-731
    57. Wang N, Lan D, Chen W, Matsuura F, Tall AR. Atp-binding cassette transporters gl and g4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A.2004;101:9774-9779
    58. Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T, Kim TW, Tall AR. Atp-binding cassette transporters g1 and g4 mediate cholesterol and desmosterol efflux to hdl and regulate sterol accumulation in the brain. FASEB J. 2008;22:1073-1082
    59. Sabol SL, Brewer HB, Jr., Santamarina-Fojo S. The human abcgl gene: Identification of lxr response elements that modulate expression in macrophages and liver. J Lipid Res.2005;46:2151-2167
    60. Tardif JC. Emerging high-density lipoprotein infusion therapies:Fulfilling the promise of epidemiology? J Clin Lipidol.2010;4:399-404
    61. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R. Effect of recombinant apoa-i milano on coronary atherosclerosis in patients with acute coronary syndromes:A randomized controlled trial. JAMA. 2003;290:2292-2300
    62. Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJ, Van Eck M. Macrophage abcgl deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in ldl receptor-deficient mice. Arterioscler Thromb Vase Biol. 2006;26:2295-2300
    63. Baldan A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, Frank J, Li AC, Tontonoz P, Edwards PA. Impaired development of atherosclerosis in hyperlipidemic ldlr-/-and apoe-/-mice transplanted with abcgl-/-bone marrow. Arterioscler Thromb Vase Biol.2006;26:2301-2307
    64. Ranalletta M, Wang N, Han S, Yvan-Charvet L, Welch C, Tall AR. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with abcgl-/-bone marrow. Arterioscler Thromb Vase Biol.2006;26:2308-2315
    65. Out R, Hoekstra M, Meurs I, de Vos P, Kuiper J, Van Eck M, Van Berkel TJ. Total body abcgl expression protects against early atherosclerotic lesion development in mice. Arterioscler Thromb Vase Biol.2007;27:594-599
    66. Tarling EJ, Bojanic DD, Tangirala RK, Wang X, Lovgren-Sandblom A, Lusis AJ, Bjorkhem I, Edwards PA. Impaired development of atherosclerosis in abcgl-/-apoe-/-mice:Identification of specific oxysterols that both accumulate in abcgl-/-apoe-/-tissues and induce apoptosis. Arterioscler Thromb Vase Biol. 2010;30:1174-1180
    67. Westerterp M, Koetsveld J, Yu S, Han S, Li R, Goldberg IJ, Welch CL, Tall AR. Increased atherosclerosis in mice with vascular atp-binding cassette transporter g1 deficiency--brief report. Arterioscler Thromb Vase Biol.2010;30:2103-2105
    68. Xu Y, Wang W, Zhang L, Qi LP5 Li LY, Chen LF, Fang Q, Dang AM, Yan XW. A polymorphism in the abcgl promoter is functionally associated with coronary artery disease in a Chinese han population. Atherosclerosis.2011;219:648-654
    69. Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ. Pharmacological activation of liver x receptors promotes reverse cholesterol transport in vivo. Circulation.2006; 113:90-97
    70. Whitney KD, Watson MA, Goodwin B, Galardi CM, Maglich JM, Wilson JG, Willson TM, Collins JL, Kliewer SA. Liver x receptor (lxr) regulation of the lxralpha gene in human macrophages. JBiol Chem.2001;276:43509-43515
    71. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P. Synthetic lxr ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99:7604-7609
    72. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A ppar gamma-lxr-abcal pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell.2001;7:161-171
    73. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B. Ppar-alpha and ppar-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the abcal pathway. Nat Med. 2001;7:53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700