用户名: 密码: 验证码:
人参皂苷元的药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参皂苷主要有原人参二醇(Protopanaxadiol, PPD)型、原人参三醇(Protopanaxatriol, PPT)型、齐墩果酸(Oleanic Acid, OA)型三种类型,其具有广泛的生物学活性,包括免疫调节、抗肿瘤、提高学习记忆、抗衰老、抗炎、抗痴呆、抗疲劳和促进造血等。但是人参皂苷本身不易被吸收,生物利用度较低。大量研究表明,人参皂苷在胃肠道去糖代谢后形成苷元或次苷,这些成分更容易被胃肠道吸收,且活性较皂苷增强。人参皂苷元混合物DS-1226系采用专有技术从人参茎叶中提取、水解、精制而成的一种类似人参皂苷肠代谢组合物的新型中药有效组份,该产品及技术已获得中国、美国、加拿大、欧盟、台湾等8个国家或地区的授权专利,其主要成分为PPT(33%)和PPD(16%)。行为学实验表明DS-1226对睡眠干扰所致的学习记忆障碍具有改善作用,此外其还对化疗所致的骨髓抑制有保护作用。本研究通过液相色谱-质谱联用(LC-MS)技术,以整体动物研究给予DS-1226后其主要成分PPT和PPD的药代动力学特性,并利用Caco-2细胞模型、体外血脑屏障模型对PPD和PPT单体的肠吸收机制和透血脑屏障能力进行研究,同时,对DS-1226潜在的药物相互作用风险进行了探讨。
     1、本文首先建立了同时测定生物样品(血浆、皮层和海马)中PPT和PPD的高效,灵敏,稳定可靠的LC-MS分析方法。本方法以齐墩果酸作为内标,采用二氯甲烷液液萃取方法处理生物样品,在流动相中加入0.05mmol/L氯化铵以提高检测灵敏度,采用加氯母离子m/z511.6(PPT), m/z495.9(PPD), m/z455.5(OA,内标)作为检测离子。结果显示,血浆样品和海马匀浆液中PPT和PPD的最低检测限均为10.0ng/mL,最低定量限均为20.0ng/mL。皮层匀浆液中PPT和PPD的最低检测限为3.3ng/mL,最低定量限为6.7ng/mL。对日内、日间精密度和准确度进行了考察,结果表明此方法的精密度和准确度均符合生物样品分析的要求。
     2、应用新建立的LC-MS分析方法,对静脉(30mg/kg)、口服(75mg/kg)和肝门静脉(75mg/kg)等不同途径给予DS—1226后其主要成分PPT和PPD在大鼠体内的药代动力学特性进行研究,同时对PPT和PPD的胃肠道稳定性进行研究。体内药代动力学实验结果表明,口服给药后PPT和PPD的tmax,t1/2分别为0.58h,0.95h和1.82h,3.76h,表明PPT的达峰时间和体内消除速度相对于PPD均较快。PPT的口服生物利用度很低,仅为3.69%,而PPD具有较好的生物利用度,为48.12%。肝门给药时PPT和PPD的生物利用度分别为101.27%和100.54%,表明不存在肝首过效应,说明肝首过效应不是导致PPT生物利用度低的原因。静脉给药后PPT和PPD可进入脑组织,且在海马中含量较皮层中高。胃肠道稳定性研究结果显示,PPT在pH1.2缓冲液、胃内容物中发生明显的降解,推测其在胃中不稳定性可能是导致其生物利用度低的原因之一。
     3、本文在建立体外Caco-2细胞摄取、转运模型的基础上,对PPT和PPD的肠吸收机理进行了研究。结果表明,PPT和PPD在不同浓度(10,20,40μM)下表观渗透系数(Papp AP→BL)分别为(12.40~15.35)×10-6cm/s和(22.71~25.80)×10一cm/s,均属于吸收良好的药物。从AP→BL及BL→AP的转运量随浓度的增高而相应增大,而Papp值基本保持不变,外排比率均小于1.5。加入100μM维拉帕米后,PPT和PPD的Papp AP→BL与不加抑制剂组相比均无显著性差异,表明PPT和PPD在肠道上的转运方式均为被动扩散。
     4、本文采用分离、纯化得到的原代大鼠脑微血管内皮细胞和星形胶质细胞通过共培养方式建立体外血脑屏障模型,然后对PPT、PPD的透血脑屏障能力进行考察。实验结果显示,PPT和PPD在不同浓度(10,20,40μM)下表观渗透系数(Papp AP→BL)分别为(30.30~34.39)×10-6cm/s和(4.09~5.08)×10-6cm/s。PPT的Papp值比PPD高约8倍,表明PPT相对于PPD更容易透过血脑屏障。
     5、最后,本文采用Cocktail探针底物法和Rho-123摄取法分别评价DS-1226对肝微粒体CYP450酶和P-糖蛋白(P-glycoprotein, P-gP)活性的影响。结果显示DS-1226对CYP3A4介导的睾酮6p-羟基化反应抑制最强,IC50为7.58μg/mL。对CYP2C19介导的奥美拉唑5-羟基化和CYP2C9介导的甲苯磺丁脲4。羟基化也有较强的抑制作用,IC50分别为13.28μg/mL和9.69μg/mL。对CYP2E1介导的氯挫沙宗6-羟基化和CYP2D6介导的右美沙芬O-脱烷基化则几乎无抑制作用,IC50分别为99.48μg/mL和114.90μg/mL。提示DS-1226有可能在体内通过抑制肝脏CYP酶而引起显著的药物相互作用。同时DS-1226对P-gp的有一定的抑制作用,但与阴性对照组无显著性差异(P>0.05)。
     总之,本文通过静脉、口服、肝门静脉等不同给药途径给予DS-1226后研究PPT和PPD的体内药代动力学特性,并对影响其生物利用度的因素进行了探讨;同时,分别采用Caco-2细胞模型和体外血脑屏障模型对PPT和PPD单体的肠吸收机制和透血脑屏障能力进行了研究;最后,对DS-1226潜在的药物相互作用进行了初步研究。PPT仅比PPD在C-6多了一个羟基,但是二者的药动学特性表现出很大差异,PPD无论在血液循环系统还是脑组织中均具有较高的利用率。本研究为人参皂苷元类化合物的进一步研究和开发利用提供了思路,以便后续更深入的探讨其作用机制以及对其成药性做出评价。
Based on their chemical structures, ginsenosides are divided into three groups:protopanaxatriol (PPT), protopanaxadiol (PPD) and oleanane types. Ginsenosides had been found a wide range of biological activities, including immunomodulatory, anti-tumor, learning and memory improving, anti-aging, antiinflammatory, antidementia, antifatigue, hemopoietic function promotion and so on. However, ginsenosides themselves can not easily be absorbed and their bioavailabilities were poor. Many studies demonstrated that ginsenosides can be hydrolyzed in the gastrointestinal (GI) tract to form their metabolites including PPT and PPD, which are more easily absorbed into the body and displayed more potent activities than ginsenosides. Dammarane Sapogenins (DS-1226), which was prepared by proprietary technology to alkaline hydrolysis of total ginsenosides derived from the stem and leaf of Panax ginseng. This production and technology has already won patent rights at eight countries or regions, including China, USA, Canada, European Union, Taiwan, etc. DS-1226was mainly composed of33%PPT and16%PPD, and had been found with significant activities in improving learning and memory on cognitive dysfunction caused by sleep interruption in mice, and also decreasing chemotherapy-induced myelosuppression. In present study, we investigated the pharmacokinetic properties of PPT and PPD in rat plasma and brain using a LC-MS method when DS-1226was administrated to rats. The permeability through the small intestine and the blood-brain-barrier (BBB) were studied by using the Caco-2cell model and in vitro blood-brain barrier model, respectively. Finally, potentially drug-drug interaction of DS-1226was investigated.
     1. A sensitive LC-MS method was developed for the simultaneous determination of PPT and PPD in rat plasma and brain tissue. The analytes were extracted with dichloromethane and using OA as an internal standard. In order to achieve the abundant and stable signals,0.05mmol/L ammonium chloride was added to the mobile phase, and the chloride adducted molecule ions [M+C1]-at m/z511.6,495.9and455.5were used for monitoring PPT, PPD and OA, respectively. The results indicated that the limits of detection and quantification for both PPT and PPD in rat plasma and hippocampal were10.0,20.0ng/ml, respectively. And both the limits of detection, quantification for PPT and PPD in rat cortex were3.3ng/ml,6.7ng/ml, respectively. The intra-day and inter-day precisions and the accuracies were satisfactory and indicated that the LC-MS method was suitable for biological analysis.
     2. The pharmacokinetics of PPT and PPD in rats were studied after intravenously (i.v.,30mg/kg), oral (75mg/kg) and portal vein (p.v.,75mg/kg) administration of DS-1226. Their in vitro stabilities in the gastrointestinal (GI) tract were also investigated. The results showed that PPT was rapid absorption and eliminated rapidly from the body with averagetmax value of0.58h and t1/2,λz of0.95h after oral administration, while PPD was absorption and eliminated relatively slowly with tmax value of1.82h and t1/2,λz of3.76h. The absolute bioavailabilities of PPT and PPD were estimated as3.69%and48.12%, respectively.DS-1226was administrated to rats through the hepatic portal vein for exploring the hepatic first-pass effect of PPT and PPD. The results showed that the bioavailabilities of PPT and PPD were101.27%and100.54%, which indicated that hepatic first-pass should not be the reason for its low bioavailabilitiy. Both PPT and PPD could be detected in brain after i.v. administration, and their concentrations in hippocampal were relatively higher than that in cortex. The stability test found that PPT was instable both in pH1.2buffer and in the stomach content solution, indicated that the instability in the stomach might be one of the reasons for PPT poor bioavailabilitiy.
     3. Their intestinal transport absorption were investigated by using the Caco-2cell monolayer model. The results showed that PPT and PPD at three concentrations (10,20and40μM) have good absorption transport with Papp AP→BL value of (12.40~15.35)×10-6cm/s and (22.71~25.80)×10-6cm/s. The transported amounts of PPT and PPD were all increased with the increase of loading concentrations, with no changes for Papp values, the ratios of Papp BL→AB/Papp AB→BL for PPD and PPT were less than1.5. Furthermore, the Papp values for PPD and PPT were determined in the presence of100μM verapamil, and were found similar with that of absence of verapamil. This suggests that passive diffusion is the main transport mechanism of both PPD and PPT.
     4. In vitro BBB model by co-culture primary cultured brain endothelial cells and astrocytes was established, and permeability of PPT and PPD through BBB were investigated. The results showed that PPT and PPD at three concentrations (10,20and40μM) both could penetrate the BBB, and with PappAP→BL value of (30.30~34.39)×10-6cm/s and (4.09~5.08)×10-6cm/s. The Papp values for PPT was about eight times higher than that for PPD, which indicated that PPT could be penetrate the BBB more easily.
     5. Finally, the inhibitory effect of DS-1226on the activities of hepatic microsomal CYP450enzymes were investigated by cocktail probe drugs, and the effect of DS-1226on the activity of P-gp was investigated by uptake of Rho-123. The results showed that DS-1226have significant inhibiting effects on the activity of CYP3A4, CYP2C9and CYP2C19, with the IC50value of7.58,9.69and13.28μg/mL, while the inhibiting effects on the activity of CYP2E1and CYP2D6were relatively weakly, with the IC50value of99.48μM and114.90μM. The results indicate that DS-1226might cause significant drug interactions by inhibiting hepatic CYP450enzymes in vivo. DS-1226has weak inhibition on P-gp, but there was no significant difference between DS-1226groups and negative control group (P>0.05).
     In conclusion, the pharmacokinetic properties of PPT and PPD after i.v., oral and p.v. administration of DS-1226as well as the factors on their bioavailabilities were investigated. Meanwhile, the permeability through the small intestine and the BBB were also studied by using the Caco-2cell model and in vitro BBB model, respectively. Finally, potentially drug interaction of DS-1226was investigated. PPT, which structure only differs from PPD by a hydroxyl group at the C-6position, showed quite different pharmacokinetic properties from PPD, the bioavailability of PPD was relatively higher than PPT both in plasma and brain. The present study could provide ideas for further research and development of ginsenoside aglycones, so as to further study their mechanisms and to evaluate their druggabilities.
引文
[1]Liu CX, Xiao PG. Recent advances on ginseng research in China[J]. Journal of Ethnopharmacology,1992,36(1):27-38.
    [2]Attele AS, Wu JA, Yuan CS. Ginseng pharmacology:multiple constituents and multiple actions[J]. Biochemical Pharmacology,1999,58(11):1685-1693.
    [3]张均田.人参研究的最新进展[J].江苏大学学报(医学版),2009,19(03):185—191.
    [4]黎阳,张铁军,刘素香,等.人参化学成分和药理研究进展[J].中草药,2009,40(01):164-166.
    [5]Kitts D, Hu C. Efficacy and safety of ginseng[J]. Public Health Nutr,2000,3(4A): 473-485.
    [6]Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer[J]. Acta Pharmacol Sin,2008, 29(9):1109-1118.
    [7]Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins[J].Planta Medica,1997,63,63(5):436-440.
    [8]Hasegawa H. Proof of the mysterious efficacy of ginseng:basic and clinical trials: metabolic activation of ginsenoside:deglycosylation by intestinal bacteria and esterification with fatty acid[J]. J Pharmacol Sci,2004,95(2):153-157.
    [9]Chen GT, Yang M, Nong SJ, et al. Microbial transformation of 20(S)-protopanaxadiol by Absidia corymbifera. Cytotoxic activity of the metabolites against human prostate cancer cells[J]. Fitoterapia,2013,84:6-10.
    [10]Sun L, Wang Q, Liu X. et al. Anti-cancer effects of 20(S)-protopanoxadiol on human acute lymphoblastic leukemia cell lines Reh and RS4; 11 [J]. Med Oncol. 2011.28(3):813-821.
    [11]Wang CZ. Du GJ, Zhang Z, et al. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer[J]. International Journal of Oncology,2012,40(6):1970-1976.
    [12]Wang YZ, Chen J, Chu SF, et al. Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rgl's metabolites ginsenoside Rhl and protopanaxatriol[J]. J Pharmacol Sci,2009,109(4):504-510.
    [13]Musende AG, Eberding A, Wood CA, et al. A novel oral dosage formulation of the ginsenoside aglycone protopanaxadiol exhibits therapeutic activity against a hormone-insensitive model of prostate cancer[J]. Anti-Cancer Drugs,2012,23(5): 543-552.
    [14]Oh GS, Pae HO, Choi BM, et al.20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide[J]. Cancer Letters,2004,205(1): 23-29.
    [15]石楸鸣.人参皂苷的药理作用研究进展[J].中国药房,2010,21(31):2967-2969.
    [16]金岩,曲婷婷,柳越冬,等.人参皂苷Rb1、Rg1与5-氟脲嘧啶对地塞米松诱导S180荷瘤小鼠脾淋巴细胞凋亡影响的实验研究[J].中医药学刊,2006,24(07):1272—1273.
    [17]Yoo JH, Kwon HC, Kim YJ, et al. KG-135, enriched with selected ginsenosides, inhibits the proliferation of human prostate cancer cells in culture and inhibits xenograft growth in athymic mice[J].Cancer Letters,2010,289(1):99-110.
    [18]付本懂.人参皂苷抗马立克氏病肿瘤形成作用及其机制研究[D].长春:吉林大学,2006.
    [19]陈晓东.人参皂苷Rh2对荷结肠癌CT-26小鼠抗瘤作用及免疫指标的影响[D].天津:天津医科大学,2010.
    [20]王艳.人参皂苷Rg3对人肺腺癌细胞株抗肿瘤作用及相关机制的研究[D].哈尔滨:黑龙江中医药大学,2011.
    [21]赵莹,刘金平,卢丹,等.人参皂苷Re促进自然衰老大鼠学习记忆作用及其机理的研究[J].中药新药与临床药理,2007,18(1):20-22.
    [22]陈新梅,朱家壁.人参皂苷Rg1脂质体对东莨菪碱诱导大鼠学习记忆障碍的改善及其作用机制[J].中国临床药理学与治疗学,2005,10(8):898—902.
    [23]庄莹,石博,田歆,等.人参皂苷Rg2对Alzheimer病模型大鼠学习记忆能力和老年斑形成的影响[J].中国老年学杂志,2010,30(2):202-204.
    [24]李玲.人参皂苷Rd对阿尔茨海默病模型的神经保护作用及机制探讨[D].西安:第四军医大学,2012.
    [25]党海霞.穿梭计算机分析系统的建立和开心散改善抑郁症认知功能障碍研究[D].北京:中国协和医科大学,2008.
    [26]Dang H, Chen Y, Liu X, et al. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2009, 33(8):1417-1424.
    [27]李玉倩,王芳,陈建国.人参皂苷Rb1抗抑郁作用的动物行为学研究[J].河南医学研究,2011,20(3):257—260.
    [28]Xu C, Teng J, Chen W, et al.20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2010,34(8):1402-1411.
    [29]褚秀玲,苏建青,韦旭斌.人参皂苷免疫调节和抗病毒作用研究进展[J].中兽医医药杂志,2008,27(5):20-23.
    [30]Song X, Chen J, Sakwiwatkul K, et al. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re[J]. Int Immunopharmacol,2010, 10(3):351-356.
    [31]刘伟宏,龚守良,李新民,等.人参三醇组甙对雄性大鼠免疫器官的辐射防护作用[J].白求恩医科大学学报,1994,20(1):32—34.
    [32]王毅,蒋艳,王本祥,等.人参皂苷Rg1及其肠内菌代谢产物Rhl对小鼠免疫细胞功能的影响[J1.药学学报,2002,37(12):927—929.
    [33]Wang J, Li S, Fan Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Journal of Ethnopharmacology,2010,130(2):421-423.
    [34]Tang W, Zhang Y, Gao J, et al. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration[J]. Biological and Pharmaceutical Bulletin, 2008,31(11):2024-2027.
    [35]张艳.人参皂苷Rg3的抗疲劳作用研究[D].长春:吉林大学,2007.
    [36]冯毅翀,赵自明,陈媛,等.人参皂苷Re对运动性疲劳模型大鼠MDA含量和SOD活性的影响[J].中药新药与临床药理,2009,20(6):542-544.
    [37]高伟博,米钧,秦秋杰,等.人参及其炮制品抗疲劳作用[J].中国实验方剂学杂志,2011,17(19):210-213.
    [38]赵保胜,桂海水,徐暾海.人参皂苷Rgl抗炎作用实验研究[J].人参研究,2010,22(04):2-4.
    [39]李刚.人参皂苷Rg3的抗炎及解热药效学研究[D].长春:吉林大学,2006
    [40]雷秀娟,冯凯,孙立伟,等.人参皂苷抗衰老机制的研究进展[J].氨基酸和生物资源,2010,32(1):44-47.
    [41]Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rbl and its mechanism of action[J]. Acta Pharmacol Sin, 2005,26(2):143-149.
    [42]Lee SK, Wong CK, Poon PM, et al. In vitro immunomodulatory activities of a newly concocted traditional Chinese medicine formula:VI-28[J]. Phytotherapy Research,2006,20(10):883-888.
    [43]金建生,赵朝晖,陈晓春,等.人参皂苷Rg1抗衰老作用可能与改变p16、cyclin D、CDK4的表达有关[J].中国临床药理学与治疗学,2004,9(1):29-34.
    [44]程俊霖,管晓琳,朱玲,等.人参皂苷对衰老小鼠皮肤和人角质形成细胞的抗衰老研究[J].四川生理科学杂志,2005,27(03):134.
    [45]Chen H, Yin J, Deng Y, et al. The protective effects of ginsenoside Rg1 against hypertension target-organ damage in spontaneously hypertensive rats[J]. BMC Complement Altern Med,2012,12:53.
    [46]魏志泉.人参皂苷单体Rbl对抗高血压发展过程研究[D].长春:东北师范大学,2006.
    [47]冯劫.人参皂苷Rg1对四氧嘧啶致小鼠糖尿病降糖作用的研究[J].中华中医药学刊,2010,28(11):2427-2429.
    [48]Attele AS, Zhou YP, Xie JT, et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component[J]. Diabetes,2002, 51(6):1851-1858.
    [49]梁园园,王斌,李玲,等.人参皂苷Rbl抗单纯疱疹病毒1型感染及保护神经的实验研究[J].中国中西医结合杂志,2012,32(7):975—979.
    [50]李俊霞,苏建青,褚秀玲.人参皂苷抗鸡新城疫病毒的试验研究[J].湖北农业科学,2012,51(2):351—353.
    [51]王海南.人参皂苷药理研究进展[J].中国临床药理学与治疗学,2006,11(11):1201-1206.
    [52]Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Rbl in the rat[J]. Chemical and Pharmaceutical Bulletin, 1983,31(3):1059-1066.
    [53]Zhao J, Su C, Yang C, et al. Determination of ginsenosides Rbl, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method:Application in a pharmacokinetic study [J]. Journal of Pharmaceutical and Biomedical Analysis,2012,64-65:94-97.
    [54]郝成欣.人参皂苷Rbl在小鼠体内分布研究[D].长春:东北师范大学,2010.
    [55]韩旻,傅韶,方晓玲.三七皂苷中人参皂苷Rg1与Rb1口服吸收及其体内药代动力学的研究和比较[J].药学学报,2007,42(8):849-853.
    [56]Han M, Sha X, Wu Y, et al. Oral absorption of ginsenoside Rbl using in vitro and in vivo models[J]. Planta Medica,2006,72(5):398-404.
    [57]Zhou D, Tong L, Wan M, et al. An LC-MS method for simultaneous determination of nine ginsenosides in rat plasma and its application in pharmacokinetic study[J]. Biomedical Chromatography,2011,25(6):720-726.
    [58]刘霞.人参皂苷Rd口服吸收及其体内药代动力学的研究[D].兰州:兰州大学,2011.
    [59]罗德凤,叶建涛,张毅珊,等.人参皂苷Rd固体脂质纳米粒的体外释放和大鼠的在体吸收[J].中国药理学通报,2009,25(7):923—926.
    [60]Sun D, Wang B, Shi M, et al. Pharmacokinetic, tissue distribution and excretion of ginsenoside-Rd in rodents[J].Phytomedicine,2012,19(3-4):369-373.
    [61]Wang W, Wang GJ, Xie HT, et al. Determination of ginsenoside Rd in dog plasma by liquid chromatography-mass spectrometry after solid-phase extraction and its application in dog pharmacokinetics studies [J].J Chromatogr B Analyt Technol Biomed Life Sci,2007,852(1-2):8-14.
    [62]Xie HT, Wang GJ, Sun JG, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies [J].J Chromatogr B Analyt Technol Biomed Life Sci,2005,818(2):167-173.
    [63]李柯.薯蓣皂苷和人参皂苷Rg3动物体内药物动力学研究[D].沈阳:沈阳药科大学,2005.
    [64]刘继华,卢丹,刘金平,等.大鼠肌内注射20(S)-人参皂苷Rg3的药动学研究[J].中国药学杂志,2007,42(14):1087-1090.
    [65]庞焕,汪海林,富力,等.20(R)-人参皂苷Rg3人体药代动力学研究[J].药学学报,2001,36(3):·170-173.
    [66]Qian T, Cai Z, Wong RN, et al. Liquid chromatography/mass spectrometric analysis of rat samples for in vivo metabolism and pharmacokinetic studies of ginsenoside Rh2[J]. Rapid Communications in Mass Spectrometry,2005, 19(23):3549-3554.
    [67]顾轶,王广基,孙建国,等.LC-MS法测定Beagle犬血浆中人参皂苷20(R)-Rh2及其药代动力学研究[J].中国临床药理学与治疗学,2006,11(3):256-260.
    [68]Gu Y, Wang GJ, Sun JG, et al. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs[J]. Food and Chemical Toxicology,2009,47(9):2257-2268.
    [69]李海军.林下参化学成分及SD大鼠皮下注射Rh2药理和药动学的研究[D].长春:吉林大学,2012.
    [70]Paek IB, Moon Y, Kim J, et al. Pharmacokinetics of a ginseng saponin metabolite compound K in rats[J]. Biopharmaceutics and Drug Disposition,2006, 27(1):39-45.
    [71]田方.人参次苷G中总皂苷的测定及人参皂苷C-K的药代动力学研究[D].太原:山西大学,2006.
    [72]盖芸芸.人参皂苷C-K在大鼠体内的组织分布及排泄研究[D].烟台:烟台大学,2007.
    [73]Yang Z, Wang JR, Niu T, et al. Inhibition of P-glycoprotein leads to improved oral bioavailahility of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora[J]. Drug Metab lism and Disposition:The Biological Fate of Chemicals,2012,40(8):1538-1544.
    [74]武毅.20(S)-原人参二醇和益今生胶囊及多潘立酮的药物动力学研究[J].长春:吉林大学,2007.
    [75]Ren HC, Sun JG, Wang GJ, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS:application of pharmacokinetic study in rats[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,48(5):1476-1480.
    [76]Han M, Chen J, Chen S, et al. Development of a UPLC-ESI-MS/MS assay for 20(S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats[J]. Anal Sci,2010,26(7):749-753.
    [77]Jin X, Zhang ZH, Li SL, et al. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption[J]. Fitoterapia,2013,84: 64-71.
    [78]彭缨,王淑君,潘卫三,等.人参皂苷Re大鼠体内药物动力学研究[J].沈阳药科大学学报,2006,23(4):197-200.
    [79]Joo KM, Lee JH, Jeon HY, et al. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(1):278-283.
    [80]Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rgl in the rat[J]. Chem Pharm Bull (Tokyo),1983, 31(1):292-298.
    [81]Huo YS, Zhang SC, Zhou D, et al. Pharmacokinetics and tissue distribution of [3H]ginsenoside Rg1[J]. Zhongguo Yao Li Xue Bao,1986,7(6):519-521.
    [82]马守武,孟书聪,董彦,等.3H-人参皂甙单体Rg1、Rb1、Rb2在小鼠体内分布的整体放射自显影研究[J].宁夏医学院学报,1989,11(1—2):22-25.
    [83]Sun JG, Wang GJ, Xie HT, at al. Simultaneous rapid quantification of ginsenoside Rgl and its secondary glycoside Rhl and aglycone protopanaxatriol in rat plasma by liquid chromatography-mass spectrometry after solid-phase extraction[J]. Journal of Pharmaceutical and Biomedical Analysis,2005, 38(1):126-132.
    [84]冯亮,胡昌江,余凌英.人参皂苷gg1及其代谢产物的药代动力学研究[J].药学学报,2010,45(5):636-640.
    [85]梁平.人参皂苷Rg1脂质体肺部给药研究[D].昆明:昆明医学院,2009.
    [86]杨秀伟,桂方晋,田建明,等.人参皂苷-Rg2在大鼠体内的药代动力学[J].中国药理学通报,2009,25(7):967-970.
    [87]杨秀伟.中药成分代谢分析[M].北京:中国医药科技出版社,2003.
    [88]Lai L, Hao H, Liu Y, et al. Characterization of pharmacokinetic profiles and metabolic pathways of 20(S)-ginsenoside Rhl in vivo and in vitro[J]. Planta Medica,2009,75(8):797-802.
    [89]Lai L, Liu Y, Hao H, et al. Determination of 20(S)-ginsenoside Rhl and its aglycone 20(S)-protopanaxatriol in rat plasma by sensitive LC-APCI-MS method and its application to pharmacokinetic study[J]. Eur J Mass Spectrom (Chichester, Eng),2009,15(1):57-65.
    [1]李绪文,林燕飞,郑莹,等.RP-HPLC法测定西洋参茎叶皂苷酸、碱降解物中20(S)-原人参二醇的含量[J].吉林大学学报(医学版),2006,32(02):353—356.
    [2]李绪文.人参皂苷降解及其产物化学成分的研究[D].长春:吉林大学,2006.
    [3]王冰,浦益琼,陶建生,等.20(S)-原人参二醇片含量测定及体外评价方法的研究[J].中国实验方剂学杂志,2011,17(18):89—94.
    [4]Cui JF, Bjorkhem I, Eneroth P. Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations[J]. J Chromatogr B Biomed Sci Appl,1997,689(2):349-355.
    [5]Cui JF, Garle M, Bjorkhem I, et al. Determination of aglycones of ginsenosides in ginseng preparations sold in Sweden and in urine samples from Swedish athletes consuming ginseng[J]. Scandinavian Journal of Clinical and Laboratory Investigation,1996,56(2):151-160.
    [6]Sun J, Wang GJ. Xie HT. et al. Simultaneous rapid quantification of ginsenoside Rgl and its secondary glycoside Rhl and aglycone protopanaxatriol in rat plasma by liquid chromatography-mass spectrometry after solid-phase extraction[J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38(1):126-132.
    [7]Ren HC, Sun JG. Wang GJ, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS:application of pharmacokinetic study in rats[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,48(5):1476-1480.
    [8]Xie HT, Wang GJ, Sun JG. et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies[J]. J Chromatogr. B Analyt Technol Biomed Life Sci,2005,818(2):167-173.
    [9]Zhang D, Wang Y, Han J, et al. Rapid and sensitive LC-MS/MS assay for the quantitation of 20(S)-protopanaxadiol in human plasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(5-6):581-585.
    [10]Han M, Chen J, Chen S, et al. Development of a UPLC-ESI-MS/MS assay for 20(S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats[J]. Anal Sci,2010,26(7):749-753.
    [11]Wang W, Shao Y, Ma S, et al. Determination of 20(S)-protopanaxadiol ocotillol type epimers in rat plasma by liquid chromatography tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2012,887-888(1):19-24.
    [12]赵龙山,李清,郭超伟,等.质谱联用技术在生物样品分析中的应用[J].药学学报,2012,47(2):158-162.
    [13]Zhou D, Tong L, Wan M, et al. An LC-MS method for simultaneous determination of nine ginsenosides in rat plasma and its application in pharmacokinetic study [J]. Biomedical Chromatography,2011,25(6):720-726.
    [14]武毅.20(S)-原人参二醇和益今生胶囊及多潘立酮的药物动力学研究[D].长春:吉林大学,2007.
    [15]Xie HT, Wang GJ, Chen M, et al. Uptake and metabolism of ginsenoside Rh2 and its aglycon protopanaxadiol by Caco-2 cells[J]. Biological and Pharmaceutical Bulletin, 2005,28(2):383-386.
    [16]李章万,徐秀荣.色谱分析中生物样品的前处理方法[J].药物分析杂志,1996,16(1):55—59.
    [17]高守红.虎杖苷的体内分析及其临床前药代动力学研究[D].上海:第二军医大学,2005.
    [18]Samukawa K, Yamashita H, Matsuda H, et al. Simultaneous analysis of ginsenosides of various ginseng radix by HPLC[J]. Yakugaku Zasshi,1995,115(3):241-249.
    [19]FDA. Guidance for industry-Bioanalytical method validation [S].2001
    [20]张剑萍,郭澄.生物样品分析中的方法学验证[J].中国药房,2008,19(31):2469-2471.
    [21]李能.肝肠首过效应对齐墩果酸生物利用度的影响研究[D].广州:广州中医药大学,2012.
    [22]梁文权,李高,刘建平.生物药剂学与药物动力学[M].北京:人民卫生出版社,2008.
    [23]Letendre Laura, Mark Scott, Glenn Dobson, et al. Evaluating Barriers to Bioavailability in Vivo:Validation of a Technique for Separately Assessing Gastrointestinal Absorption and Hepatic Extraction[J]. Pharmaceutical Research, 2004,21(8):1457-1462.
    [24]查德华.雷贝拉唑肝肠首过效应及抗生素对雷贝拉唑药代动力学影响的初步研究[D].合肥:安徽医科大学,2008.
    [25]Wang YZ, Wang YS, Chu SF, et al. Protopanaxatriol metabolites identified by LC-MS/MS after oral administration in mice[J]. International Journal of Clinical Pharmacology and Therapeutics,2010,48(4):282-290.
    [26]Ren HC, Sun JG, Wang GJ, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS:application of pharmacokinetic study in rats[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,48(5):1476-1480.
    [27]Jin X, Zhang ZH, Li SL, et al. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption[J]. Fitoterapia,2013, 84:64-71.
    [28]Hillgren KM, Kato A, Borchardt RT. In vitro systems for studying intestinal drug absorption[J]. Medicinal Research Reviews,1995,15(2):83-109.
    [29]赖珺,廖正根,杨明福,等.生物利用度的研究进展[J].中国实验方剂学杂志,2010,16(18):226-229.
    [30]Stenberg P, Bergstrom CA, Luthman K, et al. Theoretical predictions of drug absorption in drug discovery and development[J]. Clinical Pharmacokinetics,2002, 41(11):877-899.
    [31]关溯,陈孝,黄民.Caco-2细胞模型一药物吸收研究的有效“工具”[J].中国药理学通报,2004,20(6):609-614.
    [32]Hidalgo IJ. Assessing the absorption of new pharmaceuticals[J]. Curr Top Med Chem,2001,1 (5):385-401.
    [33]江雪,泉奚,周建平,等.口服药物吸收的细胞模型研究进展[J].世界临床药物,2012,33(5):292-297.
    [34]杨秀伟,杨晓达,王莹,等.中药化学成分肠吸收研究中Caco-2细胞模型和标准操作规程的建立[J].中西医结合学报,2007,5(06):634-641.
    [35]高坤,孙进,何仲贵.Caco-2细胞模型在口服药物吸收研究中的应用[J].沈阳药科大学学报,2005,22(06):73—78.
    [36]王庚南.连翘酯苷的吸收及代谢研究[D].北京:北京协和医学院,2010.
    [37]杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用[J].药学学报,2000,35(10):797-800.
    [38]He Y, Zeng S. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers[J]. Journal of Pharmacy and Pharmacology,2005, 57(10):1297-1303.
    [39]Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport[J]. Adv Drug Deliv Rev,2001, 46(1-3):27-43.
    [40]Hilgers AR, Conradi RA, Burton PS. Caco-2 Cell Monolayers as a Model for Drug Transport Across the Intestinal Mucosa[J]. Pharmaceutical Research,1990, 7(9):902-910.
    [41]Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs[J]. Pharm Res,1996, 13(7):963-977.
    [42]Krishna G, Chen K, Lin C, et al. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2 [J]. International Journal of Pharmaceutics,2001,222(1):77-89.
    [43]王倩.远志皂苷水解物的药代动力学研究[D].北京:北京协和医学院,2012.
    [44]Hiroshi K, Masahiro I. Pitfalls in High Throughput Screening for Drug Absorption Optimization in Drug Discovery [J]. Current Analytical Chemistry,2007, 3(4):302-309.
    [45]Liu T, Chang LJ, Uss, A, et al. The impact of protein on Caco-2 permeability of low mass balance compounds for absorption projection and efflux substrate identification[J]. Journal of Pharmaceutical and Biomedical Analysis,2010, 51(5):1069-1077.
    [46]Pal D, Udata C, Mitra AK. Transport of cosalane-a highly lipophilic novel anti-HIV agent-across caco-2 cell monolayers[J]. Journal of Pharmaceutical Sciences,2000, 89(6):826-833.
    [47]Pardridge WM. Drug delivery to the brain[J]. Journal of Cerebral Blood Flow and Metabolism,1997,17(7):713-731.
    [48]Pardridge WM. Blood-brain barrier drug targeting:the future of brain drug development[J]. Mol Interv,2003,3(2):90-105,151.
    [49]吴雪,欧阳丽娜,向大位,等.药物血脑屏障通透性评价方法的研究进展[J].中国医院药学杂志,2010,30(10):862-864.
    [50]夏蓉,刘晓东,马长清.血脑屏障与药物转运方法的研究进展[J].贵州医药,2008,32(10):950-953.
    [51]Li W, Zhou Y, Zhao N, et al. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes[J]. Environ Toxicol Pharmacol,2012,34(2):272-279.
    [52]Wang X, Ratnaraj N, Patsalos PN. The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid and brain extracellular fluid (frontal cortex and hippocampus)[J]. Seizure,2004,13(8):574-581.
    [53]Musteata FM. Pharmacokinetic applications of microdevices and microsampling techniques[J]. Bioanalysis,2009,1(1):171-185.
    [54]Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena 2. Prediction of blood-brain barrier penetration[J]. J Pharm Sci,1999,88(8):815-821.
    [55]Habgood MD, Begley DJ, Abbott NJ. Determinants of passive drug entry into the central nervous system[J]. Cell Mol Neurobiol,2000,20(2):231-253.
    [56]Brendel K, Meezan E, Carlson EC. Isolated brain microvessels:a purified, metabolically active preparation from bovine cerebral cortex[J]. Science,1974, 185(4155):953-955.
    [57]鲍欢.体外建立血脑屏障细胞模型及其屏障功能的建立[D].苏州:苏州大学,2003.
    [58]胡利民,范祥,张艳军,等.大鼠脑微血管内皮细胞与星形胶质细胞共培养血脑屏障体外模型的建立[J].天津中医药,2005,22(2):149—151.
    [59]Xu C, Teng J, Chen W, et al.20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests[J]. Prog Neuropsychopharmacol Biol Psychiatry,2010,34(8):1402-1411.
    [60]王泽君,葛凯勤,孙黎勤,等.原人参三醇,原人参二醇在神经系统疾病的医疗应用[P].中国专利:200910144925,2009-9-14.
    [61]Wang YZ, Chen J, Chu SF, et al. Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rgl's metabolites ginsenoside Rhl and protopanaxatriol[J]. J Pharmacol Sci,2009,109(4):504-510.
    [62]卜兰兰.DS—1226对睡眠干扰致学习记忆障碍改善作用研究[D].郑州:郑州大学,2011.
    [63]Abbott NJ, Hughes CC, Revest PA, et al. Development and characterisation of a rat brain capillary endothelial culture:towards an in vitro blood-brain barrier[J]. Journal of Cell Science,1992,103 (Pt 1):23-37.
    [64]Laywell ED, Rakic P, Kukekov VG, et al. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(25):13883-13888.
    [65]王雪莹,黄绍平,陈小聪,等.SD大鼠脑皮层星形胶质细胞的原代培养及纯化方法改良[J].陕西医学杂志,2009,38(9):1107-1110.
    [66]Kido Y, Tamai I, Nakanishi T, et al. Evaluation of blood-brain barrier transporters by co-culture of brain capillary endothelial cells with astrocytes[J]. Drug Metab Pharmacokinet,2002,17(1):34-41.
    [67]Ma SH, Lepak LA, Hussain RJ, et al. An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane[J]. Lab Chip,2005,5(1):74-85.
    [68]范祥.血脑屏障体外模型的建立及冰片对其影响的研究[D].天津:天津中医学院,2004.
    [69]胡利民.冰片及配伍对血脑屏障通透性的影响和脑保护作用机制研究[D].天津:天津中医学院,2004.
    [70]吴非.离体血脑屏障模型的建立[D].杭州:浙江工业大学,2007.
    [71]吴秀芹,梅晓云,吴颢昕,等.大鼠脑微血管内皮细胞的原代培养与鉴定[J].中国实验方剂学杂志,2011,17(3):187—189.
    [72]刘恺鸣,迟路湘,鲁向辉,等.大鼠脑微血管内皮细胞的原代培养[J].第三军医大学学报,2007,29(20):2011-2013.
    [73]Song L, Pachter JS. Culture of murine brain micro vascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins[J]. In Vitro Cellular and Developmental Biology. Animal,2003, 39(7):313-320.
    [74]田林郁,李胜富,周东.大鼠脑微血管内皮细胞的分离、培养及不同纯化方法的比较[J].四川大学学报(医学版),2010,41(05):869-872.
    [75]白慧云,穆祥,丁库克,等.大鼠脑微血管内皮细胞的培养[J].微循环学杂志,2011,21(1):3—5.
    [76]鲍欢,包仕尧,张志琳.体外分离、培养大鼠脑微血管内皮细胞的若干问题[J].苏州大学学报(医学版),2004,24(5):657-660.
    [77]刘瑶,洪岚,余露山,等.创新药物转化研究中ADME的评价[J].药学学报,2011,46(1):19—29.
    [78]刘治军,傅得兴,汤光.FDA药物相互作用研究指南(草案)2006版解读[J].国际药学研究杂志,2008,35(1):50-58.
    [79]刘治军,傅得兴,孙春华,等.体内药物相互作用研究进展[J].药物不良反应 杂志,2006,8(01):33-38.
    [80]周权,姚彤炜,曾苏.代谢性药物的相互作用[J].中国临床药理学杂志,2001,17(04):313—318.
    [81]Zientek M, Miller H, Smith D, et al. Development of an in vitro drug-drug interaction assay to simultaneously monitor five cytochrome P450 isoforms and performance assessment using drug library compounds[J]. J Pharmacol Toxicol Methods,2008,58(3):206-214.
    [82]Fahmi OA, Hurst S, Plowchalk D, et al. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction[J]. Drug Metab lism and Disposition:The Biological Fate of Chemicals,2009,37(8):1658-1666.
    [83]张伟霞,周宏灏.P-糖蛋白介导的药代动力学及其药物相互作用[J].中国临床药理学杂志,2004,20(02):139-143.
    [84]Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein[J]. Adv Drug Deliv Rev,2003,55(1):53-81.
    [85]Sun J, He ZG, Cheng G, et al. Multidrug resistance P-glycoprotein:crucial significance in drug disposition and interaction[J]. Med Sci Monit,2004,
    [86]艾常虹,李桦,董德利.基于细胞色素P450酶诱导的药物相互作用及评价[J].国际药学研究杂志,2011,38(1):52-57.
    [87]刘勇.早期药物代谢研究在中药科学性评价中的应用--天然人参皂苷肠道菌代谢物将引发药物相互作用[D].大连:中国科学院研究生院,2005.
    [88]刘彦卿,洪燕君,曾 苏.代谢性药物-药物相互作用的研究进展[J].浙江大学学报(医学版),2009,38(2):215—224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700