用户名: 密码: 验证码:
基于功能磁共振成像的针刺研究方法论探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针刺这一有着几千年历史的传统中医疗法在当今世界范围内越来越得到普遍接受和认可。针刺作为一种绿色的补充替代疗法已被证实在众多疾病特别是功能性疾病上具有显著的治疗效果。然而针刺的机制仍不明确,这严重制约着对针刺认识水平的提高,从而使得针刺理论更新缓慢,进一步地制约着针刺临床疗效最大化的发展。因此,尽早阐明针刺的机制尤其是针刺中枢机制对整个针刺领域的发展起着至关重要的作用。基于功能磁共振成像(fMRI)的针刺研究已经发展了超过十五个年头,期间发布了上百篇高水平的国际期刊文章,为针刺中枢机制研究的发展起到了巨大的推动作用。然而,由于针刺自身的复杂性,以及fMRI技术手段在数据处理和统计分析上的精密性,前人基于fMRI的针刺研究中存在着许多致命的问题。越来越多的研究者开始谨慎的审视之前文章中研究目的和假设,实验设计,实验控制,数据处理,统计分析以及结果解释中存在的问题。然而,从方法论的高度,评价和解决针刺fMRI研究中方法有效性和结果可靠性方面的研究还非常有限。本文正是从这一角度来展开工作的。
     本文主要工作和创新如下:
     首先,较为全面的从研究思路,分析方法和结果解释三个方面论述了基于fMRI针刺研究中存在的主要问题。并提出了基于fMRI针刺研究的客观性框架。在研究思路方面,选取健康被试探索针刺有效性相关的响应模式,以及假设针刺响应符合“ON-OFF”模式这两个方面是针刺fMRI研究思路中存在的主要问题。我们认为,1)应选取针刺适应症患者,以临床疗效为基础探索针刺中枢调节机制;2)基于健康受试者的针刺fMRI研究应该重点关注针刺刺激本身的中枢加工机制;3)基于实时记录的被试主观感觉信息作为参考向量,探索针刺感觉依赖的中枢响应模式是针刺fMRI研究思路上的改进措施。在分析方法方面,1)需要采用随机效应分析或混合效应分析这些能够推广的总体的组分析方法,并加大对个体结果的关注力度;2)需要采用多重比较校正后的阈值作为结果,尽可能避免假阳性的干扰;3)需要采用足够大的样本量来保证结果的可靠性,并从主观行为学和评价个体差异程度两个方面来控制样本的一致性。在结果解释方面,1)关于针刺特异性的解释要基于针刺组和对照组的组间比较结果,而不能基于两个单组结果的视觉上的比较;2)要采用更有效的实验设计和实验控制,在结果讨论上尽量避免采用之前针刺fMRI研究中常用的逆向推断的方式;3)要更谨慎的对针刺fMRI研究结果中的负激活进行可靠性评判和解释,因为不合理的实验控制和数据预处理都会引入广泛的伪造的负激活。总之,针刺fMRI研究需要建立全新的以保证客观性为基本目标的全新研究框架。
     其次,全面细致的讨论了全局信号标准化这样一个预处理步骤对针刺fMRI结果的影响。全局信号标准化是数据预处理时经常使用的一个步骤,用来去除无用信号。然而,一些认知和情绪任务已经表明,如果全局信号标准化违背了正交假设的话,此预处理步骤会严重的改变统计结果。本文在针刺fMRI领域讨论了这个问题。总共招募了30个被试,研究使用全局信号标准化对针刺诱发得气BOLD响应的影响以及对非痛表面刺激血氧依赖(BOLD)响应的影响。我们基于比例缩放模型比较了采用全局信号标准化(PSGS)与未采用全局信号标准化(NO PSGS)的结果。发现全局信号标准化违背了正交假设,采用全局信号标准化与未采用全局信号标准化相比大多数被试的BOLD响应有了显著的变化。针刺fMRI领域大量的负激活是错误使用全局信号标准化所带来的后果。针刺得气诱发的中枢响应是非特异性的躯体感觉相关网络的正激活,并且其统计力度会通过全局信号标准化增强。总之,针刺fMRI领域采用全局信号标准化是不合理的。是否采用全局信号标准化预处理可能部分的解释之前针刺fMRI研究中存在矛盾的结果和解释的原因。
     第三,初步表明了,针刺引起的得气相关和锐痛相关BOLD响应模式的部分分离。目前,fMRI已经成为研究针刺中枢机理最重要的方式之一。在100多篇基于fMRI的针刺研究中,围绕躯体感觉相关大脑网络的正激活是最鲁棒的BOLD响应模式。但是由于针刺刺激时对被试主观感觉控制不够完善,因此这种鲁棒的正激活反映的是得气,锐痛还是混合(得气加尖锐痛)的响应模式仍然不清楚。此外得气相关BOLD响应与锐痛相关BOLD响应的关系也不清楚。在本章中,我们招募了50个被试,根据他们在针刺刺激时是否感受到了锐痛将他们分为得气组和混合组。本章主要研究两个问题:第一,得气相关BOLD响应是什么样的?是正激活主导还是负激活主导?第二,得气相关BOLD响应与锐痛相关BOLD响应的关系是怎样的?我们的结果表明对于第一个问题,针刺刺激足三里时与得气相关的BOLD响应是正激活主导的模式;对于第二个问题,得气感觉下BOLD响应与混合感觉下BOLD响应在数量和性质上都有显著的差异。在空间分布上,锐痛的响应与得气的响应可能是部分分离的。因此,我们认为,为了研究针刺的中枢机理,有尖锐痛的被试应该排除,而使用只有得气的被试。
     最后,我们评价了针刺刺激即时中枢响应模式的个体差异程度,以及基于中枢响应模式定义的例外点对组分析结果的影响。我们对16个被试进行了针刺足三里和棋盘格视觉刺激。我们利用广义线性模型得到的β值计算平均距离,并且通过它检测异常值来研究组的同质性。通过计算平均距离,我们发现针刺刺激相对视觉刺激有更显著的个体差异。从组分析的角度,我们发现在同质组中正激活是更显著的。得气打分与针刺刺激的平均距离没有直接的相关性。异常值的得气打分落在正常的范围内并且与其他的没有明显的差异。我们认为未去掉异常值的传统组分析结果对于检测针刺的真正效应没有非常高的灵敏度。我们建议在以后的针刺研究中应当要考虑个体差异。而且,对于了解针刺的效应,组分析的结果与个体分析的结果是同等重要的。
     总体来说,本文从预处理和统计分析两个方面讨论了针刺fMRI研究中存在的方法论问题。主要表明了全局信号标准化这样一步预处理不适用于针刺fMRI研究;需要从控制被试主观感觉一致性和中枢响应模式一致性方面保证组分析结果的可靠性。本文的主要发现可以提高我们对针刺fMRI研究领域当前存在问题的认识,为将来探索新的保证结果特异性和可靠性研究框架提供帮助。
Acupuncture, a traditional Chinese therapy with thousands of years of history, hasbeen universally accepted and recognized worldwide nowadays. As a greencomplementary and alternative therapy, acupuncture has been demonstrated to be ofsignificant effect on many diseases, especially on functional diseases. However, themechanism of acupuncture remains elusive, which greatly restricts the improvements ofthe understanding of acupuncture. As a result, acupuncture theories update slowly andfurther restrict the development of maximum clinical effects of acupuncture. Therefore,to clarify the mechanisms, especially the central mechanisms of acupuncture as soon aspossible play a vital role in the development of the entire acupuncture field. fMRI basedacupuncture studies have gone through more than fifteen years, during which hundredsof high-level international journal articles have been released, which play a significantrole in promoting the development of acupuncture central mechanisms. Owing to thecomplexity of acupuncture, as well as the precision of fMRI technology in dataprocessing and statistical analysis, many fatal questions exist in previous fMRI basedacupuncture studies. More researchers start to cautiously inspect the questions that existin study hypothesis, experimental design, experimental control, data processing,statistical analysis, and interpretation of results. However, studies that evaluate validityof the method and reliability of the results from the height of methodology are stilllimited. The article commences the work exactly from this standpoint.
     The details of researches and the main innovations were listed as follows:
     Firstly, this study comprehensively discusses the main questions in fMRI basedacupuncture studies from three aspects: Research ideas, analytical methods andinterpretation of results. This article also put forward an objective framework of fMRIbased acupuncture studies. In terms of research ideas, selecting healthy subjects toexplore the effectiveness-related BOLD responses pattern of acupuncture and assumingthe acupuncture response meets the "ON-OFF" mode are the two main problems in thefMRI based acupuncture studies. We believe that:1) we should select patients withdiseases, which are proved to be effective by acupuncture treatments and explore thecentral regulation mechanism of acupuncture based on the clinical efficacy;2) fMRIbased acupuncture studies on healthy subjects should focus on the central processingmechanism of acupuncture stimulation;3) We should base on real-time recordingsubjective sensory information as the reference vector to explore the needling sensationdependent central response pattern. In terms of analytical methods,1) we should use group analysis method that can be generalized to the population, such as random effectsor mixed effects, and increase the attention on the individual results;2) We need to usemultiple comparison correction threshold values as the reported results, which can avoidthe possible false positive interference;3) We need a large enough sample size to ensurethe reliability of the results and guarantee sample consistency from two aspects ofsubjective behavior and evaluation of individual differences degree on BOLD patterns.In terms of results interpretation,1) acupuncture specificity should be interpreted basedon the comparison results between the acupuncture group and the control group, andshould not be based on just the visual comparison between the two one sample results;2)We should use more effective experimental design and experimental control and try toavoid reverse inference discussions that are commonly used in previous fMRI basedacupuncture studies;3) We should be more cautious on the evaluation and interpretationof deactivations in fMRI based acupuncture results, as unreasonable experiment controland data preprocessing will introduce a wide range of false deactivations. All in all, weneed to create a brand-new fMRI based research framework to safeguard the objectivity.
     Secondly, this study comprehensively and detailedly discuss the impact of globalnormalization, a preprocessing step, on the results of fMRI based acupuncture studies.Global normalization is often used as a preprocessing step for dispelling the “nuisanceeffects.” However, it has been shown in cognitive and emotion tasks that thispreprocessing step might greatly distort statistical results when the orthogonalityassumption of global normalization is violated. The present study examines this issue infMRI acupuncture studies. Thirty healthy subjects were recruited to evaluate theimpacts of the global normalization on the BOLD responses evoked by acupuncturestimulation during de-qi sensation and tactile stimulation during nonpainful sensations.To this end, we compared results by conducting global normalization (PSGS) and notconducting global normalization (NO PSGS) based on a proportional scaling model.The orthogonality assumption of global normalization was violated, and significantchanges between BOLD responses for NO PSGS and PSGS were shown in mostsubjects. Extensive deactivations of acupuncture in fMRI were the non-specificallypernicious consequences of global normalization. The central responses of acupunctureduring de-qi are non-specifically activation dominant at the somatosensory-related brainnetwork, whose statistical power is specifically enhanced by PSGS. In conclusion,PSGS should be unjustified for acupuncture studies in fMRI. The differences includingthe global normalization or not may partly contribute to conflicting results andinterpretations in previous fMRI acupuncture studies.
     Thirdly, this study Initially indicate that the de-qi related and shap pain relatedBOLD response patterns are partly separated. Nowadays, functional magnetic resonanceimaging (fMRI) has become one of the most important ways to explore the centralmechanism of acupuncture. Among the hundred or so fMRI-based acupuncture studies,activations around the somatosensory related brain network had the most robust bloodoxygen level-dependent (BOLD) responses. However, due to the insufficient control ofthe subjective sensations during acupuncture stimulation, whether these robustactivations reflected the pattern of de-qi, sharp pain, or mixed (de-qi+sharp pain)sensations was largely unknown. Furthermore, the relationship between the de-qi relatedand the sharp pain related BOLD responses was also unclear. The current studyrecruited50subjects and grouped them into the de-qi group or the mixed groupaccording to whether he/she experienced sharp pain during acupuncture stimulation togive a definite answer to the following two questions. First, what are the de-qi relatedBOLD responses, that is, are they dominated by activation or deactivation? Second,what is the relationship between the de-qi related and the sharp pain related BOLDresponses? Our results indicated that for the first question, BOLD responses associatedwith de-qi during acupuncture stimulation at ST36were activation dominated. For thesecond question, both the quantitative and qualitative differences of BOLD responsesbetween de-qi and mixed sensations evoked by acupuncture stimulation were significant.The pattern of BOLD responses of sharp pain might be partly separated from that ofde-qi in the spatial distribution. Therefore, we proposed that in order to explore thespecific central mechanism of acupuncture, subjects with sharp pain should be excludedfrom those with only de-qi.
     Finally, we evaluate the degree of individual differences of immediate centralresponse pattern during acupuncture stimulation, and evaluate the impact of outliers,defined based on central BOLD response pattern, on the group analysis results.Acupuncture at ST36and checkerboard stimulation was applied to16subjects. Wecalculated the mean distance using beta values in a generalized linear model (GLM)analysis and employed it to study the group homogeneity by detecting the outliers. Amore significant individual difference was presented in acupuncture stimulationcompared with visual stimulation through evaluation of the mean distance. From thegroup results, we found that the activations were more significant in the homogeneousgroup results. Combining the behavior and fMRI results, there was no direct correlationbetween deqi index and mean distance in acupuncture stimulation. The deqi index of theoutlier was in the normal range and did not differ significantly from others. Traditional group results without removing outliers were not sensitive enough to detect the realacupuncture effect. We suggest that individual difference should be taken intoconsideration for future acupuncture studies. Also, group analysis paralleled withindividual analysis is critical for a full understanding of acupuncture effects.
     Overall, this article discusses the methodological problems existing in acupuncturefMRI studies from two aspects of data pre-processing and statistical analysis. Thearticle indicates that the preprocessing step of global normalization is not suitable forthe fMRI based acupuncture studies; We should assurance reliability of group analysisresults by controlling consistency of subjective feeling and central response pattern. Themain findings of this article can improve our understanding of the current problemsexisting in acupuncture fMRI studies and provide help for the exploration a newresearch framework that guarantee results specificity and reliability in the future.
引文
[1]林昭庚,鄢良.针灸医学史.1995:中国中医药出版社.
    [2]王启才,高俊雄.经络的研究及临床应用.1998:中医古籍出版社.
    [3]张仁.中国针刺麻醉发展史.1989:上海科学技术文献出版社.
    [4] Z. H. Cho, S. C. Chung, J. P. Jones, et al. New findings of the correlationbetween acupoints and corresponding brain cortices using functional MRI,1998,National Acad Sciences. p.2670-2673.
    [5] K. K. Kwong, J. W. Belliveau, D. A. Chesler, et al. Dynamic magnetic resonanceimaging of human brain activity during primary sensory stimulation.Proceedings of the National Academy of Sciences,1992.89(12): p.5675-5679.
    [6] S. Ogawa, D. W. Tank, R. Menon, et al. Intrinsic signal changes accompanyingsensory stimulation: functional brain mapping with magnetic resonance imaging.Proceedings of the National Academy of Sciences,1992.89(13): p.5951-5955.
    [7] B. R. Rosen, R. L. Buckner,A. M. Dale. Event-related functional MRI: past,present, and future. Proceedings of the National Academy of Sciences,1998.95(3): p.773-780.
    [8] C. J. Aine. A conceptual overview and critique of functional neuroimagingtechniques in humans: I. MRI/FMRI and PET. Critical reviews in neurobiology,1995.9(2-3): p.229-309.
    [9] J. R. Mallard. The Evolution of Medical Imaging: From Geiger Counters toMRI--A Personal Saga. Perspectives in biology and medicine,2003.46(3): p.349-370.
    [10] W. Edelstein, J. Hutchison, G. Johnson, et al. Spin warp NMR imaging andapplications to human whole-body imaging. Physics in medicine and biology,2000.25(4): p.751-6.
    [11] G. Li, H. L. Liu, R. T. F. Cheung, et al. An fMRI study comparing brainactivation between word generation and electrical stimulation oflanguage-implicated acupoints. Human brain mapping,2003.18(3): p.233-238.
    [12] G. Litscher, D. Rachbauer, S. Ropele, et al. Acupuncture using laser needlesmodulates brain function: first evidence from functional transcranial Dopplersonography and functional magnetic resonance imaging. Lasers in MedicalScience,2004.19(1): p.6-11.
    [13] C. M. Siedentopf, S. M. Golaszewski, F. M. Mottaghy, et al. Functionalmagnetic resonance imaging detects activation of the visual association cortexduring laser acupuncture of the foot in humans. Neuroscience Letters,2002.327(1): p.53-56.
    [14]尹岭,金香兰.针刺足三里穴PET和fMRI脑功能成像的初步探讨.中国康复理论与实践,2002.8(9): p.523-524.
    [15] I. K. Gareus, M. Lacour, A. C. Schulte, et al. Is there a BOLD response of thevisual cortex on stimulation of the vision‐related acupoint GB37? Journal ofMagnetic Resonance Imaging,2002.15(3): p.227-232.
    [16] J. Kong, T. J. Kaptchuk, J. M. Webb, et al. Functional neuroanatomicalinvestigation of vision-related acupuncture point specificity--a multisessionfMRI study. Hum Brain Mapp,2009.30(1): p.38-46.
    [17]张香桐,季钟朴,黄家驷.针灸针麻研究.1986:科学出版社.
    [18] M. T. Wu, J. C. Hsieh, J. Xiong, et al. Central Nervous Pathway for AcupunctureStimulation: Localization of Processing with Functional MR Imaging of theBrain——Preliminary Experience. Radiology,1999.212(1): p.133-141.
    [19] K. K. Hui, J. Liu, O. Marina, et al. The integrated response of the humancerebro-cerebellar and limbic systems to acupuncture stimulation at ST36asevidenced by fMRI. Neuroimage,2005.27(3): p.479-96.
    [20] K. K. S. Hui, J. Liu, N. Makris, et al. Acupuncture modulates the limbic systemand subcortical gray structures of the human brain: evidence from fMRI studiesin normal subjects. Human Brain Mapping,2000.9(1): p.13-25.
    [21] K. K. S. Hui, O. Marina, J. D. Claunch, et al. Acupuncture mobilizes the brain'sdefault mode and its anti-correlated network in healthy subjects. Brain research,2009.1287: p.84-103.
    [22] K. K. S. Hui, O. Marina, J. Liu, et al. Acupuncture, the limbic system, and theanticorrelated networks of the brain. Autonomic Neuroscience,2010.157(1): p.81-90.
    [23] J. Fang, Z. Jin, Y. Wang, et al. The salient characteristics of the central effects ofacupuncture needling: Limbic-paralimbic-neocortical network modulation.Human Brain Mapping,2008.30(4): p.1196-1206.
    [24] S. S. Yoo, E. K. Teh, R. A. Blinder, et al. Modulation of cerebellar activities byacupuncture stimulation: evidence from fMRI study. Neuroimage,2004.22(2):p.932-940.
    [25] W. T. Zhang, Z. Jin, J. Huang, et al. Modulation of cold pain in human brain byelectric acupoint stimulation: evidence from fMRI. Neuroreport,2003.14(12): p.1591-1596.
    [26] W. T. Zhang, Z. Jin, G. H. Cui, et al. Relations between brain network activationand analgesic effect induced by low vs. high frequency electrical acupointstimulation in different subjects: a functional magnetic resonance imaging study.Brain research,2003.982(2): p.168-178.
    [27] F. Bloch. Nuclear induction. Physica,1951.17(3-4): p.272-281.
    [28] E. Purcell, H. Torrey,R. Pound. Resonance absorption by nuclear magneticmoments in a solid. Physical Review,1946.69(1-2): p.37-38.
    [29] R. Ernst. Numerical Hilbert transform and automatic phase correction inmagnetic resonance spectroscopy*1. Journal of Magnetic Resonance (1969),1969.1(1): p.7-26.
    [30] R. Damadian. Tumor detection by nuclear magnetic resonance. Classic papers inmodern diagnostic radiology,2005: p.89-93.
    [31] P. Lauterbur. Image formation by induced local interactions: examplesemploying nuclear magnetic resonance. Nature,1973.242(5394): p.190-191.
    [32] W. Aue, E. Bartholdi,R. Ernst. Two-dimensional spectroscopy. Application tonuclear magnetic resonance. The Journal of Chemical Physics,1976.64: p.2229-2246.
    [33] A. Kumar, D. Welti,R. Ernst. NMR Fourier zeugmatography. Journal ofMagnetic Resonance (1969),1975.18(1): p.69-83.
    [34] P. Mansfield. Multi-planar image formation using NMR spin echoes. Journal ofPhysics C: Solid State Physics,1977.10: p. L55-L58.
    [35] D. Kramer, J. Schneider, A. Rudin, et al. True three-dimensional nuclearmagnetic resonance zeugmatographic images of a human brain. Neuroradiology,1981.21(5): p.239-244.
    [36] G. Hounsfield. Computed medical imaging. Nobel lecture, Decemberr8,1979.Journal of computer assisted tomography,1980.4(5): p.665.
    [37] C. Dumoulin. Methods of, and pulse sequences for, the supression of undesiredresonances by generation of quantum coherence in NMR imaging andspectroscopy,1987, Google Patents.
    [38] P. Jezzard, P. Matthews,S. Smith. Functional MRI: an introduction to methods.2001: Oxford University Press Oxford.
    [39] E. Zarahn, G. Aguirre,M. D'Esposito. A trial-based experimental design forfMRI. NeuroImage,1997.6(2): p.122-138.
    [40] J. S. Lewin. Functional MRI: An introduction to methods. Journal of MagneticResonance Imaging,2003.17(3): p.383-383.
    [41]张毅.基于ICA方法的针刺效应网络研究,2009,西安电子科技大学.
    [42] M. Fox, A. Snyder, J. Vincent, et al. The human brain is intrinsically organizedinto dynamic, anticorrelated functional networks. Proceedings of the NationalAcademy of Sciences of the United States of America,2005.102(27): p.9673.
    [43] A. W. Anderson, R. Marois, E. R. Colson, et al. Neonatal auditory activationdetected by functional magnetic resonance imaging. Magnetic resonanceimaging,2001.19(1): p.1-5.
    [44] M. S. Cohen, S. Kosslyn, H. Breiter, et al. Changes in cortical activity duringmental rotation A mapping study using functional MRI. Brain,1996.119(1): p.89-100.
    [45] G. Aguirre, E. Zarahn,M. D'esposito. The variability of human, BOLDhemodynamic responses. Neuroimage,1998.8(4): p.360-369.
    [46] H. J. Aizenstein, K. A. Clark, M. A. Butters, et al. The BOLD hemodynamicresponse in healthy aging. Journal of cognitive neuroscience,2004.16(5): p.786-793.
    [47] H. A. Al‐Hallaq, X. Fan, M. Zamora, et al. Spectrally inhomogeneous BOLDcontrast changes detected in rodent tumors with high spectral and spatialresolution MRI. NMR in Biomedicine,2002.15(1): p.28-36.
    [48] J. Alvarez-Linera, P. Martin-Plasencia, F. Maestu-Unturbe, et al. Hemisphericdominance for language and functional magnetic resonance: a comparison ofthree tasks]. Revista de neurologia,2002.35(2): p.115-8.
    [49] A. Amedi, R. Malach,A. Pascual-Leone. Negative BOLD differentiates visualimagery and perception. Neuron,2005.48(5): p.859-872.
    [50] D. J. Amit,S. Romani. Search for fMRI BOLD signals in networks of spikingneurons. European Journal of Neuroscience,2007.25(6): p.1882-1892.
    [51]刘虎,张权,张云亭,赵堪兴. BOLD—fMRI在视觉研究中的应用.国外医学:临床放射学分册,2004.27(004): p.209-212.
    [52]钱银锋,余永强.脑磁共振功能成像的基本原理及应用.国外医学.神经病学神经外科学分册,2000.6.
    [53]肖学宏.平面回波成像(EPI)技术的基本原理及应用.国外医学:临床放射学分册,1997.20(6): p.347-351.
    [54] N. Yamauchi, N. Okazari, T. Sato, et al. The effects of electrical acupuncture onhuman somatosensory evoked potentials and spontaneous brain waves. Yonagoacta medica,1976.20(2): p.88-100.
    [55] H. Wei, J. Kong, D. Zhuang, et al. Early-latency somatosensory evokedpotentials elicited by electrical acupuncture after needling acupoint LI-4.Clinical EEG and Neuroscience,2000.31(3): p.160-164.
    [56] B. Yan, K. Li, J. Xu, et al. Acupoint-specific fMRI patterns in human brain.Neuroscience Letters,2005.383(3): p.236-240.
    [57] T. B. Parrish, A. Schaeffer, M. Catanese, et al. Functional magnetic resonanceimaging of real and sham acupuncture. IEEE Engineering in Medicine andBiology Magazine,2005.24(2): p.35-40.
    [58] A. H. Li, J. M. Zhang,Y. K. Xie. Human acupuncture points mapped in rats areassociated with excitable muscle/skin–nerve complexes with enriched nerveendings. Brain research,2004.1012(1): p.154-159.
    [59] C. Vincent, P. Richardson, J. Black, et al. The significance of needle placementsite in acupuncture. Journal of psychosomatic research,1989.33(4): p.489-496.
    [60] J. Kleinhenz, K. Streitberger, J. Windeler, et al. Randomised clinical trialcomparing the effects of acupuncture and a newly designed placebo needle inrotator cuff tendinitis. Pain,1999.83(2): p.235-241.
    [61] L. Lao, S. Bergman, R. Anderson, et al. The effect of acupuncture onpost-operative oral surgery pain: a pilot study. Acupuncture in Medicine,1994.12(1): p.13-17.
    [62] A. C. Gaw, L. W. Chang,L. C. Shaw. Efficacy of acupuncture on osteoarthriticpain. New England Journal of Medicine,1975.293(8): p.375-378.
    [63] E. K. Farran, C. Jarrold,S. E. Gathercole. Block design performance in theWilliams syndrome phenotype: A problem with mental imagery? Journal ofChild Psychology and Psychiatry,2003.42(6): p.719-728.
    [64] J. Talairach,P. Tournoux. Co-planar stereotaxic atlas of the human brain.1988:Thieme New York.
    [65] D. Collins, A. Zijdenbos, V. Kollokian, et al. Design and construction of arealistic digital brain phantom. IEEE Transactions on Medical Imaging,1998.17(3): p.463-468.
    [66] K. Friston, A. Holmes, K. Worsley, et al. Statistical parametric maps infunctional imaging: a general linear approach. Human Brain Mapping,1994.2(4): p.189-210.
    [67] K. Friston, P. Jezzard,R. Turner. Analysis of functional MRI time-series. HumanBrain Mapping,1994.1(2): p.153-171.
    [68] G. Glover. Deconvolution of impulse response in event-related BOLD fMRI.NeuroImage,1999.9(4): p.416-429.
    [69] C. Goutte, P. Toft, E. Rostrup, et al. On Clustering fMRI Time Series*1.NeuroImage,1999.9(3): p.298-310.
    [70] R. Baumgartner, G. Scarth, C. Teichtmeister, et al. Fuzzy clustering ofgradient-echo functional MRI in the human visual cortex. Part I: reproducibility.Journal of Magnetic Resonance Imaging,1997.7(6): p.1094-1101.
    [71] A. Andersen, D. Gash,M. Avison. Principal component analysis of the dynamicresponse measured by fMRI: a generalized linear systems framework. MagneticResonance Imaging,1999.17(6): p.795-815.
    [72] M. McKeown, T. Jung, S. Makeig, et al. Spatially independent activity patternsin functional MRI data during the Stroop color-naming task. Proceedings of theNational Academy of Sciences of the United States of America,1998.95(3): p.803-810.
    [73] A. Holmes,K. Friston. Generalisability, random effects&population inference.NeuroImage,1998.7: p.754.
    [74] D. L. Diehl, G. Kaplan, I. Coulter, et al. Use of acupuncture by Americanphysicians. The Journal of Alternative and Complementary Medicine,1997.3(2):p.119-126.
    [75] D. M. Eisenberg, R. B. Davis, S. L. Ettner, et al. Trends in alternative medicineuse in the United States,1990-1997results of a follow-up national survey,1998,Am Med Assoc. p.1569-1575.
    [76] D. M. Eisenberg, R. C. Kessler, C. Foster, et al. Unconventional medicine in theUnited States--prevalence, costs, and patterns of use,1993. p.246-252.
    [77] T. J. Kaptchuk. Acupuncture: theory, efficacy, and practice. Annals of InternalMedicine,2002.136(5): p.374-383.
    [78] P. Richardson,C. Vincent. Acupuncture for the treatment of pain: a review ofevaluative research. Pain,1986.24(1): p.15-40.
    [79] NIH. The NIH Consensus Development Panel on Acupuncture.Acupuncture-NIH Consensus Conference. JAMA,1998.280(17): p.1518-24.
    [80] L. Bai, W. Qin, J. Tian, et al. Acupuncture modulates spontaneous activities inthe anticorrelated resting brain networks. Brain Research,2009.1279: p.37-49.
    [81] L. Bai, W. Qin, J. Tian, et al. Time-varied characteristics of acupuncture effectsin fMRI studies. Human Brain Mapping,2009.30(11): p.3445-3460.
    [82] G. Biella, M. L. Sotgiu, G. Pellegata, et al. Acupuncture produces centralactivations in pain regions. Neuroimage,2001.14(1): p.60-66.
    [83] R. Dhond, N. Kettner,V. Napadow. Do the neural correlates of acupuncture andplacebo effects differ? Pain,2007.128(1-2): p.8-12.
    [84] R. P. Dhond, N. Kettner,V. Napadow. Neuroimaging acupuncture effects in thehuman brain. The Journal of Alternative and Complementary Medicine,2007.13(6): p.603-616.
    [85] R. P. Dhond, C. Yeh, K. Park, et al. Acupuncture modulates resting stateconnectivity in default and sensorimotor brain networks. Pain,2008.136(3): p.407-418.
    [86] J. L. Fang, T. Krings, J. Weidemann, et al. Functional MRI in healthy subjectsduring acupuncture: different effects of needle rotation in real and falseacupoints. Neuroradiology,2004.46(5): p.359-362.
    [87] J. C. Hsieh, C. H. Tu, F. P. Chen, et al. Activation of the hypothalamuscharacterizes the acupuncture stimulation at the analgesic point in human: apositron emission tomography study. Neuroscience letters,2001.307(2): p.105-108.
    [88] K. K. S. Hui, J. Liu, O. Marina, et al. The integrated response of the humancerebro-cerebellar and limbic systems to acupuncture stimulation at ST36asevidenced by fMRI. Neuroimage,2005.27(3): p.479-496.
    [89] J. Kong, R. L. Gollub, J. M. Webb, et al. Test–retest study of fMRI signal changeevoked by electroacupuncture stimulation. Neuroimage,2007.34(3): p.1171-1181.
    [90] J. Kong, T. J. Kaptchuk, J. M. Webb, et al. Functional neuroanatomicalinvestigation of vision-related acupuncture point specificity: a multisessionfMRI study. Human Brain Mapping,2009.30(1): p.38-46.
    [91] J. Kong, L. Ma, R. L. Gollub, et al. A pilot study of functional magneticresonance imaging of the brain during manual and electroacupuncturestimulation of acupuncture point (LI-4Hegu) in normal subjects revealsdifferential brain activation between methods. The Journal of Alternative&Complementary Medicine,2002.8(4): p.411-419.
    [92] G. Li, R. T. F. Cheung, Q. Y. Ma, et al. Visual cortical activations on fMRI uponstimulation of the vision-implicated acupoints. Neuroreport,2003.14(5): p.669-674.
    [93] G. Li, L. Huang, R. T. F. Cheung, et al. Cortical activations upon stimulation ofthe sensorimotor-implicated acupoints. Magnetic Resonance Imaging,2004.22(5): p.639-644.
    [94] J. Liu, W. Qin, Q. Guo, et al. Divergent neural processes specific to the acuteand sustained phases of verum and SHAM acupuncture. J Magn Reson Imaging,2011.33(1): p.33-40.
    [95] J. Liu, W. Qin, Q. Guo, et al. Distinct brain networks for time-variedcharacteristics of acupuncture. Neurosci Lett,2010.468: p.353-358.
    [96] P. Liu, W. Qin, Y. Zhang, et al. Combining spatial and temporal information toexplore function-guide action of acupuncture using fMRI. J Magn ResonImaging,2009.30(1): p.41-46.
    [97] P. Liu, Y. Zhang, G. Zhou, et al. Partial correlation investigation on the defaultmode network involved in acupuncture: An fMRI study. Neurosci Lett,2009.462(3): p.183-187.
    [98] P. Liu, G. Zhou, Y. Zhang, et al. The hybrid GLM-ICA investigation on theneural mechanism of acupoint ST36: An fMRI study. Neurosci Lett,2010.479(3): p.267-271.
    [99] V. Napadow, N. Kettner, J. Liu, et al. Hypothalamus and amygdala response toacupuncture stimuli in carpal tunnel syndrome. Pain,2007.130(3): p.254-266.
    [100] V. Napadow, N. Makris, J. Liu, et al. Effects of electroacupuncture versusmanual acupuncture on the human brain as measured by fMRI. Human BrainMapping,2005.24(3): p.193-205.
    [101] W. Qin, J. Tian, L. J. Bai, et al. FMRI connectivity analysis of acupunctureeffects on an amygdala-associated brain network. Mol Pain,2008.4(1): p.55-71.
    [102] J. B. Sun, W. Qin, M. H. Dong, et al. Evaluation of group homogeneity duringacupuncture stimulation in fMRI studies. Journal of Magnetic ResonanceImaging,2010: p. In Press.
    [103] M. T. Wu, J. M. Sheen, K. H. Chuang, et al. Neuronal specificity of acupunctureresponse: a fMRI study with electroacupuncture. Neuroimage,2002.16(4): p.1028-37.
    [104] S. S. Yoo, C. E. Kerr, M. Park, et al. Neural activities in human somatosensorycortical areas evoked by acupuncture stimulation. Complementary therapies inmedicine,2007.15(4): p.247-254.
    [105] Y. Zhang, J. Liang, W. Qin, et al. Comparison of visual cortical activationsinduced by electro-acupuncture at vision and nonvision-related acupoints.Neurosci Lett,2009.458(1): p.6-10.
    [106] Y. Zhang, W. Qin, P. Liu, et al. An fMRI study of acupuncture using independentcomponent analysis. Neurosci Lett,2008.449(1): p.6-9
    [107] F. Beissner,C. Henke. Methodological problems in fMRI studies on acupuncture:a critical review with special emphasis on visual and auditory cortex activations.Evidence-based Complementary and Alternative Medicine,2011.2011(ArticleID607637): p.7pages.
    [108] S. Beijing. Nanjing Colleges of Traditional Chinese Medicine. Essentials ofChinese Acupuncture,1980, Beijing, Foreign Language Press.
    [109] D. D. Price, A. Rafii, L. R. Watkins, et al. A psychophysical analysis ofacupuncture analgesia. Pain,1984.19(1): p.27-42.
    [110] M. L. Seghier, F. Lazeyras, A. J. Pegna, et al. Group analysis and the subjectfactor in functional magnetic resonance imaging: analysis of fifty right-handedhealthy subjects in a semantic language task. Human Brain Mapping,2008.29(4): p.461-477.
    [111] B. Thirion, P. Pinel, S. Miaux, et al. Analysis of a large fMRI cohort: Statisticaland methodological issues for group analyses. NeuroImage,2007.35(1): p.105-120.
    [112] K. J. Friston, A. P. Holmes, C. J. Price, et al. Multisubject fMRI studies andconjunction analyses. Neuroimage,1999.10(4): p.385-396.
    [113] K. J. Friston, A. P. Holmes,K. J. Worsley. How many subjects constitute a study?Neuroimage,1999.10: p.1-5.
    [114] W. D. Penny, A. P. Holmes,K. J. Friston. Random effects analysis. Human brainfunction,2004: p.843–850.
    [115] R. A. Poldrack. The future of fMRI in cognitive neuroscience. Neuroimage,2011.
    [116] N. Kriegeskorte, W. K. Simmons, P. S. F. Bellgowan, et al. Circular analysis insystems neuroscience¨Cthe dangers of double dipping. Nature Neuroscience,2009.12(5): p.535.
    [117] E. Vul, C. Harris, P. Winkielman, et al. Puzzlingly high correlations in fMRIstudies of emotion, personality, and social cognition. Perspectives onPsychological Science,2009.4(3): p.274-290.
    [118] C. M. Bennett, A. A. Baird, M. B. Miller, et al. Neural correlates of interspeciesperspective taking in the post-mortem Atlantic Salmon: an argument for multiplecomparisons correction. Organization for Human Brain Mapping Abstracts,2009.
    [119] C. M. Bennett, G. L. Wolford,M. B. Miller. The principled control of falsepositives in neuroimaging. Social Cognitive and Affective Neuroscience,2009.4(4): p.417.
    [120] T. D. Wager, M. C. Keller, S. C. Lacey, et al. Increased sensitivity inneuroimaging analyses using robust regression. Neuroimage,2005.26(1): p.99-113.
    [121] M. Woolrich. Robust group analysis using outlier inference. Neuroimage,2008.41(2): p.286-301.
    [122] R. A. Poldrack. Can cognitive processes be inferred from neuroimaging data?Trends in Cognitive Sciences,2006.10(2): p.59-63.
    [123] R. A. Poldrack. The role of fMRI in Cognitive Neuroscience: where do we stand?Current opinion in neurobiology,2008.18(2): p.223-227.
    [124] K. Xue,X. Lu. Essentials of Chinese Acupuncture,1993, Beijing, ForeignLanguages Press.
    [125] G. Stux, R. Hammerschlag,B. Berman. Clinical acupuncture: scientific basis.2001: Springer.
    [126] M. Raichle, A. MacLeod, A. Snyder, et al. A default mode of brain function.Proceedings of the National Academy of Sciences of the United States ofAmerica,2001.98(2): p.676.
    [127] M. Raichle,A. Snyder. A default mode of brain function: a brief history of anevolving idea. NeuroImage,2007.37(4): p.1083-1090.
    [128] P. Fransson. How default is the default mode of brain function?:: Furtherevidence from intrinsic BOLD signal fluctuations. Neuropsychologia,2006.44(14): p.2836-2845.
    [129] R. Buckner,J. Vincent. Unrest at rest: default activity and spontaneous networkcorrelations. NeuroImage,2007.37(4): p.1091-1096.
    [130] L. Bai, W. Qin, J. Tian, et al. Time-varied characteristics of acupuncture effectsin fMRI studies. Hum Brain Mapp,2009.30(11): p.3445-60.
    [131] F. Beissner, R. Deichmann, C. Henke, et al. Acupuncture--deep pain with anautonomic dimension? Neuroimage,2012.60(1): p.653-60.
    [132] V. Napadow, R. P. Dhond, J. Kim, et al. Brain encoding of acupuncturesensation--coupling on-line rating with fMRI. Neuroimage,2009.47(3): p.1055-65.
    [133] V. Napadow, N. Makris, J. Liu, et al. Effects of electroacupuncture versusmanual acupuncture on the human brain as measured by fMRI. Hum BrainMapp,2005.24(3): p.193-205.
    [134] W. Qin, J. Tian, L. Bai, et al. FMRI connectivity analysis of acupuncture effectson an amygdala-associated brain network. Mol Pain,2008.4: p.55.
    [135] F. Beissner. Functional magnetic resonance imaging studies of acupuncturemechanisms: a critique. Focus on Alternative and Complementary Therapies,2011.16(1): p.3-11.
    [136] F. Beissner,C. Henke. Methodological Problems in fMRI Studies onAcupuncture: A Critical Review With Special Emphasis on Visual and AuditoryCortex Activations. Evid Based Complement Alternat Med,2009.
    [137] G. Aguirre, E. Zarahn,M. D'Esposito. The inferential impact of global signalcovariates in functional neuroimaging analyses. Neuroimage,1998.8(3): p.302.
    [138] A. E. Desjardins, K. A. Kiehl,P. F. Liddle. Removal of confounding effects ofglobal signal in functional MRI analyses. Neuroimage,2001.13(4): p.751-758.
    [139] M. Gavrilescu, M. E. Shaw, G. W. Stuart, et al. Simulation of the effects ofglobal normalization procedures in functional MRI. Neuroimage,2002.17(2): p.532-542.
    [140] S. Liu, W. Zhou, X. Ruan, et al. Activation of the hypothalamus characterizesthe response to acupuncture stimulation in heroin addicts. Neuroscience letters,2007.421(3): p.203-208.
    [141] H. MacPherson, G. Green, A. Nevado, et al. Brain imaging of acupuncture:comparing superficial with deep needling. Neuroscience letters,2008.434(1): p.144-149.
    [142] A. U. Asghar, G. Green, M. F. Lythgoe, et al. Acupuncture needling sensation:the neural correlates of deqi using fMRI. Brain Res,2010.1315: p.111-8.
    [143] W. Q. Qiu, J. Claunch, J. Kong, et al. The effects of acupuncture on the brainnetworks for emotion and cognition: An observation of gender differences. Brainresearch,2010.1362: p.56-67.
    [144] G. Aguirre, E. Zarahn,M. d'Esposito. Empirical analyses of BOLD fMRIstatistics. Neuroimage,1997.5(3): p.199-212.
    [145] J. L. R. Andersson. How to estimate global activity independent of changes inlocal activity. Neuroimage,1997.6(4): p.237-244.
    [146] M. Jungh fer, H. T. Schupp, R. Stark, et al. Neuroimaging of emotion: empiricaleffects of proportional global signal scaling in fMRI data analysis. Neuroimage,2005.25(2): p.520-526.
    [147] K. Murphy, R. M. Birn, D. A. Handwerker, et al. The impact of global signalregression on resting state correlations: are anti-correlated networks introduced?Neuroimage,2009.44(3): p.893-905.
    [148] J. Kong, R. Gollub, T. Huang, et al. Acupuncture de qi, from qualitative historyto quantitative measurement. The Journal of Alternative and ComplementaryMedicine,2007.13(10): p.1059-1070.
    [149] J. Sun, W. Qin, L. Jin, et al. Impact of global normalization in fMRI acupuncturestudies. Evid Based Complement Alternat Med,2012.2012.
    [150] Z. Q. Zhao. Neural mechanism underlying acupuncture analgesia. Progress inneurobiology,2008.85(4): p.355-375.
    [151] P. J. Laurienti. Deactivations, global signal, and the default mode of brainfunction. Journal of Cognitive Neuroscience,2004.16(9): p.1481-1483.
    [152] P. M. Macey, K. E. Macey, R. Kumar, et al. A method for removal of globaleffects from fMRI time series. Neuroimage,2004.22(1): p.360-366.
    [153] K. K. Hui, J. Liu, N. Makris, et al. Acupuncture modulates the limbic systemand subcortical gray structures of the human brain: evidence from fMRI studiesin normal subjects. Hum Brain Mapp,2000.9(1): p.13-25.
    [154] T. J. Ho, J. R. Duann, C. M. Chen, et al. Carryover effects alter FMRI statisticalanalysis in an acupuncture study. Am J Chin Med,2008.36(1): p.55-70.
    [155] G. Li, C. R. Jack, Jr.,E. S. Yang. An fMRI study of somatosensory-implicatedacupuncture points in stable somatosensory stroke patients. J Magn ResonImaging,2006.24(5): p.1018-24.
    [156] B. Na, G. H. Jahng, S. Park, et al. An fMRI study of neuronal specificity of anacupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its shampoint. Neuroscience letters,2009.464(1): p.1-5.
    [157] J. Zhang, X. Cao, J. Lie, et al. Neuronal specificity of needling acupoints atsame meridian: a control functional magnetic resonance imaging study withelectroacupuncture. Acupuncture&electro-therapeutics research,2007.32(3-4):p.179.
    [158] J. Zhang, J. Li, X. Cao, et al. Can electroacupuncture affect the sympatheticactivity, estimated by skin temperature measurement? A functional MRI studyon the effect of needling at GB34and GB39on patients with pain in the lowerextremity. Acupuncture&electro-therapeutics research,2009.34(3-4): p.151.
    [159] N. C. Andreasen, D. S. O'Leary, T. Cizadlo, et al. Remembering the past: Twofacets of episodic memory explored with positron emission tomography. TheAmerican journal of psychiatry,1995.
    [160] R. L. Buckner,D. C. Carroll. Self-projection and the brain. Trends in CognitiveSciences,2007.11(2): p.49-57.
    [161] D. A. Gusnard, E. Akbudak, G. L. Shulman, et al. Medial prefrontal cortex andself-referential mental activity: relation to a default mode of brain function.Proceedings of the National Academy of Sciences,2001.98(7): p.4259.
    [162] D. Hassabis,E. A. Maguire. Deconstructing episodic memory with construction.Trends in Cognitive Sciences,2007.11(7): p.299-306.
    [163] D. L. Schacter,D. R. Addis. The cognitive neuroscience of constructive memory:Remembering the past and imagining the future. Philosophical Transactions ofthe Royal Society B: Biological Sciences,2007.362(1481): p.773-786.
    [164] R. N. Spreng, R. A. Mar,A. S. N. Kim. The common neural basis ofautobiographical memory, prospection, navigation, theory of mind, and thedefault mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience,2009.21(3): p.489-510.
    [165] J. R. Binder. Task-induced deactivation and the "resting" state. Neuroimage,2011.
    [166] R. G. Shulman, D. L. Rothman,F. Hyder. A BOLD search for baseline.Neuroimage,2007.36(2): p.277-281.
    [167] E. Zarahn, G. Aguirre,M. d'Esposito. Empirical analyses of BOLD fMRIstatistics. Neuroimage,1997.5(3): p.179-197.
    [168] L. Bai, J. Tian, C. Zhong, et al. Acupuncture modulates temporal neuralresponses in wide brain networks: evidence from fMRI study. Mol Pain,2010.6:p.73.
    [169] Y. Zhang, W. Qin, P. Liu, et al. An fMRI study of acupuncture using independentcomponent analysis. Neurosci Lett,2009.449(1): p.6-9.
    [170] L. Li, W. Qin, L. Bai, et al. Exploring vision-related acupuncture pointspecificity with multivoxel pattern analysis. Magnetic resonance imaging,2010.28(3): p.380-387.
    [171] F. Beissner, R. Deichmann, C. Henke, et al. Acupuncture-Deep pain with anautonomic dimension? Neuroimage,2012: p.653-660.
    [172] H. MacPherson,A. Asghar. Acupuncture needle sensations associated with De Qi:a classification based on experts' ratings. Journal of Alternative&Complementary Medicine,2006.12(7): p.633-637.
    [173] J. Park, A. White, C. Stevinson, et al. Validating a new non-penetrating shamacupuncture device: two randomised controlled trials. Acupuncture in Medicine,2002.20(4): p.168-174.
    [174] P. White, F. Bishop, H. Hardy, et al. Southampton needle sensation questionnaire:development and validation of a measure to gauge acupuncture needle sensation.The Journal of Alternative and Complementary Medicine,2008.14(4): p.373-379.
    [175] J. Sun, Y. Zhu, L. Jin, et al. Partly separated activations in the spatial distributionbetween de-qi and sharp pain during acupuncture stimulation: an fMRI-basedstudy. Evid Based Complement Alternat Med,2012.2012.
    [176] L. Bai, H. Yan, L. Li, et al. Neural specificity of acupuncture stimulation atpericardium6: evidence from an FMRI study. J Magn Reson Imaging,2010.31(1): p.71-7.
    [177] L. A. Henderson, S. Gandevia,V. G. Macefield. Gender differences in brainactivity evoked by muscle and cutaneous pain: a retrospective study ofsingle-trial fMRI data. Neuroimage,2008.39(4): p.1867-1876.
    [178] L. Henderson, R. Bandler, S. C. Gandevia, et al. Distinct forebrain activitypatterns during deep versus superficial pain. Pain,2006.120(3): p.286-296.
    [179] D. M. Niddam, T. C. Yeh, Y. T. Wu, et al. Event-related functional MRI study oncentral representation of acute muscle pain induced by electrical stimulation.Neuroimage,2002.17(3): p.1437-1450.
    [180] L. Maeda, M. Ono, T. Koyama, et al. Human brain activity associated withpainful mechanical stimulation to muscle and bone. Journal of anesthesia,2011.25(4): p.523-530.
    [181] T. Lewis. Pain, McMillan. New York,1942: p.90-93.
    [182] P. Svensson, S. Minoshima, A. Beydoun, et al. Cerebral processing of acute skinand muscle pain in humans. Journal of neurophysiology,1997.78(1): p.450-460.
    [183] R. Bandler, J. L. Price,K. A. Keay. Brain mediation of active and passiveemotional coping. Progress in brain research,1999.122: p.333-349.
    [184] B. M. Lumb. Hypothalamic and midbrain circuitry that distinguishes betweenescapable and inescapable pain. Physiology,2004.19(1): p.22-26.
    [185] P. Nathan, M. C. SMITH,A. Cook. Sensory effects in man of lesions of theposterior columns and of some other afferent pathways. Brain,1986.109(5): p.1003-1041.
    [186] H. J. W. Nauta, V. M. Soukup, R. H. Fabian, et al. Punctate midline myelotomyfor the relief of visceral cancer pain. Journal of Neurosurgery: Spine,2000.92(2): p.125-130.
    [187] W. Noordenbos,P. Wall. Diverse sensory functions with an almost totally dividedspinal cord. A case of spinal cord transection with preservation of part of oneanterolateral quadrant. Pain,1976.2(2): p.185-195.
    [188] A. C. N. Chen, M. Shimojo, P. Svensson, et al. Brain dynamics of scalp evokedpotentials and current source densities to repetitive (5-pulse train) painfulstimulation of skin and muscle: central correlate of temporal summation. BrainTopography,2000.13(1): p.59-72.
    [189] D. M. Niddam, T. Graven-Nielsen, L. Arendt-Nielsen, et al. Non-painful andpainful surface and intramuscular electrical stimulation at the thenar andhypothenar sites: differential cerebral dynamics of early to late latency SEPs.Brain Topography,2001.13(4): p.283-292.
    [190] M. Shimojo, P. Svensson, L. Arendt-Nielsen, et al. Dynamic brain topography ofsomatosensory evoked potentials and equivalent dipoles in response to gradedpainful skin and muscle stimulation. Brain Topography,2000.13(1): p.43-58.
    [191] P. Svensson, A. Beydoun, T. J. Morrow, et al. Non-painful and painfulstimulation of human skin and muscle: analysis of cerebral evoked potentials.Electroencephalography and Clinical Neurophysiology/Evoked PotentialsSection,1997.104(4): p.343-350.
    [192] S. J. Coen, M. Kano, A. D. Farmer, et al. Neuroticism influences brain activityduring the experience of visceral pain. Gastroenterology,2011.141(3): p.909-917. e1.
    [193] I. Tracey,P. W. Mantyh. The cerebral signature for pain perception and itsmodulation. Neuron,2007.55(3): p.377-392.
    [194] J. O. Dostrovsky. Role of thalamus in pain. Progress in brain research,2000.129:p.245-257.
    [195] G. Duncan, M. Bushnell, J. Talbot, et al. Pain and activation in the thalamus.Trends in neurosciences,1992.15(7): p.252.
    [196] F. A. Lenz, N. Weiss, S. Ohara, et al. The role of the thalamus in pain.Supplements to Clinical Neurophysiology,2004.57: p.50-61.
    [197] A. May. Neuroimaging: visualising the brain in pain. Neurological Sciences,2007.28: p.101-107.
    [198] B. W. Balleine, M. R. Delgado,O. Hikosaka. The role of the dorsal striatum inreward and decision-making. The Journal of neuroscience,2007.27(31): p.8161-8165.
    [199] P. Redgrave, T. J. Prescott,K. Gurney. The basal ganglia: a vertebrate solution tothe selection problem? Neuroscience,1999.89(4): p.1009-1023.
    [200] C. J. Starr, L. Sawaki, G. F. Wittenberg, et al. The contribution of the putamen tosensory aspects of pain: insights from structural connectivity and brain lesions.Brain,2011.134(7): p.1987-2004.
    [201] E. A. Moulton, J. D. Schmahmann, L. Becerra, et al. The cerebellum and pain:Passive integrator or active participator? Brain research reviews,2010.65(1): p.14-27.
    [202] J. Downar, A. P. Crawley, D. J. Mikulis, et al. A multimodal cortical network forthe detection of changes in the sensory environment. Nature Neuroscience,2000.3(3): p.277-283.
    [203] J. Downar, A. P. Crawley, D. J. Mikulis, et al. The effect of task relevance on thecortical response to changes in visual and auditory stimuli: an event-relatedfMRI study. Neuroimage,2001.14(6): p.1256-1267.
    [204] J. Downar, A. P. Crawley, D. J. Mikulis, et al. A cortical network sensitive tostimulus salience in a neutral behavioral context across multiple sensorymodalities. Journal of neurophysiology,2002.87(1): p.615-620.
    [205] I. García‐García, M. á. Jurado, M. Garolera, et al. Alterations of the saliencenetwork in obesity: A resting‐state fMRI study. Human brain mapping,2012.
    [206] V. Menon,L. Q. Uddin. Saliency, switching, attention and control: a networkmodel of insula function. Brain Structure and Function,2010.214(5): p.655-667.
    [207] W. W. Seeley, V. Menon, A. F. Schatzberg, et al. Dissociable intrinsicconnectivity networks for salience processing and executive control. The Journalof neuroscience,2007.27(9): p.2349-2356.
    [208] Z. Yuan, W. Qin, D. Wang, et al. The salience network contributes to anindividual's fluid reasoning capacity. Behavioural Brain Research,2012.
    [209] A. R. Aron, M. A. Gluck,R. A. Poldrack. Long-term test-retest reliability offunctional MRI in a classification learning task. Neuroimage,2006.29(3): p.1000-1006.
    [210] P. Havel, B. Braun, S. Rau, et al. Reproducibility of activation in four motorparadigms. Journal of Neurology,2006.253(4): p.471-476.
    [211] I. Marshall, E. Simonotto, I. J. Deary, et al. Repeatability of motor andworking-memory tasks in healthy older volunteers: assessment at functional MRimaging. Radiology,2004.233(3): p.868-877.
    [212] K. Wagner, L. Frings, A. Quiske, et al. The reliability of fMRI activations in themedial temporal lobes in a verbal episodic memory task. Neuroimage,2005.28(1): p.122-131.
    [213] S. S. Yoo, X. Wei, C. C. Dickey, et al. Long-term reproducibility analysis offMRI using hand motor task. International Journal of Neuroscience,2005.115(1): p.55-77.
    [214] J. Z. Liu, L. Zhang, R. W. Brown, et al. Reproducibility of fMRI at1.5T in astrictly controlled motor task. Magnetic Resonance in Medicine,2004.52(4): p.751-760.
    [215] S. M. Smith, C. F. Beckmann, N. Ramnani, et al. Variability in fMRI: are-examination of inter-session differences. Human Brain Mapping,2005.24(3):p.248-257.
    [216] Z. H. Cho, I. K. Hong, C. K. Kang, et al. Acupuncture-stimulatedauditory-cortical activation observed by fMRI: a case of acupoint SJ5stimulation. in Proc Int Soc Mag Reson Med.2000.
    [217] M. Nagai, K. Kishi,S. Kato. Insular cortex and neuropsychiatric disorders: Areview of recent literature. European Psychiatry,2007.22(6): p.387-394.
    [218] K. M. Petersson. Statistical limitations in functional neuroimaging II. Signaldetection and statistical inference. Philosophical Transactions of the RoyalSociety B: Biological Sciences,1999.354(1387): p.1261-1281.
    [219] M. J. Brammer, E. T. Bullmore, A. Simmons, et al. Generic brain activationmapping in functional magnetic resonance imaging: a nonparametric approach.Magnetic Resonance Imaging,1997.15(7): p.763-770.
    [220] F. Kherif, A. Andrade, H. Benali, et al. Multivariate analysis for fMRI datainvestigation and model checking. Neuroimage,2001.13(6): p.171.
    [221] K. J. Friston, J. Ashburner, C. D. Frith, et al. Spatial registration andnormalization of images. Human brain mapping,1995.3(3): p.165-189.
    [222] F. Kherif, J. B. Poline, S. Mériaux, et al. Group analysis in functionalneuroimaging: selecting subjects using similarity measures. Neuroimage,2003.20(4): p.2197-2208.
    [223] J. S. Yang,Y. M. Cao. Aupuncture Point. Shanghai: Shanghai Science andTechnology Press.181p,1987.
    [224] J. Pariente, P. White, R. S. J. Frackowiak, et al. Expectancy and belief modulatethe neuronal substrates of pain treated by acupuncture. Neuroimage,2005.25(4):p.1161-1167.
    [225] B. P. Shelley,M. R. Trimble. The insular Lobe of Reil-its Anatamico-Functional,behavioural and Neuropsychiatric attributes in humans-a review. World Journalof Biological Psychiatry,2004.5(4): p.176-200.
    [226] K. D. Davis, C. L. Kwan, A. P. Crawley, et al. Functional MRI study of thalamicand cortical activations evoked by cutaneous heat, cold, and tactile stimuli.Journal of Neurophysiology,1998.80(3): p.1533-1546.
    [227] M. Ingvar,J. C. Hsieh. The image of pain. Textbook of Pain,1999: p.215-234.
    [228] W. Huang, D. Pach, V. Napadow, et al. Characterizing acupuncture stimuli usingbrain imaging with FMRI-a systematic review and meta-analysis of theliterature. PLoS One,2012.7(3): p. e32960.
    [229] V. Napadow, J. Lee, J. Kim, et al. Brain correlates of phasic autonomic responseto acupuncture stimulation: An event-related fMRI study. Hum Brain Mapp,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700