用户名: 密码: 验证码:
氯化镍暴露神经毒性与线粒体功能障碍的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     重金属元素镍(Nickel),由于其在工业中的广泛应用,在生产与使用过程中常造成职业暴露,引起职业人群的健康危害。镍被机体摄入后,可分布于多个脏器,引起多器官毒性,神经毒性是其危害效应的重要表现之一。但镍的神经毒性效应的机制目前尚不明确。线粒体功能障碍是许多神经系统疾病的重要病因,也是多种环境刺激因素引起神经毒性的主要途径。近年研究发现,受缺氧诱导因子-1α (hypoxia-induciblefactor-1alpha, HIF-1α)调控的microRNA分子miRNA210能抑制硫铁簇组装支架蛋白(iron-sulfur cluster assemble scaffold,ISCU)的表达,引起的含硫铁簇(iron-sulfurcluster, FeS)能量代谢酶失活,由HIF-1α,miRNA210,ISCU构成的“调控轴”激活是多种细胞在缺氧条件下线粒体功能抑制的分子基础。而镍暴露也能够引起HIF-1α在细胞内聚积。基于上述分析,本课题以线粒体功能状态改变为切入点,通过动物和细胞两个水平,明确镍引起的神经毒性效应,揭示线粒体功能障碍在镍神经毒性效应中的作用;通过研究miRNA210介导的线粒体呼吸抑制,探讨线粒体在镍暴露条件下出现功能障碍的分子机制。
     研究内容
     ①以昆明小鼠经口暴露可溶性镍化合物氯化镍(NiCl_2)为实验模型,利用Morris水迷宫和旷场实验评价镍对动物神经行为学的影响,明确镍对小鼠神经毒性效应的规律;在小鼠出现神经行为学改变的镍暴露条件下,检测动物大脑皮层组织的氧耗率、ATP含量、乳酸含量、NADH/NAD比值、氧化应激状态等反应线粒体功能状态的指标,探讨线粒体功能障碍在镍神经毒性效应中的作用;
     ②以小鼠原代培养神经元以及小鼠神经母瘤Neuro2a细胞为模型,以细胞活力、乳酸脱氢酶释放等方法评价NiCl_2对神经细胞的毒性效应;同时,检测NiCl_2对氧自由基水平、ATP含量、线粒体膜电位以及线粒体DNA的拷贝数等线粒体功能状态的影响;利用褪黑素和左旋肉碱这两种对线粒体功能有确切保护效应的化合物进行预处理,评价其通过维持线粒体功能拮抗镍神经细胞毒性;
     ③在镍暴露条件下,检测Neuro2a细胞中HIF-1α、miRNA210、ISCU等分子的表达变化,评价该调控轴的活化水平;并对miRNA210的表达进行正负调控,检测相应的ISCU的表达,FeS能量代谢酶活性以及线粒体功能状态的变化,验证miRNA210在镍引起的线粒体功能障碍中的作用。
     研究结果
     ①50mg Ni/kg WT的NiCl_2经口暴露引起昆明小鼠在暴露3小时后出现空间记忆障碍及探索活性下降,这些神经行为学的于暴露24小时后逐渐恢复至对照组水平;NiCl_2暴露3小时,小鼠大脑皮层组织中检测到明显的镍元素蓄积,且线粒体功能出现障碍,包括有氧代谢抑制、自由基水平升高以及含FeS能量代谢酶失活;暴露24小时,随着镍元素的排泄,小鼠皮层组织中的线粒体功能基本恢复。
     ②NiCl_2对原代培养神经元及Neuro2a细胞造成显著的细胞毒性效应,并呈现剂量和时间依赖关系;MT和LC的预处理,通过清除线粒体氧自由基,维持ATP含量、线粒体膜电位及mtDNA的拷贝数等方面的保护作用,有效减轻镍引起的神经细胞毒性效应。
     ③NiCl_2暴露引起Neuro2a细胞HIF-1α蓄积、miRNA210高表达以及ISCU表达下调;在未暴露镍的细胞中,上调miRNA210的表达,出现FeS能量代谢酶活性下降及线粒体功能障碍;在暴露镍的细胞中,抑制miRNA210的表达,一定程度上缓解镍引起的FeS能量代谢酶活性下降及线粒体功能障碍;在引起小鼠神经行为学异常的镍暴露条件下,检测到小鼠皮层组织中的HIF-1α蓄积、miRNA210高表达以及ISCU表达下调。
     研究结论
     根据本课题的研究结果,获得以下结论:镍引起的线粒体功能障碍可能是其造成小鼠神经行为学改变和神经细胞毒性的重要原因,镍通过干扰线粒体的功能,影响神经细胞的生物学状态,从而表现出神经毒性效应;镍暴露引起HIF-1α—miRNA210—ISCU“调控轴”激活,由此造成的FeS合成抑制,FeS能量代谢酶失活可能是镍引起线粒体功能障碍的分子基础。本课题的研究进一步证实了可溶性镍化合物暴露的神经毒性效应,并为阐明镍的毒性机制提供了新的实验依据。
Background
     Nickel (Ni) is widely used heavy metal in model industry. Industrial processing-relatedanthropogenic activities provide a considerable amount of Ni in the environment as a resultof mining, smelting, cement-production, combustion of fossil fuels, incineration of sewagesludge, electroplating. As a result, human exposure to Ni, both occupational and dietary, issuffered by its health hazard. Ni ingested by human distributes into multiple organs, andmanifests multiple toxicities, including neurotoxicity. However, the exact mechanism ofnickel’s neurotoxicity is not well understood. Mitochondrial dysfunction is the primarypathogenesis of various neurologic syndrome, and route by which the environment stimulusexert their neurotoxicity. In recently reports, the activation of regulation-axis which isconsisted by hypoxia-inducible factor-1alpha (HIF-1α), miRNA210, and iron-sulfur clusterassemble scaffold (ISCU) participates in the mitochondrial function inhibition duringhypoxia condition. As well as, nickel induces the accumulation of HIF-1α in normoxia.Therefore, the purpose of this study is to investigate the role of mitochondrial dysfunctionin Ni-induced neurotoxicity, and to explore whether the activation of regulation-axisunderlies the Ni caused mitochondrial dysfunction.
     Methods
     ①Kunming mice were orally administered nickel chloride (NiCl_2), andneurobehavioral performance was evaluated using the Morris water maze and open fieldtests at different time points. Ni amounts in neurologic tissues and mitochondrial functionalstates, including O2consumption, ATP concentrations, lactate concentrations, ratios ofNADH/NAD, oxidative stress and iron-sulfur cluster (FeS) containing metabolism enzymesin the cerebral cortex were analyzed at the same time points at which neurobehavioralchanges were evident.
     ②The cell viability and LDH release were applied to evaluate the cytotoxicity ofNiCl_2on primary cultured neurons and Neuro2a cell line. Parallel, the effects of Ni on cellular ROS levels, ATP concentrations, mitochondrial membrane potential and mtDNAcopy number and mtRNA transcript level were assayed for identification the Ni-inducedmitochondrial dysfunction. In addition, the pretreatments of mitochondrial protective agents,melatonin and L-carnitine, before Ni exposures were used to elucidate whether they couldprotest against the Ni-induced cytotoxicity through maintaining the mitochondria function.
     ③The expression levels of HIF-1α, miRNA210, ISCU were measured after NiCl_2exposure. Then, the microRNA slices which mimic or inhibit the expression of miRNA210were transfected into cells. The expression of ISCU, mitochondrial function and activity ofFeS enzymes were assayed in transfected cells. Finally, the expression of HIF-1α,miRNA210and ISCU were investigated in the cerebral cortex of Ni-treated mice.
     Results
     ①50mg Ni/kg WT NiCl_2administration caused deficits in both spatial memory andexploring activity in mice and that nickel was deposited in their cerebral cortex.Mitochondrial dysfunction manifested as decreased O2consumption and ATPconcentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, theactivity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known tocontrol aerobic metabolism, including complex I and aconitase, were inhibited followingnickel deposition.
     ②NiCl_2treatment significantly increased the cell viability loss and lactatedehydrogenase (LDH) release in primary cultured neurons and Neuro2a cells. In addition,nickel exposure significantly elevated reactive oxygen species (ROS) and malondialdehyde(MDA) levels disrupted the mitochondrial membrane potential, ATP concentrations anddecreased mtDNA copy numbers and mtRNA transcript levels in both kind of cells.However, all of the cytotoxicity and mitochondrial dysfunctions that were triggered bynickel were efficiently attenuated by pretreatment with melatonin and L-carnitine.
     ③NiCl_2exposure lead to significant HIF-1α, rather than HIF-1β, accumulation inNeuro2a cells. MiRNA210was overexpressed by nickel treatment following a dose andtime-dependent manner, which accompanied with ISCU down-regulation. The gain-andloss-of-function assays revealed that miRNA210controlled the ISCU suppression, energymetabolism alternation and ISCs contained metabolic enzymes inactivation under nickelexposure. Dual luciferase reporter assay revealed that ISCU was the direct target ofmiRNA210. In the cerebral cortex of Ni-treated mice, it was found that high levels of HIF-1α and miRNA210, low levels of ISCU.
     Conclusion
     Overall, our data suggest that Ni-induced mitochondrial dysfunction may result in theneurotoxicity of nickel which manifested as neurobehavioral changes in mice andcytotoxicity in nerve cells. In nickel exposure conditions, the activation ofHIF-1α-miRNA210-ISCU regulation-axis, which contributed to inhibition of FeS assembleand inactivation of FeS containing metabolism enzymes, may be the mechanism thatunderlies the Ni-induced mitochondrial dysfunction. A better understanding of how nickelimpacts mitochondrial function may provide insight into the prevention of nickelneurotoxicity.
引文
[1] Das, K.K., S.N. Das, and S.A. Dhundasi, Nickel, its adverse health effects&oxidativestress. Indian J Med Res,2008.128(4): p.412-25.
    [2] Denkhaus, E. and K. Salnikow, Nickel essentiality, toxicity, and carcinogenicity. CritRev Oncol Hematol,2002.42(1): p.35-56.
    [3] Grandjean, P., Human exposure to nickel. IARC Sci Publ,1984(53): p.469-85.
    [4] ATSDR,2011PRIORITY LIST OF HAZARDOUS SUBSTANCES.2011.
    [5] Bradberry, S.M. and J.A. Vale, Therapeutic review: do diethyldithiocarbamate anddisulfiram have a role in acute nickel carbonyl poisoning? J Toxicol Clin Toxicol,1999.37(2): p.259-64.
    [6] Kimber, I., et al., Characterization of skin sensitizing chemicals: a lesson learnt fromnickel allergy. Journal of Immunotoxicology,2011.8(1): p.1-2.
    [7] Schmidt, M. and M. Goebeler, Nickel allergies: paying the Toll for innate immunity. JMol Med (Berl),2011.89(10): p.961-70.
    [8] Arnich, N., et al., Nickel absorption and distribution from rat small intestine in situ.Biological Trace Element Research,2000.74(2): p.141-51.
    [9] Reichrtova, E., et al., Bioaccumulation of metals from nickel smelter waste in P andF1generations of exposed animals. I. Dynamics of metal distribution in the organsand AM activity. J Hyg Epidemiol Microbiol Immunol,1989.33(1): p.1-10.
    [10] Obone, E., et al., Toxicity and bioaccumulation of nickel sulfate in Sprague-Dawleyrats following13weeks of subchronic exposure. J Toxicol Environ Health A,1999.57(6): p.379-401.
    [11] Bergman, B., et al., The distribution of nickel in mice. An autoradiographic study. JOral Rehabil,1980.7(4): p.319-24.
    [12] Ishimatsu, S., et al., Distribution of various nickel compounds in rat organs after oraladministration. Biological Trace Element Research,1995.49(1): p.43-52.
    [13] Sunderman, F.W., Jr., S.M. Hopfer, and M.C. Crisostomo, Nickel analysis byelectrothermal atomic absorption spectrometry. Methods Enzymol,1988.158: p.382-91.
    [14] Borg, K. and H. Tjalve, Uptake of63Ni2+in the central and peripheral nervoussystem of mice after oral administration: effects of treatments with halogenated8-hydroxyquinolines. Toxicology,1989.54(1): p.59-68.
    [15] Sunderman, F.W., Jr., et al., Acute nickel toxicity in electroplating workers whoaccidently ingested a solution of nickel sulfate and nickel chloride. American Journalof Industrial Medicine,1988.14(3): p.257-66.
    [16] Liapi, C., et al., Short-term exposure to nickel alters the adult rat brain antioxidantstatus and the activities of crucial membrane-bound enzymes: neuroprotection byL-cysteine. Biological Trace Element Research,2011.143(3): p.1673-81.
    [17] Gordon, C.J. and A.G. Stead, Effect of nickel and cadmium chloride on autonomic andbehavioral thermoregulation in mice. Neurotoxicology,1986.7(3): p.97-106.
    [18] Nation, J.R., et al., Dietary administration of nickel: effects on behavior andmetallothionein levels. Physiology&Behavior,1985.34(3): p.349-53.
    [19] Nielsen, G.D. and O. Andersen, Effect of tetraethylthiuramdisulphide anddiethyl-dithiocarbamate on nickel toxicokinetics in mice. Pharmacol Toxicol,1994.75(5): p.285-93.
    [20] Celsi, F., et al., Mitochondria, calcium and cell death: a deadly triad inneurodegeneration. Biochim Biophys Acta,2009.1787(5): p.335-44.
    [21] DiMauro, S. and M. Mancuso, Mitochondrial diseases: therapeutic approaches.Biosci Rep,2007.27(1-3): p.125-37.
    [22] Scorrano, L., Opening the doors to cytochrome c: Changes in mitochondrial shapeand apoptosis. International Journal of Biochemistry&Cell Biology,2009.41(10): p.1875-1883.
    [23] Zauner, A., et al., Brain oxygenation and energy metabolism: part I-biologicalfunction and pathophysiology. Neurosurgery,2002.51(2): p.289-301; discussion302.
    [24] Yin, F., A. Boveris, and E. Cadenas, Mitochondrial energy metabolism and redoxsignaling in brain aging and neurodegeneration. Antioxid Redox Signal,2012.
    [25] Mironov, S.L., Complexity of mitochondrial dynamics in neurons and its control byADP produced during synaptic activity. International Journal of Biochemistry&CellBiology,2009.41(10): p.2005-2014.
    [26] Melo, D.R., et al., Mitochondrial energy metabolism in neurodegeneration associatedwith methylmalonic acidemia. Journal of Bioenergetics and Biomembranes,2011.43(1): p.39-46.
    [27] Aliev, G., et al., Oxidative stress induced mitochondrial DNA deletion as a hallmarkfor the drug development in the context of the cerebrovascular diseases. Recent PatCardiovasc Drug Discov,2011.6(3): p.222-41.
    [28] Cali, T., D. Ottolini, and M. Brini, Mitochondrial Ca(2+) and neurodegeneration.Cell Calcium,2012.52(1): p.73-85.
    [29] de Souza-Pinto, N.C., et al., Mitochondrial DNA, base excision repair andneurodegeneration. DNA Repair,2008.7(7): p.1098-1109.
    [30] Melegh, B., et al., Muscle carnitine acetyltransferase and carnitine deficiency in acase of mitochondrial encephalomyopathy. Journal of Inherited Metabolic Disease,1999.22(7): p.827-38.
    [31] Sandhir, R., A. Mehrotra, and S.S. Kamboj, Lycopene prevents3-nitropropionicacid-induced mitochondrial oxidative stress and dysfunctions in nervous system.Neurochemistry International,2010.57(5): p.579-87.
    [32] Kumar, P. and A. Kumar, Possible neuroprotective effect of Withania somnifera rootextract against3-nitropropionic acid-induced behavioral, biochemical, andmitochondrial dysfunction in an animal model of Huntington's disease. J Med Food,2009.12(3): p.591-600.
    [33] Rafalowska, U., et al., Is lead toxicosis a reflection of altered energy metabolism inbrain synaptosomes? Acta Neurobiol Exp (Wars),1996.56(2): p.611-7.
    [34] Milatovic, D., et al., Oxidative damage and neurodegeneration in manganese-inducedneurotoxicity. Toxicol Appl Pharmacol,2009.240(2): p.219-25.
    [35] Dreiem, A., C.C. Gertz, and R.F. Seegal, The effects of methylmercury onmitochondrial function and reactive oxygen species formation in rat striatalsynaptosomes are age-dependent. Toxicological Sciences,2005.87(1): p.156-162.
    [36] Mori, N., et al., Methylmercury inhibits electron transport chain activity and inducescytochrome c release in cerebellum mitochondria. Journal of Toxicological Sciences,2011.36(3): p.253-9.
    [37] Carpentieri, A., et al., New perspectives in melatonin uses. Pharmacological Research,2012.65(4): p.437-44.
    [38] Barrenetxe, J., P. Delagrange, and J.A. Martinez, Physiological and metabolicfunctions of melatonin. Journal of Physiology and Biochemistry,2004.60(1): p.61-72.
    [39] Acuna Castroviejo, D., et al., Melatonin-mitochondria interplay in health and disease.Current Topics in Medicinal Chemistry,2011.11(2): p.221-40.
    [40] Acuna Castroviejo, D., et al., Melatonin, mitochondrial homeostasis andmitochondrial-related diseases. Current Topics in Medicinal Chemistry,2002.2(2): p.133-51.
    [41] Acuna-Castroviejo, D., et al., Melatonin role in the mitochondrial function. Frontiersin Bioscience,2007.12: p.947-63.
    [42] Reiter, R.J., et al., Melatonin reduces oxidant damage and promotes mitochondrialrespiration: implications for aging. Ann N Y Acad Sci,2002.959: p.238-50.
    [43] Levitsky, D.O. and V.P. Skulachev, Carnitine: the carrier transporting fatty acyls intomitochondria by means of an electrochemical gradient of H+. Biochim Biophys Acta,1972.275(1): p.33-50.
    [44] Paradies, G., et al., The effect of aging and acetyl-L-carnitine on the activity of thephosphate carrier and on the phospholipid composition in rat heart mitochondria.Biochim Biophys Acta,1992.1103(2): p.324-6.
    [45] Alves, E., et al., Acetyl-L-carnitine provides effective in vivo neuroprotection over3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in theadolescent rat brain. Neuroscience,2009.158(2): p.514-23.
    [46] Jun, D.W., et al., Prevention of free fatty acid-induced hepatic lipotoxicity bycarnitine via reversal of mitochondrial dysfunction. Liver Int,2011.31(9): p.1315-24.
    [47] Gadaleta, M.N., et al., Reduced transcription of mitochondrial DNA in the senescentrat. Tissue dependence and effect of L-carnitine. Eur J Biochem,1990.187(3): p.501-6.
    [48] Virmani, A. and Z. Binienda, Role of carnitine esters in brain neuropathology.Molecular Aspects of Medicine,2004.25(5-6): p.533-49.
    [49] Lill, R., et al., The role of mitochondria in cellular iron-sulfur protein biogenesis andiron metabolism. Biochim Biophys Acta,2012.1823(9): p.1491-508.
    [50] Rouault, T.A., Biogenesis of iron-sulfur clusters in mammalian cells: new insightsand relevance to human disease. Disease Models&Mechanisms,2012.5(2): p.155-64.
    [51] Gille, G. and H. Reichmann, Iron-dependent functions of mitochondria--relation toneurodegeneration. Journal of Neural Transmission,2011.118(3): p.349-59.
    [52] Shimomura, Y., et al., The asymmetric trimeric architecture of [2Fe-2S] IscU:implications for its scaffolding during iron-sulfur cluster biosynthesis. J Mol Biol,2008.383(1): p.133-43.
    [53] Wu, G. and L. Li, Biochemical characterization of iron-sulfur cluster assembly in thescaffold IscU of Escherichia coli. Biochemistry (Moscow),2012.77(2): p.135-142.
    [54] Kollberg, G., et al., Clinical manifestation and a new ISCU mutation in iron-sulphurcluster deficiency myopathy. Brain,2009.132(Pt8): p.2170-9.
    [55] Sanaker, P.S., et al., Differences in RNA processing underlie the tissue specificphenotype of ISCU myopathy. Biochim Biophys Acta,2010.1802(6): p.539-44.
    [56] Mochel, F. and R.G. Haller, Myopathy with Deficiency of ISCU.1993.
    [57] Chan, S.Y., et al., MicroRNA-210Controls Mitochondrial Metabolism duringHypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. CellMetabolism,2009.10(4): p.273-284.
    [58] Chen, Z., et al., Hypoxia-regulated microRNA-210modulates mitochondrial functionand decreases ISCU and COX10expression. Oncogene,2010.29(30): p.4362-8.
    [59] Merlo, A., et al., Identification of a signaling axis HIF-1alpha/microRNA-210/ISCUindependent of SDH mutation that defines a subgroup of head and neckparagangliomas. J Clin Endocrinol Metab,2012.97(11): p. E2194-200.
    [60] Muralimanoharan, S., et al., MIR-210modulates mitochondrial respiration inplacenta with preeclampsia. Placenta,2012.33(10): p.816-23.
    [61] Davidson, T.L., et al., Soluble nickel inhibits HIF-prolyl-hydroxylases creatingpersistent hypoxic signaling in A549cells. Mol Carcinog,2006.45(7): p.479-89.
    [62] Daldrup, T., K. Haarhoff, and S.C. Szathmary,[Fatal nickel sulfate poisoning]. BeitrGerichtl Med,1983.41: p.141-4.
    [63] Schurr, A., Energy metabolism, stress hormones and neural recovery from cerebralischemia/hypoxia. Neurochemistry International,2002.41(1): p.1-8.
    [64] Sorbi, S., et al., Energy metabolism in demented brain. Prog NeuropsychopharmacolBiol Psychiatry,1986.10(3-5): p.591-7.
    [65] Siesjo, B.K., Brain energy metabolism and catecholaminergic activity in hypoxia,hypercapnia and ischemia. J Neural Transm Suppl,1978(14): p.17-22.
    [66] Caccamo, D., et al., Excitotoxic and post-ischemic neurodegeneration: Involvement oftransglutaminases. Amino Acids,2004.27(3-4): p.373-9.
    [67] Tavazzi, B., et al., Cerebral oxidative stress and depression of energy metabolismcorrelate with severity of diffuse brain injury in rats. Neurosurgery,2005.56(3): p.582-588.
    [68] Onyango, I.G., et al., Regulation of neuron mitochondrial biogenesis and relevance tobrain health. Biochimica Et Biophysica Acta-Molecular Basis of Disease,2010.1802(1): p.228-234.
    [69] Chen, H. and M. Costa, Effect of soluble nickel on cellular energy metabolism inA549cells. Exp Biol Med (Maywood),2006.231(9): p.1474-80.
    [70] Sunderman, F.W., Jr., et al., Nickel absorption and kinetics in human volunteers. ProcSoc Exp Biol Med,1989.191(1): p.5-11.
    [71] FDRL (Food&Drug Research Laboratories, I., Acute Oral LD50Study in Rats. StudyNo.7684A Nickel Chloride. FDRL, Waverly, New York.,1983.
    [72] Henderson, R.G., et al., Acute oral toxicity of nickel compounds. Regul ToxicolPharmacol,2012.62(3): p.425-32.
    [73] Struve, M.F., et al., Neurotoxicological effects associated with short-term exposure ofSprague-Dawley rats to hydrogen sulfide. Neurotoxicology,2001.22(3): p.375-85.
    [74] Schroder, N., S.J. O'Dell, and J.F. Marshall, Neurotoxic methamphetamine regimenseverely impairs recognition memory in rats. Synapse,2003.49(2): p.89-96.
    [75] Wiaderna, D., S. Gralewicz, and T. Tomas, Assessment of long-term neurotoxic effectsof exposure to mesitylene (1,3,5-trimethylbenzene) based on the analysis of selectedbehavioral responses. Int J Occup Med Environ Health,2002.15(4): p.385-92.
    [76] Glover, C.N., et al., Methylmercury speciation influences brain gene expression andbehavior in gestationally-exposed mice pups. Toxicological Sciences,2009.110(2): p.389-400.
    [77] Flora, S.J.S., K. Bhatt, and A. Mehta, Arsenic moiety in gallium arsenide isresponsible for neuronal apoptosis and behavioral alterations in rats. Toxicology andApplied Pharmacology,2009.240(2): p.236-244.
    [78] Halladay, A.K., et al., Trimethyltin-induced alterations in behavior are linked tochanges in PSA-NCAM expression. Neurotoxicology,2006.27(2): p.137-46.
    [79] Sethi, P., et al., Aluminium-induced electrophysiological, biochemical and cognitivemodifications in the hippocampus of aging rats. Neurotoxicology,2008.29(6): p.1069-79.
    [80] Plaschke, K., et al., Interrelation between cerebral energy metabolism and behaviourin a rat model of permanent brain vessel occlusion. Brain Research,1999.830(2): p.320-9.
    [81] Battino, M., et al., Coenzyme Q, peroxidation and cytochrome oxidase features afterparkinson's-like disease by MPTP toxicity in intra-synaptic and non-synapticmitochondria from Macaca fascicularis cerebral cortex and hippocampus: action ofdihydroergocriptine. Neurochemical Research,1996.21(12): p.1505-14.
    [82] Chen, H., et al., Nickel decreases cellular iron level and converts cytosolic aconitaseto iron-regulatory protein1in A549cells. Toxicol Appl Pharmacol,2005.206(3): p.275-87.
    [83] Baranowska-Bosiacka, I., et al., Altered energy status of primary cerebellar granuleneuronal cultures from rats exposed to lead in the pre-and neonatal period.Toxicology,2011.280(1-2): p.24-32.
    [84] Zhang, F.L., et al., In vitro effect of manganese chloride exposure on energymetabolism and oxidative damage of mitochondria isolated from rat brain.Environmental Toxicology and Pharmacology,2008.26(2): p.232-236.
    [85] Xu, S.C., et al., Exposure to1800MHz radiofrequency radiation induces oxidativedamage to mitochondrial DNA in primary cultured neurons. Brain Research,2010.1311: p.189-196.
    [86] Tulpule, K. and R. Dringen, Formate generated by cellular oxidation of formaldehydeaccelerates the glycolytic flux in cultured astrocytes. Glia,2012.60(4): p.582-93.
    [87] Benters, J., et al., Agonist-stimulated calcium transients in PC12cells are affecteddifferentially by cadmium and nickel. Cell Calcium,1996.20(5): p.441-6.
    [88] Kang, J., et al., Nickel-induced histone hypoacetylation: The role of reactive oxygenspecies. Toxicological Sciences,2003.74(2): p.279-286.
    [89] Jia, C., C. Roman, and C.C. Hegg, Nickel sulfate induces location-dependent atrophyof mouse olfactory epithelium: protective and proliferative role of purinergic receptoractivation. Toxicological Sciences,2010.115(2): p.547-56.
    [90] Ishii, T., et al., Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primarycultured neurons. Jpn J Pharmacol,2000.83(2): p.119-24.
    [91] Toselli, M. and V. Taglietti, Kinetic and pharmacological properties of high-andlow-threshold calcium channels in primary cultures of rat hippocampal neurons.Pflugers Arch,1992.421(1): p.59-66.
    [92] Ooe, H., et al., Induction of reactive oxygen species by bisphenol A and abrogation ofbisphenol A-induced cell injury by DJ-1. Toxicological Sciences,2005.88(1): p.114-26.
    [93] Repetto, G., et al., In vitro effects of lithium and nickel at different levels on Neuro-2amouse neuroblastoma cells. Toxicol In Vitro,2001.15(4-5): p.363-8.
    [94] Das, K.K. and S. Saha, L-ascorbic acid and alpha tocopherol supplementation andantioxidant status in nickel-or lead-exposed rat brain tissue. J Basic Clin PhysiolPharmacol,2010.21(4): p.325-46.
    [95] Hfaiedh, N., et al., Protective effect of cactus (Opuntia ficus indica) cladode extractupon nickel-induced toxicity in rats. Food Chem Toxicol,2008.46(12): p.3759-63.
    [96] Korkmaz, A., et al., Melatonin: an established antioxidant worthy of use in clinicaltrials. Mol Med,2009.15(1-2): p.43-50.
    [97] Martin, M., et al., Melatonin-induced increased activity of the respiratory chaincomplexes I and IV can prevent mitochondrial damage induced by ruthenium red invivo. J Pineal Res,2000.28(4): p.242-8.
    [98] Yamamoto, H.A. and P.V. Mohanan, Melatonin attenuates brain mitochondria DNAdamage induced by potassium cyanide in vivo and in vitro. Toxicology,2002.179(1-2): p.29-36.
    [99] Jang, S.S., W.D. Kim, and W.Y. Park, Melatonin exerts differential actions on X-rayradiation-induced apoptosis in normal mice splenocytes and Jurkat leukemia cells. JPineal Res,2009.47(2): p.147-55.
    [100] Jou, M.J., et al., Melatonin protects against common deletion of mitochondrialDNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res,2007.43(4): p.389-403.
    [101] Matsuda, I. and Y. Ohtani, Carnitine status in Reye and Reye-like syndromes. PediatrNeurol,1986.2(2): p.90-4.
    [102] Matsubasa, T., et al., Carnitine prevents Reye-like syndrome in atypical carnitinedeficiency. Pediatr Neurol,1986.2(2): p.80-4.
    [103] Hino, K., et al., L-carnitine inhibits hypoglycemia-induced brain damage in the rat.Brain Research,2005.1053(1-2): p.77-87.
    [104] Barhwal, K., et al., Acetyl-L-carnitine ameliorates hypobaric hypoxic impairment andspatial memory deficits in rats. Eur J Pharmacol,2007.570(1-3): p.97-107.
    [105] Wang, C., et al., L-carnitine protects neurons from1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture.Neuroscience,2007.144(1): p.46-55.
    [106] Binienda, Z.K., et al., Effect of L-carnitine pretreatment on3-nitropropionicacid-induced inhibition of rat brain succinate dehydrogenase activity. Ann N Y AcadSci,2001.939: p.359-65.
    [107] Virmani, A., F. Gaetani, and Z. Binienda, Effects of metabolic modifiers such ascarnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults:metabolic inhibitors, MPTP, and methamphetamine. Ann N Y Acad Sci,2005.1053: p.183-91.
    [108] Paquet, R.J., et al., Effect of acylcarnitines on pyruvate metabolism in livermitochondria from thiamin-deficient rats. J Nutr,1970.100(12): p.1407-13.
    [109] Pesce, V., et al., Acetyl-L-carnitine activates the peroxisome proliferator-activatedreceptor-gamma coactivators PGC-1alpha/PGC-1beta-dependent signaling cascadeof mitochondrial biogenesis and decreases the oxidized peroxiredoxins content in oldrat liver. Rejuvenation Res,2012.15(2): p.136-9.
    [110] Lim, C.Y., et al., Effects of carnitine on peripheral blood mitochondrial DNA copynumber and liver function in non-alcoholic fatty liver disease. Korean J Gastroenterol,2010.55(6): p.384-9.
    [111] Peled, N., et al., Melatonin effect on seizures in children with severe neurologic deficitdisorders. Epilepsia,2001.42(9): p.1208-10.
    [112] Wurtman, R.J. and Zhdanova, II, Oral melatonin in neurologically disabled children.Lancet,1998.351(9120): p.1963-4; author reply1964.
    [113] Brusco, L.I., M. Marquez, and D.P. Cardinali, Melatonin treatment stabilizeschronobiologic and cognitive symptoms in Alzheimer's disease. Neuro EndocrinolLett,2000.21(1): p.39-42.
    [114] Reiter, R.J. and A. Korkmaz, Clinical aspects of melatonin. Saudi Medical Journal,2008.29(11): p.1537-47.
    [115] Van Oudheusden, L.J. and H.R. Scholte, Efficacy of carnitine in the treatment ofchildren with attention-deficit hyperactivity disorder. Prostaglandins Leukot EssentFatty Acids,2002.67(1): p.33-8.
    [116] Sidhu, P., M.L. Garg, and D.K. Dhawan, Zinc protects rat liver histo-architecturefrom detrimental effects of nickel. Biometals,2006.19(3): p.301-313.
    [117] Guan, F., et al., Nitric oxide and bcl-2mediated the apoptosis induced by nickel(II) inhuman T hybridoma cells. Toxicol Appl Pharmacol,2007.221(1): p.86-94.
    [118] Choksi, K.B., et al., Mitochondrial electron transport chain functions in long-livedAmes dwarf mice. Aging (Albany NY),2011.3(8): p.754-67.
    [119] Tong, W.-H. and T.A. Rouault, Functions of mitochondrial ISCU and cytosolic ISCUin mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metabolism,2006.3(3): p.199-210.
    [120] Rouault, T.A. and W.H. Tong, Iron-sulfur cluster biogenesis and human disease.Trends in Genetics,2008.24(8): p.398-407.
    [121] Berardo, A., O. Musumeci, and A. Toscano, Cardiological manifestations ofmitochondrial respiratory chain disorders. Acta Myol,2011.30(1): p.9-15.
    [122] Takahashi, Y. and M. Nakamura, Functional assignment of theORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3gene cluster involved in the assembly ofFe-S clusters in Escherichia coli. J Biochem,1999.126(5): p.917-26.
    [123] Semenza, G.L. and G.L. Wang, A nuclear factor induced by hypoxia via de novoprotein synthesis binds to the human erythropoietin gene enhancer at a site requiredfor transcriptional activation. Molecular and Cellular Biology,1992.12(12): p.5447-54.
    [124] Sharp, F.R. and M. Bernaudin, HIF1and oxygen sensing in the brain. Nat RevNeurosci,2004.5(6): p.437-48.
    [125] Maxwell, P. and K. Salnikow, HIF-1: an oxygen and metal responsive transcriptionfactor. Cancer Biol Ther,2004.3(1): p.29-35.
    [126] Ralph, S.J., et al., The causes of cancer revisited:"mitochondrial malignancy" andROS-induced oncogenic transformation-why mitochondria are targets for cancertherapy. Molecular Aspects of Medicine,2010.31(2): p.145-70.
    [127] Kulshreshtha, R., et al., A microRNA signature of hypoxia. Molecular and CellularBiology,2007.27(5): p.1859-67.
    [128] Favaro, E., et al., MicroRNA-210regulates mitochondrial free radical response tohypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.PLoS One,2010.5(4): p. e10345.
    [129] Pietruska, J.R., et al., Bioavailability, intracellular mobilization of nickel, andHIF-1{alpha} activation in human lung epithelial cells exposed to metallic nickel andnickel oxide nanoparticles. Toxicological Sciences,2011.
    [130] Li, Q., et al., Mechanisms of c-myc degradation by nickel compounds and hypoxia.PLoS One,2009.4(12): p. e8531.
    [131] Brant, K.A. and J.P. Fabisiak, Nickel and the microbial toxin, MALP-2, stimulateproangiogenic mediators from human lung fibroblasts via a HIF-1alpha andCOX-2-mediated pathway. Toxicological Sciences,2009.107(1): p.227-37.
    [132] Zhao, J., et al., Nickel-induced down-regulation of serpin by hypoxic signaling.Toxicol Appl Pharmacol,2004.194(1): p.60-8.
    [1] Eaton, J.W. and M. Qian, Molecular bases of cellular iron toxicity. Free Radic BiolMed,2002.32(9): p.833-40.
    [2] Harrison, P.M. and P. Arosio, The ferritins: molecular properties, iron storage functionand cellular regulation. Biochim Biophys Acta,1996.1275(3): p.161-203.
    [3] Zeviani, M. and F. Taroni, Mitochondrial diseases. Baillieres Clin Neurol,1994.3(2): p.315-34.
    [4] DiMauro, S., M. Hirano, and E.A. Schon, Approaches to the treatment of mitochondrialdiseases. Muscle Nerve,2006.34(3): p.265-83.
    [5] Levi, S. and E. Rovida, The role of iron in mitochondrial function. Biochim BiophysActa,2009.1790(7): p.629-36.
    [6] Lill, R., et al., The role of mitochondria in cellular iron-sulfur protein biogenesis andiron metabolism. Biochim Biophys Acta,2012.1823(9): p.1491-508.
    [7] Gille, G. and H. Reichmann, Iron-dependent functions of mitochondria--relation toneurodegeneration. Journal of Neural Transmission,2011.118(3): p.349-59.
    [8] Ye, H. and T.A. Rouault, Human iron-sulfur cluster assembly, cellular iron homeostasis,and disease. Biochemistry,2010.49(24): p.4945-56.
    [9] Qian, Z.M. and X. Shen, Brain iron transport and neurodegeneration. Trends inMolecular Medicine,2001.7(3): p.103-8.
    [10]Richardson, D.R., et al., Mitochondrial iron trafficking and the integration of ironmetabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A,2010.107(24): p.10775-82.
    [11]Batista-Nascimento, L., et al., Iron and neurodegeneration: from cellular homeostasisto disease. Oxid Med Cell Longev,2012.2012: p.128647.
    [12]Richardson, D.R., P. Ponka, and D. Vyoral, Distribution of iron in reticulocytes afterinhibition of heme synthesis with succinylacetone: examination of the intermediatesinvolved in iron metabolism. Blood,1996.87(8): p.3477-88.
    [13]Isobe, K., Y. Isobe, and T. Sakurami, Cytochemical demonstration of transferrin in themitochondria of immature human erythroid cells. Acta Haematol,1981.65(1): p.2-9.
    [14]Provance, D.W., Jr., et al., Chemical-genetic inhibition of a sensitized mutant myosinVb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl AcadSci U S A,2004.101(7): p.1868-73.
    [15]Wauben-Penris, P.J., G.J. Strous, and H.A. van der Donk, Kinetics of transferrinendocytosis and iron uptake by intact isolated rat seminiferous tubules and Sertoli cellsin culture. Biol Reprod,1988.38(4): p.853-61.
    [16]Lim, J.E., et al., A mutation in Sec15l1causes anemia in hemoglobin deficit (hbd) mice.Nat Genet,2005.37(11): p.1270-3.
    [17]Foury, F. and T. Roganti, Deletion of the mitochondrial carrier genes MRS3and MRS4suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. Journalof Biological Chemistry,2002.277(27): p.24475-83.
    [18]Paradkar, P.N., et al., Regulation of Mitochondrial Iron Import through DifferentialTurnover of Mitoferrin1and Mitoferrin2. Molecular and Cellular Biology,2009.29(4):p.1007-1016.
    [19]Froschauer, E.M., R.J. Schweyen, and G. Wiesenberger, The yeast mitochondrialcarrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrialmembrane. Biochimica Et Biophysica Acta-Biomembranes,2009.1788(5): p.1044-1050.
    [20]Shaw, G.C., et al., Mitoferrin is essential for erythroid iron assimilation. Nature,2006.440(7080): p.96-100.
    [21]Subramanian, P., et al., Iron chaperones for mitochondrial Fe-S cluster biosynthesisand ferritin iron storage. Current Opinion in Chemical Biology,2011.15(2): p.312-8.
    [22]Vyoral, D., A. Hradilek, and J. Neuwirt, Transferrin and iron distribution in subcellularfractions of K562cells in the early stages of transferrin endocytosis. Biochim BiophysActa,1992.1137(2): p.148-54.
    [23]Shi, H.F., et al., A cytosolic iron chaperone that delivers iron to ferritin. Science,2008.320(5880): p.1207-1210.
    [24]Taketani, S., et al., Molecular characterization of a newly identified heme-bindingprotein induced during differentiation of urine erythroleukemia cells. Journal ofBiological Chemistry,1998.273(47): p.31388-94.
    [25]Iwaki, T., et al., Mitochondrial ABC transporter Atm1p is required for protectionagainst oxidative stress and vacuolar functions in Schizosaccharomyces pombe.Bioscience Biotechnology and Biochemistry,2005.69(11): p.2109-2116.
    [26]Bekri, S., et al., Human ABC7transporter: gene structure and mutation causingX-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfurprotein maturation. Blood,2000.96(9): p.3256-64.
    [27]Rouault, T.A. and W.H. Tong, Iron-sulphur cluster biogenesis and mitochondrial ironhomeostasis. Nat Rev Mol Cell Biol,2005.6(4): p.345-51.
    [28]LI, S.-F.Y.H.-Y.X.D.Z.K.-Y., Recent progress on mitochondrial iron metabolism andhuman diseases. Chinese Bulletin of Life Sciences,2012. Vol.24(No.8): p.742-752.
    [29]Giel, J.L., et al., IscR-dependent gene expression links iron-sulphur cluster assembly tothe control of O2-regulated genes in Escherichia coli. Molecular Microbiology,2006.60(4): p.1058-75.
    [30]Campuzano, V., et al., Friedreich's ataxia: autosomal recessive disease caused by anintronic GAA triplet repeat expansion. Science,1996.271(5254): p.1423-7.
    [31]Adamec, J., et al., Iron-dependent self-assembly of recombinant yeast frataxin:implications for Friedreich ataxia. American Journal of Human Genetics,2000.67(3):p.549-62.
    [32]Yoon, T. and J.A. Cowan, Iron-sulfur cluster biosynthesis. Characterization of frataxinas an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am ChemSoc,2003.125(20): p.6078-84.
    [33]Marmolino, D., Friedreich's ataxia: past, present and future. Brain Research Reviews,2011.67(1-2): p.311-30.
    [34]Gallagher, C.L., et al., Friedreich's ataxia associated with mitochondrial myopathy:clinicopathologic report. J Child Neurol,2002.17(6): p.453-6.
    [35]Larsson, L.E., et al., Hereditary Metabolic Myopathy with Paroxysmal MyoglobinuriaDue to Abnormal Glycolysis. J Neurol Neurosurg Psychiatry,1964.27: p.361-80.
    [36]Kollberg, G., et al., Clinical manifestation and a new ISCU mutation in iron-sulphurcluster deficiency myopathy. Brain,2009.132(8): p.2170-2179.
    [37]Nordin, A., et al., Tissue-specific splicing of ISCU results in a skeletal musclephenotype in myopathy with lactic acidosis, while complete loss of ISCU results inearly embryonic death in mice. Human Genetics,2011.129(4): p.371-8.
    [38]Camaschella, C., et al., The human counterpart of zebrafish shiraz showssideroblastic-like microcytic anemia and iron overload. Blood,2007.110(4): p.1353-1358.
    [39]Ye, H., et al., Glutaredoxin5deficiency causes sideroblastic anemia by specificallyimpairing heme biosynthesis and depleting cytosolic iron in human erythroblasts.Journal of Clinical Investigation,2010.120(5): p.1749-1761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700