用户名: 密码: 验证码:
4种吸附(收)剂在不同季节对牛舍中CH_4、CO_2和NH_3吸附(收)性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减少碳、氮排放已然成为世界各国热议的话题,因碳排放的急剧升高所带来的全球性气候、生态、经济等问题已经为人类敲响了警钟,而全球CH_4、CO_2和NH_3的排放有相当一部分都源于动物。人们已经逐渐重视这一问题并开展了减少这些气体排放的众多试验,得到的大多数方法都是通过控制反刍动物的采食量、日粮精粗比、添加甲烷抑制剂、添加酶制剂和合成氨基酸等,但这些内源性的减排方法都有一定的缺点,有些成本较高,有些作用欠佳或动物对其产生耐受作用,甚至有些添加剂会降低动物的生产性能或带来某些副作用,所以寻找一种新的外源性的减排方法迫在眉睫。本研究采用GY-1、GY-2、GY-3和GY-4作为吸附(收)剂,通过外源性的方法对上述气体进行吸附(收),并进行了春、夏、秋、冬四个阶段的试验,对吸附(收)前后牛舍内CH_4、CO_2和NH_3的浓度进行了对比,获得了令人满意的效果。
     试验Ⅰ在牛舍内均匀铺撒10kg(8m~2)的吸附剂GY-1,用便携式气体检测仪测定各季节连续8h CH_4、CO_2和NH_3的浓度变化,并与无吸附剂的对照试验进行比较。结果表明:春季、夏季和秋季,10kg GY-1吸附8h可极显著降低牛舍中CH_4、CO_2和NH_3的浓度(P<0.01)。在春、夏、秋、冬四个季节,1kg GY-18h分别可以吸附CH_412.69g、10.52g、16.12g和20.28g;可以吸附CO_240.41g、35.96g、51.29g和56.67g;可以吸附NH_31.98g、2.86g、1.01g和0.64g。CH_4和CO_2的吸附总量都与各季节间的平均室温呈显著的负相关性(P<0.05);CH_4、CO_2和NH_3的吸附总量与季节间平均相对湿度之间无显著的相关性(P>0.05);当室温一定时,NH_3的吸附总量随着季节间舍内NH_3平均浓度的升高而增加较大;当NH_3浓度一定时,NH_3的吸附总量随季节间平均室温的升高而增加较小;NH_3平均浓度对NH_3吸附总量的影响要高于平均温度对NH_3吸附总量的影响;CH_4、CO_2和NH_3的吸附量随着吸附时间的增加而迅速降低。
     试验Ⅱ在牛舍内均匀摆放10L吸收剂GY-2,用便携式气体检测仪测定各季节连续8h NH_3、CH_4和CO_2浓度的变化,并与无吸收剂的对照试验和纯水吸收试验进行比较。结果表明:各季节10L GY-2吸收8h可极显著降低牛舍中NH_3的平均浓度(P<0.01),各季节舍内NH_3平均浓度都要低于纯水吸收试验组,其中夏季NH_3平均浓度显著低于夏季纯水试验组(P<0.05)。在春、夏、秋、冬四个季节,1L GY-28h分别可以吸收NH_31.57g、2.62g、1.16g和0.85g。当室温一定时,吸收量随着舍内NH_3浓度的增加而增加较大;当浓度一定时,吸收量随室温的升高而增加较小。吸收剂GY-2对CH_4和CO_2没有明显的吸收作用(P>0.05)。
     试验Ⅲ在牛舍内均匀铺撒10kg(8m~2)的吸附剂GY-3,用便携式气体检测仪测定各季节连续8h NH_3、CH_4和CO_2浓度的变化,并与无吸附剂的对照试验进行比较。结果表明:各季节10kg GY-3吸附8h可极显著降低牛舍中NH_3的浓度(P<0.01)。在春、夏、秋、冬四个季节,1kg GY-38h分别可以吸附NH_31.43g,2.26g,0.87g and0.55g。NH_3吸附量随着季节间初始浓度的增加而增加,随着吸附时间的增加而迅速降低,浓度对吸附量的影响要高于温度对吸附量的影响。吸附剂GY-3对CH_4和CO_2没有明显的吸附作用(P>0.05)。
     试验Ⅳ在牛舍内均匀摆放62.5L(10mol/L)的吸收剂GY-4,用便携式气体检测仪测定各季节连续8h CO_2、NH_3和CH_4浓度的变化。结果表明:62.5L(10mol/L)的GY-4吸收8h可极显著降低各季节牛舍中的CO_2和NH_3的平均浓度(P<0.01)。春、夏、秋、冬四个季节,62.5L (10mol/L) GY-48h分别可以吸收CO_22466.5g、2581.5g、2265.1g和2197.4g;分别可以吸收NH_38.98g、10.30g、5.80g和4.05g。CO_2吸收量随着同一季节各小时CO_2平均浓度和季节间平均室温的升高而升高。NH_3吸收总量随着季节间舍内NH_3平均浓度的升高而升高,夏季NH_3各小时的吸收量随着舍内各小时NH_3平均浓度的升高而升高,冬季由于温度较低,溶解度增大,NH_3各小时的吸收量与舍内NH_3各小时的平均浓度无显著的正相关性(P>0.05)。GY-4对CH_4没有明显的吸收作用(P>0.05)。
     通过本研究发现,吸附剂GY-1无论是在气体的吸附种类上还是在温室气体吸附量上都具有极强的优势,吸收剂GY-4的总体吸收性能位居其次,而GY-2对NH_3的吸收量也较高,吸附剂GY-3的吸附性能则较为一般。
Reduce carbon, nitrogen emissions have become a hot topic world, it has been sounded alarmbecause of the sharp rise in carbon emissions brought the global climate, ecological, economic and otherissues for humanity, while a part of CH_4, CO_2and NH_3emissions come from animals. It has beengradually pay attention to this issue and a lot of tests carried out to reduce the emissions of these gases,for example, through the control of ruminant intake, dietary forage ratio, add methane inhibitors, addingenzyme andsynthesis of amino acids, etc., but these endogenous emission reduction method has certaindisadvantages, some higher cost, some poor role or animal produce tolerance, and even some additivesmay reduce the production performance of animals or bring some side effects, so find a new, exogenousway to reduce emissions is imminent. In this study, use GY-1, GY-2, GY-3and GY-4as adsorbents(absorbers) to adsorb (absorb) the gas through exogenous, and the four-stage test of the spring, summer,autumn and winter, compared CH_4, CO_2and NH_3concentration before and after adsorb (absorb), obtainsatisfactory results.
     Experiment Ⅰ In a cowshed evenly spread sprinkle10kg (8m~2) adsorbent GY-1, use portable gasdetectors continuous8h to measure the concentration changes of CH_4, CO_2and NH_3in each season,comparison with controlled trials which was no adsorbent. The results show that:10kg GY-1adsorbed8h can be very significantly reduced (P<0.01) CH_4, CO_2and NH_3concentration in cowshed in allseasons.1kg GY-18h can adsorb CH_412.69g,10.52g,16.12g and20.28g, can absorb CO_240.41g,35.96g,51.29g and56.67g, can adsorb NH_31.98g,2.86g,1.01g and0.64g respectively in spring,summer, autumn and winter. The CH_4, CO_2adsorption total amount was a significant negativecorrelation (P<0.05) with the average room temperature between seasons; the CH_4, CO_2and NH_3adsorption total amount was no correlation (P>0.05) with the average relative humidity between seasons;when the room temperature is constant, the adsorption total amount increased greatly with increasingNH_3average concentration between seasons; when the NH_3concentration is constant, NH_3adsorptiontotal amount increased a little with increasing temperature between seasons; the NH_3averageconcentration between seasons impact adsorption total amount is higher than the average roomtemperature between seasons; the CH_4, CO_2and NH_3adsorption amount decreases rapidly as theadsorption time increases.
     Experiment Ⅱ In the cowshed evenly placed10L absorber GY-2, use portable gas detectorscontinuous8h to measure the concentration changes of NH_3, CH_4and CO_2in each season, comparison with controlled trials which was no absorber and comparison with pure water absorption experiment. Theresults show that:10L GY-2absorbed8h can be very significantly reduced (P<0.01) NH_3averageconcentration in cowshed in all seasons, NH_3average concentration in cowshed is lower than pure waterabsorption experiment group in all seasons, wherein the NH_3average concentration was significantlylower than pure water absorption experiment group in summer (P<0.05).1L GY-28h can absorb NH_31.57g,2.62g,1.16g and0.85g respectively in spring, summer, autumn and winter. When the roomtemperature is constant, the absorption amount increased greatly with increasing NH_3concentration;when the NH_3concentration is constant, absorption amount increased a little with increasingtemperature.
     Experiment Ⅲ In the cowshed evenly spread sprinkle10kg(8m~2) adsorbent GY-3, use portablegas detectors continuous8h to measure the concentration changes of NH_3, CH_4, CO_2in each season,comparison with controlled trials which was no adsorbent. The results show that:10kg GY-3adsorbed8h can be very significantly reduced (P<0.01) NH_3concentration in cowshed in all seasons.1kg GY-38hcan adsorb NH_31.43g,2.26g,0.87g and0.55g respectively in spring, summer, autumn and winter.Adsorption amount increases with increasing initial concentration between seasons, decreases rapidly asthe adsorption time increases, the concentration impact adsorption amount is higher than the temperatureimpact adsorption amount. Adsorbent GY-3for CH_4and CO_2is no significant adsorption (P>0.05).
     Experiment Ⅳ In the cowshed evenly placed62.5L(10mol/L) absorber GY-4, use portable gasdetectors continuous8h to measure the concentration changes of CO_2, NH_3, CH_4in each season,comparison with controlled trials which was no absorbent. The results show that:62.5L(10mol/L) GY-4absorbed8h can be very significantly reduced (P<0.01) CO_2and NH_3average concentration in cowshedin all seasons.62.5L(10mol/L) GY-48h can absorb CO_22466.5g,2581.5g,2265.1g and2197.4grespectively in spring, summer, autumn and winter, can absorb NH_38.98g,10.30g,5.80g and4.05grespectively in those seasons. CO_2absorption amount increases with increasing CO_2averageconcentration of each hour in the same season and average room temperature between seasons. NH_3absorption total amount increases with increasing NH_3average concentration between seasons, NH_3absorption amount of each hour increases with increasing NH_3average concentration of each hour insummer, due to low winter temperatures, solubility increases, NH_3absorption amount of each hour andNH_3average concentration of each hour have no significant correlation in winter (P>0.05). GY-4forCH_4is no significant absorption (P>0.05).
     The study found that adsorbent GY-1both in the types of gas adsorption or in the amount ofgreenhouse gas adsorption has a strong advantage, absorber GY-4overall absorption performance rankedsecond, while the GY-2the NH_3absorption amount is higher, the adsorption properties of the adsorbentGY-3is more general.
引文
[1] Reilly J,Prinn R,Harnisch J,et al.Multi-gas assessment of the Kyoto Protocol[J].Nature,1999,401:549-555.
    [2]蔡松锋.中国农业源非二氧化碳类温室气体减排政策研究[D].北京:中国农业科学院,2011.
    [3] IPCC.IPCC Fourth Assessment Report:Climate Change2007:Working Group I Report:ThePhysical Scientific Basis[M].UK:Cambridge university press,2007:211-212.
    [4] IPCC.Climate change2007:Couplings Between Changes in the Climate System andBiogeochemistry[R/OL].http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter7.pdf
    [5] International Rice Research Institute (IRRI). Trends in the rice economy: Rice production, area, andyield.2008.http://beta.irri.org/statistics/index.php?option=com_content&task=view&id=413&Itemid=352.
    [6] Streets D G,Bond T C,Carmichael G R,et al.An inventory of gaseous and primary aerosolemissions in Asia in the year2000.Journal of Geophysical Research,2003,108(21):8809-8832.
    [7]王庚辰,温玉璞.温室气体浓度和排放检测及相关过程[M].北京:中国环境科学出版社,1996.
    [8]闵航,陈美慈,钱泽澍.不同栽培措施对水稻田甲烷释放甲烷产生菌和甲烷氧化菌的影响[J].农业环境保护,1994,13(1):7-11.
    [9]沈壬兴,上官行健,王明星,等.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化[J].地球科学进展,1995,10(4):387-392.
    [10]蔡祖聪.中国稻田甲烷排放研究进展[J].土壤,1999,(5):266-269.
    [11]王效科,李长生,欧阳志云,等.温室气体排放与中国粮食生产[C].第二次全国气候变化学术讨论会论文集,2003,111-115.
    [12]谢旻,王体健.中国地区稻田CH4和生物质燃烧CO排放对对流层氧化性的影响[J].生态学报,2007,27(11):4803-4814.
    [13]朱鲁生,王玉军,李光德,等.中国农业甲烷排放的研究进展[J].环境科学进展,1995,3(5):26-35.
    [14]张新民,张遂安.中国的煤层甲烷[M].陕西:陕西科学技术出版社,1991.
    [15]钟玲文.中国煤层甲烷含量及分布特征[J].新疆石油地质,2004,25(3):325-328.
    [16]郑爽,王佑安,王震宇.中国煤矿甲烷向大气排放量[J].煤矿安全,2005,36(2):29-33.
    [17]郑爽.我国煤层甲烷类温室气体排放及清单编制[J].中国煤炭,2002,28(5):37-40.
    [18] Khalil M A K.Non-CO2greenhouse gases in the atmosphere[J].Annu Rev Energy Environ,1999,24:645-661.
    [19]王明星,戴爱国,黄俊,等.中国CH4排放量的估算[J].大气科学,1993,17:52-64.
    [20] Khalil M A K,Shearer M J,Rasmussen R A,et al.Methane sources in China: historical and currentemissions[J].Chemosphere,1993,26:127-142.
    [21]金会军,吴杰,程国栋,等.青藏高原湿地CH4排放评估[J].科学通报,1999,44:1758-1762.
    [22]崔宝山.三江平原沼泽地CH4排放规律及估算[J].地理科学,1997,17:93-96.
    [23]丁维新,蔡祖聪.我国沼泽甲烷排放量估算[J].土壤,2002,6:348-353.
    [24]黄国宏,肖笃宁,李玉祥,等.芦苇湿地温室气体CH4排放研究[J].生态学报,2001,21:14941497.
    [25]叶勇,卢昌义.海莲红树林土壤CH4动态研究[J].土壤与环境,2000,9:91-95.
    [26] Saarnio S,Alm J,Martikainen P J,et al.Effects of raised CO2on potential CH4production andoxidation in,and CH4emission from a boreal mire[J].J Ecology,1998,86:261-268.
    [27]余国泰.中国城市生活垃圾中甲烷排放清单编制的初步研究[J].环境科学进展,1997,12(增刊):41-49.
    [28] Bogner J E,Spokas K A,Burton E A.Kinetics of methane oxidation in a landfill cover soil: temporalvariation, a whole-landfill oxidation experiment, and modeling of net CH4emissions[J].Environ.Sci. Techuol1997,31:2504-2514.
    [29]松藤康司,立藤绫子.根据填埋构造的不同来研究温室气体的产生和控制[J].废弃物学会杂志(日本),1997,8(6):438-446.
    [30]高庆先,杜吴鹏,卢士庆,等.中国城市固体废弃物甲烷排放研究[J].气候变化研究进展,2006,2(6):269-272.
    [31]乐群,张国君,王铮.中国各省甲烷排放量初步估算及空间分布[J].地理研究,2012,31(9):1559-1570.
    [32] Frankenberg C,Meirink J F,Van Weele M,et al.Assessing methane emissions from global space-borne observations[J].Science,2005,308:1010-1014.
    [33] Ferretti D F,Miller J B,White J W C,et al.Unexpected changes to the global methane budget overthe past2000years[J].Science,2005,309:1714-1717.
    [34] Carmo J B,Keller M,Dias J D,et al.A source of methane from upland forests in the BrazilianAmazon[J].Geophys Res Lett,2006,33,L04809,doi:10.1029/2005GL025436.
    [35] Keppler F,Hamilton J T G,Brass M,et al.Methane emissions from terrestrial plants under aerobicconditions[J].Nature,2006,439:187-191.
    [36]谢旻,李树,江飞,等.中国地区陆地植被甲烷排放及其对对流层低层甲烷浓度的影响[J].科学通报,2008,53(19):2365-2370.
    [37]《环境与可持续发展》编辑部.我国学者在青藏高原生态系统甲烷排放研究方面取得重要成果[J].环境与可持续发展,2011,4:67-68.
    [38] China contributing two thirds to increase in CO2emissions[EB/OL].http://www.mnp.nl/en/service/pressreleases/2008/20080613China contributing two thirds to increase in CO2emissions.html.
    [39] IPCC,Climate Change2007:The Fourth IPCC Assessment Report [R].Valencia, Spain: Intergovern-mental Panelon Climate Change,2007.
    [40]安祥华,姜昀.我国火电行业二氧化碳排放现状及控制建议[J].中国煤炭,2011,37(1):108-110.
    [41]冉锐,翁端.中国钢铁生产过程中的CO2排放现状及减排措施[J].科技导报,2006,24(10):53.
    [42]赵晏强,李小春,李桂菊.中国钢铁行业CO2排放现状及点源分布特征[J].钢铁研究学报,2012,24(5):1-5.
    [43]顾竣.水泥工业发展低碳经济的时机已经到来[EB/OL].http://www.bmlink.com/news/message/248642.html.
    [44]韩娟,赵晨,汪牡丹,等.我国水泥工业二氧化碳排放现状与减排分析[J].海南大学学报自然科学版,2010,28(3):252-256.
    [45]蒋小谦,康艳兵,刘强,等.2020年我国水泥行业CO2排放趋势与减排路径分析[J].中国能源,2012,34(9):17-21.
    [46]石建屏,李新,吕淑珍,等.中国水泥工业CO2排放现状及减排对策[J].环境科学学报,2012,32(8):2028-2033.
    [47]孙会峰,朱建国,谢祖彬,等.稻田CO2排放对大气CO2浓度升高的响应[J].土壤,2012,44(6):933-940.
    [48] Khalil M A K,Rasmussen R A.Emissions of trace gases from Chinese rice fields and biogasgeneration:CH4,CO,CO2,chlorocarbons,and hydrocarbons[J].Chemosphere,1990,20:207-226.
    [49]宋文质,王少彬,苏维瀚,等.我国农田土壤的主要温室气体CO2、CH4和N2O排放研究[J].环境科学,1996,17(1):85-92.
    [50]康德梦.中国科协论文汇编[M].北京,1991:227.
    [51]李长生,肖向明,S Frolking,等.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503.
    [52]宋秋来,赵泽松,龚振平,等.东北黑土区旱作农田土壤CO2排放规律[J].农业工程学报,2012,28(23):200-207.
    [53] International Energy Agency (IEA).CO2emissions fromfuel combustion2009[M].Paris:IEA Publi-cation,2009:117-180.
    [54] International Energy Agency (IEA).World energy outlook2009[M].Paris:IEA Publication,2009:355-364.
    [55] US Environmental Protection Agency.Inventory of U.S. greenhouse gas emissions and sinks:1990-2008[R].2010.
    [56] European Environment Agency. Annual European Union greenhouse gas inventory1990-2008andinventory report2010[R].2010.
    [57]蔡博峰,曹东,刘兰翠,等.中国交通二氧化碳排放研究[J].2011,7(3):197-203.
    [58]蔡闻佳,王灿,陈吉宁.中国公路交通业CO2排放情景与减排潜力[J].清华大学学报(自然科学版),2007,47(12):2142-2145.
    [59]樊守彬,李钢,田刚.城市公交车在实际道路上的CO2排放特征[J].环境科学与技术,2012,35(4):60-64.
    [60]王文兴,卢筱凤,庞燕波,等.中国氨的排放强度地理分布[J].环境科学学报,1997,17(1):2-7.
    [61]李新艳,李恒鹏.中国大气NH3和NOx排放的时空分布特征[J].中国环境科学,2012,32(1):37-42.
    [62] Buijman,E D,Mass H F M,et al.Anthropoyenic NH3emission in Europ[J].Atmospheric Environ-ment,1987,21(5).
    [63]宋敬阳.我国大气NH3源的排放因子及贡献率[J].中国环境管理干部学院学报,1998,15,16合刊(1,2):41-44.
    [64]王庭富.21世纪合成氨的展望[J].化工进展,2001(8):6-8.
    [65] D Moller,H Schieferdecker.Ammonia emission and deposition of NHx in the G. D. R[J].Atmospheric Environment,1989,23(6):1187-1193.
    [66]兰国栋.乌鲁木齐市米东区恶臭气体NH3和H2S污染特征分析[J].干旱环境监测,2009,23(2):77-80.
    [67]喻乐华,张和平,童贞恭.建筑中的氨气污染[J].江西建材,2002,1:31-32.
    [68]佚名,帕乔里:全球应该向“低碳社会”转变[EB/OL].[2008-05-14]. http://zhiku.ditan360.com/gdpl/3517.html.
    [69]单丽伟,冯贵颖,范三红.产甲烷菌的研究进展[J].微生物学杂志,2003,23(6):42-46.
    [70] FAO.Number of Livestock(2007)[EB/OL].http://www.fao.org/economic/ess/publications-studies/statistical-yearbook/fao-statistical-yearbook-2007-2008/a-resources/en/.
    [71]林余,张稳,黄耀.中国动物源CH4排放空间分布和时间变化研究[J].环境科学,2011,32(8):2212-2220.
    [72]鲁琳,刘凤华,颜培实.家畜环境卫生学实验指导[M].北京:中国农业大学出版社,2005.
    [73]娜仁花,董红敏.营养因素对反刍动物甲烷排放影响的研究现状[J].安徽农业科学,2009,37(6):2534-2536.
    [74]王永康译.减少反刍动物甲烷产生量的饲喂策略[J].中国奶牛,2010,4:54-56.
    [75]腾讯公益.大气中温室气体浓度已达历史最高值[EB/OL].[2009-12-13]. http://news.qq.com/a/20091213/001688.html.
    [76] Sedorovich D M,Rotz C A,Richard T L.Greenhouse Gas Emissions on Dairy Farms[M].Michigan:American Society of Agricultural and Biological Engineers,2008.
    [77] Capper J L,Cady R A,Bauman D E.Dairy’s environmental impact[J].Hoard’s Dairyman,2009,9:547.
    [78]刘晃,车轩.中国水产养殖二氧化碳排放量估算的初步研究[J].南方水产,2010,6(4):77-80.
    [79]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,7(6):92-96.
    [80]王远孝,葛津瑶,张京,等.南京市活禽交易市场空气中PM10和NH3污染调查[J].畜牧与兽医,2006,38(3):28-30.
    [81]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004.
    [82]刘东,王方浩,马林,等.中国猪粪尿NH3排放因子的估算[J].农业工程学报,2008,24(4):218-224.
    [83]刘东,马林,王方浩,等.河北省猪粪尿氮产生量及氨挥发量的研究[J].河北农业大学学报,2007,30(6):5-10.
    [84]赵海梅.低浓度氨作业对工人呼吸系统的影响[J].职业卫生与应急救援,2001,19(3):153-154.
    [85] PINARES-PATINO C S.Methane emission by alpaca fed on Luceme hay or grazed on pastures ofperennial ryegrass white clover or birdsfoot trefoil [J].Journal of Agricultural Science,2003,14215-226.
    [86]张晓庆,金艳梅,那日苏.反刍动物甲烷生成量的调控[J].家畜生态学报,2006,27(6):1-2.
    [87] Blaxter K L.1962.The Energy Metabolism of Rumimants[J].Hutchimson Scientific and Technical,179-203.
    [88] Holter,Yang J.Methane production in dry and lactating Holstein cows[J].Journal of Dairy Science,1992,75:2165.
    [89] Johnson K.A.,Johnson D.E.Methane emissions from cattle[J].Journal of Animal Science,1995,73(8):2483-2492.
    [90]杨在宾.反刍动物碳水化合物代谢及瘤胃调控技术研究进展[EB/OL].(2006-04-12)http://www.sdfeedste.com/yingyangyanjiushuo/xsjl/200604/45.html.
    [91] McCaughey,W.P, K.Wittenberg and D.Corrigan.Impact of pasture type on methane production bylactating beef cows[J].Journal of Animal Science,1999,79:221-226.
    [92]韩继福,冯仰廉,张晓明,等.阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响[J].中国兽医学报,1997,17(3):278-280.
    [93]萧宗法,刘秀州,陈吉斌,等.饲料精粗比对荷兰种干乳牛消化道甲烷产量的影响[J].中国畜牧学会会志,1998(27):166.
    [94]张爱忠,卢德勋,王立志,等.不同精粗比日粮条件下绒山羊瘤胃内环境和发酵指标动态变化的研究[J].黑龙江畜牧兽医,2005(12):23-25.
    [95] Sommer S G,Petersen S O,Sogaard H T.Greenhouse gas emission from stored livestock slurry[J].Journal of Environmental Quality,2000,29:744-751.
    [96]冯仰廉.反刍动物营养学[M].北京:科学出版社,2004.
    [97]王丽凤.日粮中添加甲烷抑制剂对绵羊瘤胃中甲烷产量影响的研究[M].呼和浩特:内蒙古农业大学,2004.
    [98]李建新,高腾云.影响瘤胃甲烷气产量的因素及其控制措施[J].家畜生态,2002,23(4):67-69.
    [99]张运涛,方德罗.反刍动物甲烷排放及其对全球变暖的影响[J].中国畜牧杂志,1999,35(1):47-48.
    [100]李长皓,王加启,张思维,等.饲喂秸秆型日粮和青贮型日粮对青年奶牛瘤胃发酵及氮代谢的影响[J].中国奶牛,2007(7):17-20.
    [101] Ferry,G G Biochemistry of methanogenesis.Crit.Rev Biochen[J].Molecule Biology,1992,27:473-503.
    [102]于震,张永根.反刍动物瘤胃甲烷的产生及调控措施[J].黑龙江畜牧兽医,2007,9:35-36.
    [103] Newbold C J,Hassan E,Wang S M,et al. Influence of foliage from African multipurpose trees onactivity of rumen protozoa and bacteria[J].British Journal of nutrition,1997,78:237-249.
    [104] Mclnerney S M.Toxicological and structural studies of the antiprotozoal agent found inEnterolobium cyclocarpus[D].BSc(Hons) Thesis, University of New England, Armidale,1995.
    [105] Puchala R,Min B R,Goetsch A L,et al.The effect of a condensed tannin-containing forage onmethane emission by goats[J].Journal of Animal Science,2005,83:182-186.
    [106] Mathieu F,Jouany J P,Senaud J,et al.The effect of Saccharomyces cerevisiae and Aspergillus oryzaeon fermentations in the rumen of faunated and defaunated sheep; protozoal and probioticinteractions[J].Reproduction Nutrition and Developmemt,1996,36:271-287.
    [107] McGinn S M,Beauchemin K A,Coates T,et al.Methane emissions from beef cattle:Effects ofmonensin,sunflower oil,enzymes,yeast,and fumaric acid[J].Journal of Animal Science,2004,82:3346-3356.
    [108] Tedeschi,L. O.,D. G. Fox.Potential environmental benefits of ionophores in ruminant diets[J].Journal of Environmental Quality,2003,32:1591-1602.
    [109]林雪彦,谢幼梅.莫能菌素在畜牧生产中的应用[J].黄牛杂志,2000,26(3):62-65.
    [110] Rumpler W V,Johnson D E and Bates D B.The effect of hinge dietary cation concentration onmethanogenesis by steers fed diets with and without ionophores[J].Journal of Animal Science,1986,62:1737-1741.
    [111] Schonheit P and Beimborn D B.ATP synthesis in Methanobacterium thermoautotrophicum coupledto CH4formation from H2-CO2in the apparent absence of an electrochemical proton potentialacross the cytoplasmic membrane[J].European Journal Biochem,1985,148:545-550.
    [112] Deceyer D.I,Veil C.J,Teller E,et al.Manipulation of rumen digestion in relation to the level ofproduction in ruminants[J].Journal of Animal Nutrual,1986,36:132-143.
    [113] May C,Payne A L,Stewart P L,et al.A delivery system for agents,International Patent Application,1995.
    [114] Asanuma,Hino.Effect of the addition of fumarate on methane production by ruminalmicroorganisms in vitro[J].Journal of Dairy Science,1997,82:780.
    [115] Frumholtz,P.P.,C.J.Newbold and R.T.Wallace.Influence of Asergillus oryzae fermentation extractson the basal ration in rumensimulation technology[J].Journal Agriculture Science.1989,113:169.
    [116] Mutsvangwa,T.,I. E. Edwards.The effect of dietary inclusion of yeast culture on patterns of rumenfermentation,food intake and growth of intensively fed bulls[J].Animal Production.1992,55:35.
    [117] Garcia-Lopez P M,J Kung L,Odom J M.In vitro inhibition of microbial methane production by9,10-anthraquinone[J].Journal of Animal Science,1996,74:2276-2284.
    [118] Dumitru R,Palencia H,Schroeder S D,et al.Targeting methanpterin biosynthesis to inhibit methano-genesis[J].Applied Enviroment Microbiology,2003,69:7236-7241.
    [119] Mohammed N,Ajisaka N,Lila Z A,et al.Effect of Japanese horseradish oil on methane productionand ruminal fermentation in vitro and in steers[J].Journal of Animal Science,2004,82:1839-1846.
    [120] Sar C,Mwenya B,Santoso B,et al.Effect of Escherichia coli W3110on ruminal methanogensis andnitrate reduction in vitro[J].Anim Feed Sci Technol,2005,118:295-306.
    [121] Holloway P E,Baker S K.Development of antibodies to rumen methanogens in sheep[J].AsianAustralian Journal of Animal Science,2000,13:264.
    [122] Wright A D G,Kennedy P,O Neill C J,et al.Reducing methane emissions in sheep by immunizationagainst rumen methanogens[J].Vaccine,2004,22:3976-3985.
    [123]农村家用沼气发酵工艺规程[S].GB9958-88.
    [124]刘德江,高桂丽,朱妍梅,等.猪粪、牛粪、羊粪沼气发酵比较试验[J].塔里木大学学报,2005,17(2):10-12.
    [125]刘树民,韩靖玉,岳海军.中国北方寒冷地区沼气的综合开利用[J].内蒙古农牧大学学报,2002,24(4):83-86.
    [126] IPCC.2006IPCC Guidelines for National Greenhouse Gas Inventories,Volume4:AgricultureForestry and Other Land Use[M].Kanagawa,Japan:IPCC National Greenhouse Gas InventoriesProgram,2006.
    [127]陆日东,李玉娥,石锋,等.不同堆放方式对牛粪温室气体排放的影响[J].农业环境科学学报,2008,27(3):1235-1241.
    [128] Khan R Z,Müller C,Sommer S G.Micrometeorogical mass balance technique for measuring CH4emissions from stored cattle slurry[J].Biology and Fertility of Soils,1997,24:442-444.
    [129]陆日东,李玉娥,万运帆,等.堆放奶牛粪便温室气体排放及影响因子研究[J].农业工程学报,2007,23(8):198-204.
    [130]沈跃.黄牛品种改良与减排甲烷潜力的研究[J].农业环境保护,1995,14(1):15-17.
    [131]向涛.家畜生理学生化学(下)[M].南昌:江西科学技术出版社,1989,249.
    [132] Van Soest,P.J.Nutritional Ecology of the ruminant.Second Edition[M].Ithaca:Cornell UniversityPress,1994.
    [133]屈健.丝兰属提取物降低动物体内外有害气体浓度作用机制[J].饲料研究,2004,9:26-28.
    [134]詹晶,张俊娜,邓荣荣.我国畜牧业低碳化发展的路径选择—基于畜牧业排放源对甲烷增长的回归分析[J].广西社会科学,2012,207(9):50-54.
    [135]魏毅.广西车田沸石用于吸附室内甲醛的研究[D].南宁:广西大学,2007.
    [136]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005,54-132.
    [137]昌竹.环境工程原理[M].北京:冶金工业出版社,1994:164.
    [138]冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000:3-9.
    [139]叶振华,宋清.吸附及离子交换[M].北京:化学工业出版社,1985.
    [140]姜兆华,孙德智,邵光杰,等.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:47-69.
    [141]周伟.改性斜发沸石吸附OH-后的再生改型及吸附性能研究[D].保定:河北工业大学,2011.
    [142]叶振华.化工吸附分离过程仁[M].北京:中国石化出版社,1992:7.
    [143]李翠红.分子筛吸附剂对甲醛分子吸附性能的研究[D].大连:大连理工大学,2005.
    [144] Breck B W,Eversole W G,Milton R M,et al.Crystalline zeolites,I.The properties of a new syntheticzeolite[J].Type A.J.Am.Chem.Soc,1956,78:5967-5973.
    [145]张建,陈素红,张成禄,等.水枝锦活性炭对孔雀石绿的吸附性能研究[J].环境污染与防治,2009,31(3):1-5.
    [146]立本英机,安部郁夫.活性炭的应用技术[M].高尚愚,译.南京:东南大学出版社,2002.
    [147]孙剑平,冯国会,班福忱,等.活性炭和分子筛对甲醛气体吸附性能的比较[J].沈阳建筑大学学报(自然科学版),2010,26(6):1182-1185.
    [148] KARATEPEA N,ORBAKBI,YAVUZR,et al.Sulfur dioxide adsorption by activated carbon shavingdifferent textural and chemical properties[J].Fuel,2008,87(15/16):3207-3215.
    [149]活性炭网.活性炭应用广泛向多领域特异性扩展[R/OL].(2008-12-01)[2009-03-02].http://www.active-carbons.com/Info/Industrial News/77077.htm.
    [150]施红,努尔东拜,吴云海,等.活性炭吸附法去除废水中重金属的研究进展[J].江苏环境科技,2006,19(A02):110-113.
    [151]孙鸿,苏深,马静红,等.煤矸石制备活性炭-沸石复合材料的研究[J].煤炭转化,2005,28(3):63-66.
    [152]常明泉,陈芳,郝新才,等.活性炭的临床解毒作用[J].中国药事,2008,22(11):1014-1015,1021.
    [153]王新涛,刘凤军.微粒子活性炭在胃癌诊治中的应用[J].中国现代普通外科进展,2007,10(6):533-535.
    [154]孙康,蒋剑春.国内外活性炭的研究进展及发展趋势[J].林产化学与工业,2009,29(6):98-104.
    [155]崔静,赵乃勤,李家俊.活性炭制备及不同品种活性炭的研究进展[J].炭素技术,2005,24(1):26-31.
    [156] Hemandez M A.Adsoprtion charaeteristics of natural clinoptilolite and Mordenite zeolites fromMexieo[J].Adsoprtion,2000(6),33-45.
    [157]冯灵芝.斜发沸石去除水中氨氮的试验研究[D].郑州:郑州大学环境工程系,2006.
    [158]肖举强,于连群,李桂荣,等.活化沸石处理污染水源水的研究[J].给水排水,1997,23(6):16-18.
    [159]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978,13-21.
    [160]万政钰.利用改性沸石吸附剂处理氨气的研究[D].长春:吉林大学,2009.
    [161]沸石分子筛结构委员会[EB/OL].http://izasc-mirror.la.asu.edu/fmi/xsl/IZA-SC/ft.xsl.
    [162]高繁华,张永民,高雄厚.沸石的改性技术[J].工业催化,1998,3(2):20-29.
    [163]屠巍.沸石界面物理化学性质的研究-沸石对溶液中氨氮和磷的吸附性能[D].上海:华东师范大学理工学院化学系,2006.
    [164]张铨昌.天然沸石矿物的性能与应用[M].北京:化学工业出版社,1987:21-26.
    [165]李增新,张启军.天然沸石在农业中的应用[J].农业环境保护,1995,15(6):42-43.
    [166]孙忠,侯晓勇.改型沸石在饮水净化中的应用研究[J].非金属矿,2002,25(2):49-50.
    [167]叶振华.化工吸附分离过程[M].北京:中国石化出版社,1992:12.
    [168]李酽.建筑用沸石杀菌涂料研制[J].非金属矿,1999,22(2):18-19.
    [169]丁浩,许霞.矿物基体功能材料及其在建筑涂料中的应用[J].中国非金属矿工业导刊,2003,(6):17.
    [170]陈国安.沸石处理重金属离子废水[J].矿产保护与利用,2001,(6):17-19.
    [171]夏丽华,董秉直,高乃云,等.改性沸石去除氨氮和有机物的研究[J].同济大学学报(自然科学版),22(10):78-82.
    [172]霍爱群,姜华.改性天然沸石用于饮用水体除铅机理探讨[J].给水排水,1997,23(6):16-18.
    [173]刘文质,张玉杰.饮用水沸石除氟仁[J].水处理技术,1995,21(3):166-170.
    [174] HB.库兹涅佐夫.水质放射性污染净化原理[M].北京:中国建筑工业出版社,1980:261-266.
    [175]熊慕慕.我国膨润土矿资源及发展方向[J].洛阳师范学院学报,2008,3:183-184.
    [176]王丽芹.砚山膨润土的改型及其对含磷废水的吸附研究[D].昆明:昆明理工大学,2009.
    [177]徐立恒.有机膨润土的结构调控及吸附性能研究[D].杭州:浙江大学,2009.
    [178]王鸿禧.膨润土[M].北京:地质出版社,1988.
    [179]姚道坤.中国膨润土矿床及其开发应用[M].北京:地质出版社,1994.
    [180]邱俊,吕宪俊.膨润土及改性产品在环境工程中的应用[J].中国非金属矿工业导刊,2003,37(6):45-49,60.
    [181]崔学奇,吕宪俊,周国华.膨润土的性能及其应用[J].中国非金属矿工业导刊,2000,14(2):6-9.
    [182]陆诗建,李清方,张建.醇胺溶液吸收二氧化碳方法及反应原理概述[J].科技创新导报,2009,13:4-7.
    [183]叶振华.吸附分离过程基础[M].北京:化工出版社,1988.
    [184]商云帅.以高岭土为原料沸石分子筛的合成及其氮氧吸附性能研究[D].大连:大连理工大学,2009.
    [185]郭强.一种用于CO2吸收的固体吸收剂[J].舰船防化,2004,3:21-24.
    [186]徐向华,梁新刚,任建勋.固态胺吸附和解吸CO2的数值模拟[J].航天医学与医学工程,2004,17(4):292-296.
    [187]赵书广.中国养猪大成[M].北京:中国农业出版社,2001:778-805.
    [188]李庆康,吴雷,刘海琴,等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251.
    [189]龚飞飞,邵伟,胡登林,等.奶牛低碳与低氮养殖的研究进展[J].中国奶牛,2011,17:38-42.
    [190]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社,1986:1-78.
    [191]陈玉平,吕玲红,邵庆,等.烷烃在丝光沸石型分子筛中吸附和扩散行为[J].物理化学学报,2007,23(6):905-910.
    [192]李智,孙孝敏,彭程.小分子烷烃在TON沸石上吸附性能的计算机模拟[J].石油学报,2010,26(1):147-152.
    [193]高浩中,张铨昌.天然沸石对二氧化碳的吸附和对混合气体的分离纯化[J].地质科学,1987,4:384-392.
    [194]赵临远,何丽新,杨燕.辉沸石的吸附性能与应用[J].化学时刊,2001,11:28-31.
    [195]张铨昌,郭伯芝.斜发沸石和丝光沸石的吸水性能[J].地质科学,1988,2:147-154.
    [196]张冬娜,宋永会,弓爱君,等.利用丝光沸石吸附高浓度氨氮的研究[J].安全与环境学报,2006,6(5):17-20.
    [197]李明,姚金花.活性炭含水量对甲烷吸附量的影响[J].天津化工,2001,5:4-6.
    [198]张丽丹,王晓宁,韩春英,等.活性炭吸附二氧化碳性能的研究[J].北京化工大学学报,2007,34(1):76-80.
    [199]龚飞飞,胡登林,刘志强,等.不同日粮组成对冬季密闭青年母牛舍碳排放影响的研究[J].中国畜牧杂志,2010,46(14):43-47.
    [200]袁文辉,叶振华.离子交换与吸附[J].1998,14(3):256-260.
    [201]马良,邓九兰,张文俊,等.中国环境检测[J].2001,17(4):63-65.
    [202]赵林果,王传槐,叶汉玲.复合酶制剂降解植物性饲料的研究[J].饲料研究,2001,1:2-4.
    [203]顾宪红,方路.酶制剂对肉仔鸡生产性能及主要营养素代谢率的影响[J].饲料研究,2000,1:39-40.
    [204]史清河.通过日粮控制减少猪排泄物中氨与硫化氢的产生与散发量[J].家畜生态,2002,22(1):34-39.
    [205]杜永才,周庆安,李云甫.采用营养调控措施减少畜牧业对环境的污染[J].家畜生态,2003,2(2):48-51.
    [206]杨兰和,刘淑琴,梁杰,等.废碱液同时吸收CO2和H2S方法与传质模型的研究[J].煤炭学报,2003,28(1):64-68.
    [207]刘东.中国猪和奶牛粪尿氨(NH3)挥发的评价研究[D].保定:河北农业大学,2007.
    [208] Van Der Hoek K W.Estimating ammonia emission factors in Europe:Summary of the work of theUNECE ammonia expert Panel[J].Atmospheric Environment,1998,32(3):315-316.
    [209] Hutchings N J,Sommer S G,Andersen J M,et al.A detailed ammonia emission inventory forDenrnark[J].Atmospheric Environment,2001,35:1959-1968.
    [210]陈树沛.改性膨润土的制备及其对室内污染气体甲醛吸附的研究[D].南京:南京林业大学,2008.
    [211]马小隆,刘晓明,宋吉勇.膨润土的改性及其对废水中铬的吸附性能研究[J].能源环境保护,2005,19(4):18-21.
    [212] IPCC.Climate Change2007: Summary for Policymakers. In: The Physical Science Basis.Contribution of Working Group Ⅰto the Fourth Assessment Report of the Intergovernmental Panelon Climate Change. Solomon, S, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignorand H L Miller(eds.). Cambridge University Press, Cambridge, United Kingdom and New York,NY, USA,2007.
    [213]骆培成,王志祥,焦真,等.填料塔中的NaOH水溶液脱除空气中微量CO2的传质动力学[J].化工时刊,2004,18(2):35-40.
    [214]骆培成,王志祥,杨照,等.超低分压下CO2在NaOH和Na2CO3水溶液中的溶解度[J].化学工程,2003,31(3):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700