用户名: 密码: 验证码:
木材纤维基超轻质材料的阻燃性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木纤维基超轻质材料利用液体发泡工艺制备,密度在0.03-0.09g·cm~(-3)范围,可在包装与保温等应用领域取代聚苯乙烯泡沫塑料(EPS)。但作为超低密度的木质材料,在防火性能方面仍然与EPS材料一样面临严峻的考验。
     本研究采用硼、氮-磷、硅和卤素系4种组分复合的无机阻燃剂制备难燃木纤维基超轻质材料,通过常温极限氧指数法和氮气保护气氛灼烧法优化了无机复合阻燃剂各组分的配比,确定优化阻燃剂配方。并借助热分析、锥形量热、X-射线衍射和红外光谱等仪器分析手段,对木纤维基超轻质材料独特的燃烧热解特点、燃烧过程的热释放和尾气烟雾毒性、阻燃机理及阻燃剂各组分协效作用进行系统的研究。
     热分析研究表明木纤维基超轻质材料的燃烧热解有不同于其它木质材料的爆燃现象,放热集中且迅速,瞬间放热量高,火场中造成的危害更大。研究指出纤维素结晶区在400℃时瞬间崩溃式的热分解导致了爆燃现象,爆燃现象是火势迅速扩散的重要原因。该材料阻燃的关键在于提高纤维素结晶区的热稳定性。X-射线衍射和红外光谱分析研究证明了硅系阻燃组分能够增强炭层致密性,并与酸催化脱水成炭作用配合有效提高了纤维素结晶区的热稳定性。锥形量热分析研究表明经无机复合阻燃处理后的木纤维基超轻质材料有焰燃烧时间低于30s,在火场高温中能够维持阴燃状态,燃烧热解进程缓和,放热平稳,有优异的抑烟性。
     无机复合阻燃剂优化配方为硼系阻燃剂用量35%,氮-磷系用量27%,硅系用量15%和卤素系用量28%,制备的材料氧指数为43.0,灼烧成炭残重率61.3%。各组分中硼、氮-磷和硅系有凝聚相阻燃作用,尤其硼系能在较低温度就迅速形成玻璃态隔离层,在抑烟和降低尾气毒性上发挥关键作用。卤素系和氮-磷系有气相阻燃作用,卤素系的自由基阻断反应能有效降低单位热释放量,对降低材料表面热解温度起到重要作用。硼、氮-磷和卤素系组分能产生酸催化脱水成炭效应,硅系则有促进炭层致密性提高和增强纤维热稳定性的作用。各组分发挥的协效作用促使木纤维基超轻质材料的阻燃性达到难燃B1级标准(GB8624-2006)。
The ultra-low density wood-based foaming material (ULDM), prepared by liquidfoaming process, density in0.03-0.09g·cm~(-3), can be used in packaging and thermalinsulation applications to replace the expanded polystyrene sheet (EPS). However,because of the ultra low density, the ULDM’s fire performance still faces severechallenges just as the EPS.
     In this study, one kind of four components composite inorganic fire retardant,including boron, nitrogen-phosphorus, silicon and halogen, is used to prepare flameretardant ULDM. By limiting oxygen index method and nitrogen atmospherecalcination method at room temperature to optimize the inorganic compositeflame-retardant component ratio, the best fire retardants formula has been determined.By means of thermal analysis, cone calorimeter, X-ray diffraction and infraredspectrum instrument analysis, the ULDM has been researched systematically on itsunique pyrolysis and combustion characteristics, heat release and exhaust smoketoxicity in the combustion process, the fire retardant mechanism and fire retardantcomponents synergism.
     Research shows that the pyrolysis and combustion of ULDM has thedeflagration phenomenon different from other wood materials. The deflagrationcaused high heat release instantly and more harm in fire. Because cellulose crystallineregion instantly collapse at400℃thermal decomposition temperature leads to thedeflagration phenomenon, So the key is to enhance the thermal stability of cellulosecrystalline region. Research proved that silicone flame retardant component formedorganosilicon compounds and reinforced carbon layer by Si-C and Si-O-C, whichassisted acid catalyzed dehydration charring to improve the thermal stability ofcellulose crystalline region effectively. The flame combustion time was less than30s,smoldering state could maintain in high temperature and smoke suppression wasexcellent when the ULDM had been dealed with inorganic composite flame retardant.
     The best formula of inorganic composite flame-retardant agent was that boronagent dosage was35%, nitrogen-phosphorus agent dosage was27%, silicon agent dosage was15%and the halogen agent dosage was28%. Using this formula, theoxygen index of the materials prepared for43, burning charcoal residue rate is61.3%.Boron, nitrogen-phosphorus and silicon component have condensed phase flameretardant effect, especially, boron component can form glassy isolation layer at lowtemperature rapidly, so it played a key role in the smoke suppression and reduceexhaust toxicity. Halogen and nitrogen-phosphorus have gas phase flame retardancy,and halogen can reduce the unit heat release effectively by blocking free radicalreaction, act an important role to reduce the surface pyrolysis temperature. Boron,nitrogen-phosphorus and halogen component can produce acid catalyzeddehydration charring effect, silicon can increase carbon layer density and enhancethermal stability of fiber. Therefore, components of the flame retardant play asynergistic effect reached ULDM to non-inflammable B1standard (GB8624-2006).
引文
[1]谢拥群,陈彦,魏起华,等.机械发泡技术制备网状植物纤维材料的研究[J].福建林学院学报,2008,28(3):203-207.
    [2]中商情报网.2011-2015年中国泡沫塑料行业发展现状及前景调研报告.2011-7-25.(http://www.askci.com).
    [3]吴其叶,曹绍文,鲍永成.植物纤维发泡制品及成型技术[J].轻工机械,2002,(3):22-25.
    [4]关吉勋.泡沫塑料的成型工艺[J].四川化工与腐蚀控制,1998,1(2):57-60.
    [5]索晓红,李新平.纤维素纤维发泡缓冲包装材料制备工艺初探[J].包装工程,2006,27(6):116-118,125.
    [6]赵红,麒麟,李红来.不同填充物对机械法制纤维素缓冲包装材料性能的影响[J].包装工程,2008,29(10):68-70.
    [7]朱茂电.微孔及纳米孔发泡材料研究进展[J].塑料科技,2010,38(2):99-102.
    [8]高长云.微孔发泡聚合物/CO2体系基础研究进展及概况[J].橡塑技术与装备,2011,37(11):15-18.
    [9]洪浩群,何慧,贾德民,等.超临界CO2微孔发泡塑料的研究进展[J].包合成树脂及塑料,2011,28(3):73-77.
    [10]翟文涛,余坚,何嘉松.超临界流体制备微发泡聚合物材料的研究进展[J].高分子通报,2009,(3):1-10.
    [11]郭震,黄俊彦.植物纤维类发泡材料的成型机理及生物发泡方法探讨[J].包装工程,2010,31(15):55-57,65.
    [12] Gutman R. Thermal technologies to convert solid waste residuals into technicalglass products [J]. Glastech Ber Glass Sci Techn,1996,69(9):285-287.
    [13] Bemardo E,Scarinci G. Foam glass as a way of recycling glasses from cathoderaytubes [J]. Glass Sci Techn,2005,78(1):7-10.
    [14]陈克荣,曾家湖,陈小明.微晶泡沫玻璃墙体材料及其制法[P]. CN Pat:02137953X,2003.
    [15]沈琪,陈克荣,吴义军,等.泡沫玻璃和微晶泡沫玻璃的研制[J].南京大学学报(自然科学),1999,35(3):373-376.
    [16]吴义军,陈克荣.泡沫玻璃与微晶泡沫玻璃的研制[J].江苏建材,2003,2:9-11.
    [17]王立久,王伟,曹明莉.泡沫玻璃微晶化研究进展[J].玻璃与搪瓷,2003,31(2):56-58.
    [18]范玲玲,刘鹏,贾凯.利用珍珠岩尾粉制备发泡材料[J].化学研究,2011,22(1):92-95.
    [19]冯宗玉,薛向新,李勇.利用油页岩渣制备微晶泡沫玻璃的研究[J].材料导报,2008,22(3):131-133.
    [20]赵全海,王文祥.非铝加气剂用于加气混凝土的试验研究[J].河北轻化工学院学报,1993,14(1):75-79.
    [21]胡永明,益小苏. PVC结皮发泡材料的制备及工艺[J].工程塑料应用,1997,25(2):24-26.
    [22]郁小强.硬质PVC发泡制品的配方设计[J].聚氯乙烯,2007,(12):15-23.
    [23]周文管,王喜顺.泡沫塑料主要力学性能及其力学模型[J].塑料科技,2003,(6):17-19,22.
    [24]牟文杰.高聚物分子结构对发泡成型的影响[J].轻工机械,2003,(2):20-23.
    [25]刘强,刘威,周春华,等.酚脲醛发泡树脂的合成及性能表征[J].济南大学学报(自然科学版),2011,25(2):162-166.
    [26] Okamoto M,Nam P H,Maiti P,et al. Biaxial flow-induced alignment of silicatelayers in polypropylene/clay nanocomposite foam [J]. Nano Letters,2001,1(9):503-505.
    [27] Nam P H,Maiti P,Okamoto M,et al. Foam processing and cellular structure ofpolypropylene/clay nanocomposites [J]. Polymer Engineering and Science,2002,42(9):1907-1918.
    [28]刘婷,南楠,刘庆刚.聚合物纳米复合材料微孔发泡成型技术的研究进展[J].塑料科技,2007,35(6):98-101.
    [29]陈国昌,黄兆阁,李荣勋,等.纳米CaCO3对PVC微发泡体系的影响[J].塑料科技,2005(5):21-23,28.
    [30]曹太山,何力,张纯,等.纳米蒙脱土对聚丙烯微孔发泡行为的影响[J].塑料,2009,38(6):28-30.
    [31]郦华兴,刘伟,胡圣飞,等.纳米硅酸盐改性PP发泡材料的研究[J].工程塑料应用,2005,33(9):9-12.
    [32] Marcelo A,Jose Ignacio V,Vera R,et al. Study of the cellular structureheterogeneity and anisotropy of polypropylene and polypropylene nanocompositefoams [J]. Polymer Engineering and Science,2009,49(12):2400-2413.
    [33] Huang H X,Wang J K. Improving polypropylene microcellular foaming throughblending and the addition of nano-calcium carbonate [J]. Journal of AppliedPolymer Science,2007,106(1):505-513.
    [34]高长云,赵勇,辛振祥.无机纳米粒子对聚苯乙烯泡孔结构影响的研究[J].塑料科技,2011,39(1):47-50.
    [35] Mark A,Treece J P O. Processing of polypropylene/clay nanocomposites:Single-screw extrusion with in-line supercritical carbon dioxide feed versustwin-screw extrusion [J]. Journal of Applied Polymer Science,2007,103(2):884-892.
    [36] Jiang X L,Bao J B,Liu T,et al. Microcellular foaming of polypropylene/claynanocomposites with supercritical carbon dioxide [J]. Journal of Cellular Plastics,2009,45(6):515-538.
    [37] Zhu B,Zha W,Yang J,et al. Layered-silicate based polystyrene nanocompositemicrocellular foam using supercritical carbon dioxide as blowing agent [J].Polymer,2010,51(10):2177-2184.
    [38]卢子兴,邹波.短纤维增强泡沫塑料力学行为的研究进展[J].复合材料学报,2005,22(5):1-8.
    [39]欧阳密.交联共混改性和短纤维增强PP的二次发泡工艺及性能研究[D].南京:南京航空航天大学,2005.
    [40] Alonso M V,Auad M L,Nutt S. Short fiber reinforced epoxy foams [J].Composites Part A,2006,37(11):1952-1960.
    [41] Liu Y J,Feng Y Q,He C L,et al. Compressive properties and thermal stabilityof glass bead reinforced rigid polyurethane foams [J]. Acta Materiae CompositaeSinica,2006,23(2):65-70.
    [42] Yang J N,Li Z Q,Wang J. Mechanical performances of foamed polypropylenecomposites hybrid reinforced by short fibers [J]. Acta Materiae CompositaeSinica,2007,24(4):1-7.
    [43] Zhao B,Yang Z G,Wang J H,et al. Physical and mechanical properties of hybridreinforced rigid polyurethane composite foam [J]. Acta Materiae CompositaeSinica,2003,20(6):1-6.
    [44] Fu S Y,Lauke B,Mader E,et al. Hybrid effects on tensile properties of hybridshort-glass-fiber and short-carbon-fiber reinforced polypropylene composites [J].Journal of Materials Science,2001,36(1/2):1243-1251.
    [45] Fu S Y,Mai Y W,Lauke B,et al. Synergistic effect on the fracture toughness ofhybrid short glass fiber and short carbon fiber reinforced polypropylenecomposites [J]. Materials Science and Engineering A,2002,323(1/2):326-335.
    [46] Thwe M M,Liao K. Effects of environmental aging on the mechanical propertiesof bamboo-glass fiber reinforced polymer matrix hybrid composites [J].Composites Part A,2002,33(1):43-52.
    [47]李学锋,胡波,孙媛,等.聚烯烃/天然纤维发泡材料的研究进展[J].化工新型材料,2011,39(4):36-39.
    [48] Nachtigall S M,Cerveira G S,Rosa S M L. New polymeric coupling agent forpolypropylene/wood-flour composites [J]. Polymer Testing,2007,26(5):619-628.
    [49] Bledzki A K,Gassan J. Composites reinforced with cellulose based fibres [J].Progress in Polymer Science,1999,24(2):221-274.
    [50] Kalia S,Kaith B S,Kaur I. Pretreatments of natural fibers and their application asreinforcing material in polymer composites [J]. Polymer Engineering andScience,2009,49(7):1253-1272.
    [51] Wolkenhauer A,Averamidis G,Hauswald E,et al. Sanding vs. plasma treatmentof aged wood: A comparison with respect to surface energy [J]. InternationalJournal of Adhesion and Adhesives,2009,29(1):18-22.
    [52] Podgorski L,Chevet B,Onic L. Modification of wood wet ability by Plasma andcorona treatments [J]. International Journal of Adhesion and Adhesives,2000,20(2):103-111.
    [53] Pickering K L, Beckermann G W. Optimizing industrial hemp fiber forcomposites [J]. Composites Part A,2007,38(2):461-468.
    [54]李兰杰.木粉的碱化处理对木塑复合材料性能的影响[J].合成树脂及塑料,2005,22(6):53-56.
    [55]陈小键,台立民.淀粉基复合泡沫塑料制备工艺研究进展[J].中国塑料,2010,24(9):1-5.
    [56]王正,张桂兰,高黎,等.木基发泡复合材料微观构造及性能研究[J].北京林业大学学报,2007,29(3):154-158.
    [57]张桂兰,王正.超低密度生物质纤维基复合材料性能的研究[J].林产工业,2008,35(1):30-35.
    [58]解林坤,王传启.木材纤维热压发泡缓冲包装材料研究[J].包装工程,2010,31(1):4-6.
    [59]刘晔,祁书艳,史锃莹,等.竹纤维发泡缓冲包装材料研究开发[J].中国包装,2006,(3):96-98.
    [60]祁书艳,刘晔,史锃莹.竹纤维发泡缓冲材料的研究[J].浙江理工大学刘学报,2007,24(1):32-35.
    [61]史锃莹,刘晔.缓冲包装材料发泡机理及泡体破坏因素的研究[J].包装工程,2007,28(7):31-33.
    [62]周盛华,刘晔.竹纤维发泡缓冲包装材料的静态力学性能建模[J].包装工程,2009,30(6):16-17,23.
    [63]谢拥群,陈彦,张璧光.植物纤维膨化材料的研究[J].木材工业,2004,18(2):30-32.
    [64] Xie Y Q,Tong Q J,Chen Y,et al. Construction mechanism of reticular structureof fiber [J]. Journal of Korea Furniture Society,2008,19(2):106-110.
    [65] Xie Y Q,Tong Q J,Liu J H,et al. Manufacture and properties of ultra-lowdensity fibreboard from wood fibre [J]. Bio Resources,2011,6(4):106-110.
    [66]余妙春,谢拥群.低密度竹纤维膨化材料的性能研究[J].制浆造纸工艺,2010,41(1):21-24.
    [67]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003:540-544.
    [68]胡云楚.硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用[D].长沙:中南林业科技大学,2006:13-14.
    [69]张璧光.木材科学与技术研究进展[M].北京:中国环境科学出版社,2003:229-231.
    [70]骆介禹.木材阻燃的概况[J].林产工业,2000,27(2):7-9.
    [71]骆介禹,骆希明.纤维素基质材料阻燃技术[M].北京:化学工业出版社,2003:64-182.
    [72]王清文.木材阻燃工艺学原理[M].哈尔滨:东北林业大学出版社,2000:127-130.
    [73]胡云楚,刘元,吴志平,等.木材的化学组成与阻燃技术的发展方向[J].木材工业,2004,18(4):28-31.
    [74]刘其梅,彭万喜,张明龙,等.木质材料阻燃技术研究现状与趋势[J].世界林业研究,2006,19(1):42-46.
    [75]唐皓,刘程,刘长安.木质材料及制品阻燃技术的研究与进展[J].消防技术与产品信息,2007,(5):33-35.
    [76]江进学,李建章,梅超群,等.木质材料阻燃改性研究进展[J].应用化工,2009,38(8):1203-1206.
    [77]王梅,胡云楚.木材及木塑复合材料的阻燃性能研究进展[J].塑料科技,2010,38(3):104-109.
    [78]王清文.新型木材阻燃剂FRW[D].哈尔滨:东北林业大学,2000:3-5.
    [79]崔会旺,杜官本.木材阻燃研究进展[J].世界林业研究,2008,21(3):43-48.
    [80]徐有明,王望,李能.木材阻燃剂和处理技术的现状、研究进展及其发展趋势.全国第一届阻燃环保人造板生产及应用论坛[C].2009:64-70.
    [81]吕文华,赵广杰.木材/木质复合材料阻燃技术现状及发展趋势[J].木材工业,2002,16(6):31-34.
    [82]李坚.木材保护学[M].哈尔滨:东北林业大学出版社,1999:102-116.
    [83]李燕芸,刘霞,吕久琢,等.木材阻燃剂的现状及发展趋势[J].北京石油化工学院学报,2000,8(1):29-34.
    [84]赵光辉,程金海,陈勇,等.我国阻燃剂的生产水平及发展动向[J].化工科技市场,2004,(7):20-25.
    [85]张世伟,李天祥,解田,等.木材阻燃处理工艺现状及发展趋势[J].消防科学与技术,2007,26(1):77-79.
    [86]陈建.阻燃剂应用研究综述[J].化工中间体,2007,(10):25-29.
    [87]马岩.纳微米科学与科技在木材工业的应用前景展望[J].林业科学,2001,37(6):109-112.
    [88]胡源,宋磊.纳米技术在阻燃材料中的应用[J].火灾科学,2001,10(1):48-51.
    [89]赵广杰.木材中的纳米尺度、纳米木材及木材—无机纳米复合材料[J].北京林业大学学报,2002,24(5):204-207.
    [90] Liu L M,Qi Z N. Studies on nylon6/clay nanocomposites by melt-in-tercalationprocess [J]. J Appl Polym Sci,2009,(71):1113-1116.
    [91] Ciannelis E P. Polymer layered silicate nanocomposites [J]. Adv Mater,2006,(8):29-34.
    [92]苏达根,区翠花,钟明锋,等.纳米硼酸锌的制备及对木材阻燃性能影响研究[J].贵州工业大学学报(自然科学版),2008,37(3):61-64.
    [93]贾修伟.纳米阻燃材料[M].北京:化学工业出版社,2005.
    [94]马娟,刘一臣,曹晓光.无卤阻燃剂研究进展[J].化学工程师,2005,(8):15-17.
    [95]生瑜,朱德钦,陈建定.低烟密度、高膨胀率阻燃封堵材料的性质研究[J].化学建材,2003,(4):22-24.
    [96]张文钲.钼酸盐阻燃抑烟研发现状[J].中国钼业,2003,27(1):7-9.
    [97]汪存东,王久芬.新型无卤阻燃剂的研究进展[J].应用化工,2003,32(4):16-19.
    [98]刘燕吉.木质材料的阻燃处理[J].木材工业,1997,11(1):41-42.
    [99]李坚.木材的阻燃处理[J].中国木材,1991,12(5):36-39.
    [100] Th Randoux,J Cl Vanovervelt,H Van den Bergen,et al. Halogen-free flameretardant radiation curable coatings [J]. Progress in Organic Coatings,2002,45(2/3):281-289.
    [101] Henry J Ramos,Jonathan Lee C Monasterial,Gene Q Blantocas. Effect of lowenergy ion beam irradiation on wettability of narra (Pterocarpus indicus) woodchips [J]. Nuclear Instruments and Methods B,2006,242(1/2):41-44.
    [102] Gene Q Blantocas,Henry J Ramos,MotoiWada. Surface modification of narrawood (Pterocarpus indicus) by ion shower treatment [J]. Japanese Journal ofApplied Physics,2006,45(10B):8498-8501.
    [103] Gene Q Blantocas,Philip Edward R Mateum,Ross William M Orille,et al.Inhibited flammability and surface inactivation of wood irradiated by low energyhydrogen ion showers (LEHIS)[J]. Nuclear Instruments and Methods in PhysicsResearch B,2007,259(2):875-883.
    [104]李晓东.木材阻燃浸渍处理方法及新的技术[J].辽宁化工,2005,34(10):439-442.
    [105]李晓东,郝万新,齐向阳.超声波技术在木材阻燃浸渍处理过程中的应用[J].福建林业科技,2006,33(1):64–66,79.
    [106] Nair H U,Simonsen J. The pressure treatment of wood with sonic waves [J].Forest Products Journal,1995,45(9):59-64.
    [107] Patrick E Wheat,Kevin C Curtis,Raghunath S Chatrathi. Ultrasonic energy inconjunction with the double-diffusion treating technique [J]. Forest ProductJournal,1996,46(1):43-47.
    [108]李晓东,齐向阳,郝万新.微波技术在木材阻燃处理过程中的应用[J].连云港职业技术学院学报,2005,18(4):66-68.
    [109]李晓东.微波超声波技术在阻燃剂浸渍处理木材中的应用[J].化工进展,2005,24(12):1422-1425.
    [110] Аринкин С М.成材坯料浸渍装置[P]. RU:1772994,1995-04-30:B27K3/10.
    [111] Аринкин С М.用于成材浸渍的离心分离机[P]. RU:2038963,1995-07-09:B27K3/10.
    [112]孙耀星,刘一星,方桂珍.浅谈辊压法木材防护浸注技术[J].林产工业,2005,32(2):8-9.
    [113]顾波,李光沛.表层单板经过阻燃处理的胶合板性能的研究[J].林产工业,2007,34(2):18-20.
    [114]李延军,顾军,高立英,等.复合阻燃剂在中密度纤维板中的应用研究[J].中国人造板,2007,(5):35-37.
    [115]李坚,王清文,李淑君,等.用CONE法研究木材阻燃剂FRW的阻燃性能[J].林业科学,2002,38(5):108-114.
    [116]王清文,李坚.用CONE法研究木材阻燃剂FRW的阻燃机理[J].林产化学与工业,2004,24(2):29-34.
    [117]王清文,李坚,李淑君,等.用CONE法研究木材阻燃剂FRW的抑烟性能[J].林业科学,2002,38(6):103-109.
    [118]许民,王清文,李坚.锥形量热仪法在木材阻燃性能测试中的应用——FRW阻燃落叶松木材阻燃性能分析[J].东北林业大学学报,2001,29(3):17-20.
    [119] Jerrold R W inandy,Qingwen Wang,Robert H White. Fireretardant-treatedstrandboard: Properties and fire performance [J]. Wood and FiberScience,2008,40(1):62-71.
    [120] Gao Ming,Li Shuying,Sun Caiyun. Thermaldegradation of wood in air andnitrogent treated with basic nitrogen compounds and phosphoric acid [J].Combustion Science and Technology,2004,176(12):2057-2070.
    [121]刘迎涛,刘一星. FRW阻燃胶合板的DMA分析[J].林业科学,2006,42(3):108-110.
    [122] Lee H L,Chen G C,Rowell R M. Termal properties of wood reacted with aphosphrus pentoxid-amine system [J]. Journal of Applied Polymer Science,2004,91(4):2465-2481.
    [123]王清文,李坚,李淑君.用FTIR法研究木材阻燃剂FRW的阻燃机理[J].林业科学,2005,41(4):149-154.
    [124] Gao Ming,Zhu Kai,Sun Yingjuan,et al. Thermal degradation of wood treatedwith amino resins and amino resinsmodified with phosphate in nitrogen [J].Journal of Fire Sciences,2004,22:505-515.
    [125] Ralph Stevens,Daan S van Es,Remko Bezemer,et al. The structure-activityrelationship of fire retardant phosphorus compounds in wood [J]. PolymerDegradation and Stability,2006,91:832-841.
    [126] Fu Q,Argyropoulos D S,Tilotta D C,et al. Products and functional groupdistributions in pyrolysis oil of chromated copper arsenate(CCA)-treated wood, aselucidated by gas chromatograph and a novel P-31NMR-Based method [J].Industrial&Engineering Chemistry Research,2007,46(16):5258-5264.
    [127]王清文.新型木材阻燃剂FRW[J].精细与专用化学品,2003,11(2):12-13.
    [128]王清文,李淑君,崔永志,等.新型木材阻燃剂FRW的阻燃性能[J].东北林业大学学报,1999,27(6):31-33.
    [129]王清文,李坚.用热分析法研究木材阻燃剂FRW的阻燃机理[J].林产化学与工业,2004,24(3):37-41.
    [130]王清文,李坚.木材阻燃剂FRW的阻燃机理[J].林业科学,2005,41(5):123-126.
    [131]许民,李坚,王清文.落叶松木材的FRW阻燃处理技术[J].林产工业,2001,28(5):8-10.
    [132]刘迎涛,李坚,王清文,等. FRW阻燃中密度纤维板的FTIR分析[J].东北林业大学学报,2003,31(5):40-41.
    [133]刘迎涛,李坚,王清文. FRW阻燃桦木胶合板的性能研究[J].林产工业,2004,31(3):22-24.
    [134]刘迎涛,李坚,王清文. FRW阻燃中密度纤维板的热性能分析[J].东北林业大学学报,2006,34(5):61-62.
    [135]刘迎涛,曹军,李坚. FRW阻燃刨花板制板工艺[J].东北林业大学学报,2009,37(1):69-71.
    [136]刘迎涛,杨文斌,刘一星. FRW阻燃中密度纤维板与素板性能的比较[J].福建林学院学报,2003,23(3):210-213.
    [137]王晓辉.环保阻燃型刨花板的工艺技术研究及效益分析[D].北京:北京林业大学,2006.
    [138]王艳良. BL-环保阻燃剂在刨花板中的应用研究[D].北京:北京林业大学,2006.
    [139]顾波. BL-环保阻燃剂对脲胶胶合板性能影响的研究[D].北京:北京林业大学,2007.
    [140]胡云楚,吴志平,孙汉洲,等.聚磷酸铵的合成及其阻燃性能研究[J].功能材料,2006,37(3):424-427.
    [141]胡云楚,刘元,孙汉洲,等.磷氮系膨胀型阻燃剂阻燃性能的热重分析[J].林产化学与工业,2005,25(1):61-65.
    [142] Hu Y C,Zhou P G. TG-DTA studies on wood treated with flame-retardants [J].European Journal of Wood and Wood Products,2000,58(1/2):35-38.
    [143]胡云楚,周培疆,屈松生.木材阻燃的热动力学研究[J].木材工业,1996,10(1):14-17.
    [144]胡云楚,刘元.酚类阻燃剂处理杉木热解过程的热动力学研究[J].林业科学,2003,39(3):116-120.
    [145]胡云楚.四溴双酚A的合成及其阻燃性能研究[J].林产化学与工业,2002,22(2):31-34.
    [146]胡云楚.2,6-二溴-4-硝基苯酚阻燃性能的热动力学研究[J].林产工业,2002,29(1):30-32.
    [147] Ming Gao,Biaocan Ling,ShouSheng Yang,et al. Flame retardance of woodtreated with guanidine compounds characterized by thermal degradation behavior[J]. Journal of Analytical and Applied Pyrolysis,2005,73(1):151-156.
    [148]高明,孙彩云.阻燃木材热降解及阻燃机理的研究[J].华北科技学院学报,2003:5(2):15-19.
    [149]高明,李桂芬,杨荣杰.磷-胺-醛树脂型阻燃剂处理落叶松的热分析及其动力学[J].过程工程学报,2007,7(4):738-742.
    [150] Gao M,Pan D X,Sun C Y. Study on the thermaldegradation of wood treatedwith amino resin and amino resinmodified with phosphoric acid [J]. Journal ofFire Sciences,2003,21:189-201.
    [151] Carmen Branca, Colomba Di Blasi. Oxidation characteristics of Charsgenerated from wood impregnated with (NH4)2HPO4and (NH4)2SO4[J].Thermochimica Acta,2007,456(2):120-127.
    [152] Nadir Ayrilmis, Suleyman Korkut, Ercan Tanritanir, et al. Effect of various fireretardants on surface roughness of plywood [J]. Building and Environment,2006,41(7):887-892.
    [153] Nadir Ayrilmis. Effect of fire retardants on internal bond strength and bonddurability of structural fiberboard [J]. Building and Environment,2007,42(3):1200-1206.
    [154] Ergun Baysal,Mustafa Altinok,Mehmet Colak,et al. Fire resistance of Douglasfir (Pseudotsuga m enzieesi) treated with borates and natural extractives [J].Bioresource Technology,2007,98(5):1101-1105.
    [155] Ergun Baysal,Mustafa Kemal Yalinkilic,Mustafa Altinok,et al. Some physical,biological, mechanical, and fire properties of wood polymer composite (WPC)pretreated with boric acid and borax mixture [J]. Construction and BuildingMaterials,2007,21(9):1879-1885.
    [156] Lewin M. Unsolved p roblems and unanswered questions in flame retardance ofpolymers [J]. Polymer Degradation Stability,2005,88(1):13-19.
    [157] Gu Junwei,Zhang Guangcheng,Dong Shanlai,et al. Study on preparation andfire-retardant mechanism analysis of intumescent flame-retardant coatings [J].Surface and Coatings Technology,2007,201(18):7835-7841.
    [158]谢拥群,杨文斌,李求根,等.干燥过程中超低密度植物纤维材料的尺寸稳定性[J].北京林业大学学报,2008,30(6):124-127.
    [159]余妙春.基于分形理论的网状结构植物纤维材料导热系数研究[D].福州:福建农林大学,2011:4-6.
    [160]顾惕人.表面化学[M].北京:科学出版社,1994.
    [161]王中厚.制浆造纸工艺[M].北京:中国轻工业出版社,2006.
    [162]蔡永源.高分子材料阻燃技术[M].北京:化学工业出版社,1993.
    [163]中国国家标准化管理委员会. GB/T5454-1997纺织品燃烧性能试验方法:氧指数法[S].北京:中国标准出版社,1997.
    [164]中国国家标准化管理委员会. GB8624-2006建筑材料燃烧性能分级方法
    [S].北京:中国标准出版社,2006.
    [165] BS EN. ISO4589-2-1999. Plastics. Determination of burning behaviour byoxygen index. Ambient-temperature test.
    [166] ASTM D2863. Standard Test Method for Measuring the Minimum OxygenConcentration to Support Candle-Like Combustion of Plastics (Oxygen Index).
    [167]中国国家标准化管理委员会. GB/T8924-2005玻璃纤维增强塑料燃烧性能试验方法:氧指数法[S].北京:中国标准出版社,2005.
    [168]中国国家标准化管理委员会. GB/T2406.2-2009塑料用氧指数法测定燃烧行为第2部分:室温试验[S].北京:中国标准出版社,2008.
    [169]中国国家标准化管理委员会. GB/T10707-2008橡胶燃烧性能测定:氧指数法[S].北京:中国标准出版社,2008.
    [170]谢拥群,陈彦.植物纤维液体发泡包装材料的制备方法[P].中华人民共和国:ZL200610045408.6,2007-10-31.
    [171]谢拥群,刘景宏.一种难燃型植物纤维建筑保温墙体材料及其制备方法[P].中华人民共和国:ZL201010509241.0,2011-02-16.
    [172]谢宇.回归分析[M].北京:社会科学文献出版社,2010.
    [173]张月琴,叶旭初.硼系阻燃剂的发展及现状[J].塑料科技,2007,35(9):110-113.
    [174]杨栋梁.阻燃整理(二)[J].印染,1989,(6):47-54.
    [175]贾修伟,刘治国.硅系阻燃剂研究进展[J].化工进展,2003,22(8):818-822.
    [176]李一元.氯化石蜡-70阻燃剂生产及对阻燃机理的探讨[J].辽宁化工,1991,(1):11-14.
    [177]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999.
    [178] Roger rowell. The Chemistry of Solid Wood[M]. Washington. D C:AmericanChemical Socity,1984.
    [179]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.
    [180]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002.
    [181]杨文斌,谢拥群.植物纤维发泡包装材料的干燥[J].干燥技术与设备,2007,5(6):279-283.
    [182]潘永康,王喜忠,刘相东.现代干燥技术(第二版)[M].北京:化学工业出版社,2006:81-84.
    [183]余妙春,谢拥群,张德智.竹纤维悬浮发泡浆料流变特性的研究[J].北京林业大学学报,2011,33(1):119-123.
    [184]谢拥群,陈彦,张壁光.植物纤维膨化材料的研究[J].木材工业,2004,18(2):30-31.
    [185]王永周,陈美,刘欣,等.天然橡胶微波干燥动力学模型研究[J].热带作物学报,2009,30(3):377-389.
    [186]杨金英,盖玲,王剑平.春笋微波干燥动力学模型研究[J].干燥技术与设备,2007,5(4):186-189.
    [187]蒋玉萍,王俊.番薯片微波干燥特性及干燥模型[J].浙江农业学报,2009,21(4):407-410.
    [188]余文胜,王俊.茭白微波干燥特性及数学模型的研究[J].科技通报,2009,25(5):654-658.
    [189] Reza GA, Zahra ED, Mohammad AM. Effect of drying method onmicro-structural changes of apple [A]. Brazil: IDS2004Proceedings[C],2004,B:1435-1441.
    [190] Nidhal M,Mohamed F. Microwave vacuum drying of banana slices [J]. DryingTech,2002,20:2055-2056.
    [191]黄律先.木材热解工艺学[M].2版.北京:中国林业出版社,1996:30-37.
    [192]杨文斌,马世春,顾炼百.阻燃处理马尾松的热动力学分析[J].木材工业,2000,14(5):10-12.
    [193]杨文斌,马世春,顾炼百.阻燃处理米槠热分解的热动力学分析[J].林产工业,2002,29(6):26-28.
    [194]肖忠平,陆继圣,马世春,等.热重法研究阻燃杉木间伐材热解反应动力学[J].福建林学院学报,2002,22(2):113-116.
    [195] Zeriouh A,Belkbir L. Thermal decomposition of a Moroccan wood under anitrogen atmosphere [J]. Thermochemical Acta,1995,20:243-258.
    [196]陈纪忠,邓天,蒋斌波.竹材热解动力学的研究[J].林产化学与工业,2005,25(2):11-15.
    [197]谢拥群,刘景宏,林铭,等.硅酸钠增强植物纤维基超低密度材料的研究[J].北京林业大学学报,2012,34(1):115-118.
    [198]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985:120-127.
    [199] Liu N A,Fan W,Dobashi R,et al. Kinetic modeling of thermal decompositionof natural cellulosic materials in air atmosphere [J]. Journal of analytical andapplied pyrolysis,2002,63:303-325.
    [200]蒋剑春,沈兆邦.生物质热解动力学研究[J].林产化学与工业,2003,23(4):1-6.
    [201] Ravindra K Agrawal. On the use of the Arrhenius equation to describe celluloseand wood pyrolysis [J]. Thermochemical Acta,1985,11:343-351.
    [202]赵藻藩.仪器分析[M].北京:高等教育出版社,1990.
    [203] Toshimi Hirata,Sumire Kawamoto,Tetsuya Nishimoto. Thermogravimetry ofwood treated with water-insoluble retardants and a proposal for development offire-retardant wood materials [J]. Fire and Materials,1991,15(1):27-36.
    [204] Mamdouh M. Nassar,G. D. M. MacKay. Mechanism of thermal decompositionof lignin [J]. Wood and Fiber Science,1996,16(3):441-453.
    [205] R.Kunze,B.Schartel,M.Bartholmai,et al. TG-MS and TG-FTIR applied for anunambiguous thermal analysis of intumescent coatings [J]. Journal of ThermalAnalysis and Calorimetry,2002,70(3):897-909.
    [206]李坚.木材波谱学[M].北京:科学出版社,2003:269-292.
    [207] Hirschler M M. Heat release from plastic materials [A]. Babrauskas V,GraysonS J. Heat Release in Fire [C]. London,UK,Elsevier Eds.,1992,357-422.
    [208] Brigit A.-Lostman,Lazarous D. Tsantaridis. Heat release and classification offire retardant wood products [J]. Fire and Materials,1995,19(6):253-258.
    [209] Ondrej Grexa,Elena Horvathova,Olga besinova,et al. Flame Retardant treatedplywood [J]. Polymer Degradation and Stability,1999,64:529-533.
    [210]文瑞芝,胡云楚,袁莉萍.阻燃杨木粉热解过程的红外谱图分析[J].中南林业科技大学学报,2011,31(2):100-102.
    [211] S. Soares, G. Camino, S. Levchik. Comparative study of the thermaldecomposition of pure cellulose and pulp paper [J]. Polymer Degradation andStability,1995,49(1):275-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700