用户名: 密码: 验证码:
冷凉地区生草制苹果园水分与光能利用特性及调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果树与环境之间的协调关系是实现果树产业可持续发展的重要途径,而土壤作为果树产业可持续发展的重要载体,其质量的维持至关重要。传统的土壤管理方式——清耕制严重破坏了表层土壤的生物进程,土壤有机质含量持续下降,降低了微生物群落结构的稳定性,从而导致土壤养分失衡、环境恶化,已成为制约果树产业可持续发展的主要瓶颈之一。果园生草在改善土壤环境和维持果园土壤肥力等方面具有重要的作用,已成为果品安全、优质持续生产的关键技术之一。光合作用是果树产量形成的基础,水分和光照既是影响光合作用的重要环境因子,也是树草共存系统相互影响最敏感的环境因子。因此,本研究以冷凉地区生草制苹果园为试材,研究了生草覆盖果园苹果植株水分与光能利用特性,以及遮阴和修剪(或刈割)条件下树草相互作用的生理生态机制,探讨了生草覆盖影响树体水分和光能利用的主要因子。主要结果如下:
     1.生草覆盖和清耕处理寒富苹果叶片ψo、RC/CSo、ETo/CSo、PICS和△I均随着叶片光合能力的增强而升高,幼龄叶RC/CSo、ETo/CSo、PIcs和△I显著低于成龄叶;幼龄叶PSII的功能已有很大程度的发育。生草覆盖处理叶片Fv/Fm、PIcS和△I在5月7日显著高于清耕处理,说明生草覆盖处理叶片PSII和PSI的功能的发育早于清耕,因此具有较高的光合效率。
     2.与清耕处理相比,自然高温强光条件下生草覆盖处理叶片AQY和Pm显著升高、ABS/RC和DIo/RC显著降低、Fv/Fm和Ψo显著升高,引起Plabs和△I显著升高。因此,高温强光下生草覆盖处理通过调控能量分配协调了PSI/PSII的关系,提高了PSI和PSII的活性,缓解了高温强光对整个光合机构的光抑制。
     3.与清耕相比,生草覆盖处理寒富苹果叶片衰老过程中SOD和POD的活性平均高12.7%和11.4%,02·-和H202含量平均下降了21.2%和2.8%,减轻或推迟了膜脂过氧化的发生,减轻了叶绿体功能和结构的损伤。生草覆盖处理Fv/Fo和Fm在衰老中后期和后期均显著高于清耕,P。在中前期、中期和中后期均显著高于清耕。说明生草覆盖在一定程度上减轻或延迟了衰老对PSII结构和功能的损伤,提高了叶片制造的能力。
     4.在冷凉地区的整个生长季节,行间生草区10cm土壤含水量(SWC)在6月、7月、9月和10月显著高于清耕,20cm SWC在6月~9月显著高于清耕,30cm SWC仅在6月显著高于清耕,而40cm SWC在8月~10月显著高于清耕,推测草域根系主要分布于0-30cm土层。株间覆盖区10cm SWC在6月及60cm SWC在6月~10月显著高于清耕,20cm SWC在5月~9月、30cm SWC在5月~8月及40cm SWC在7月和9月显著低于清耕,推测生草覆盖区苹果根系主要分布于0-40cm土层,清耕区苹果根系的主要分布层深于生草覆盖。说明果树根系与草根系水分相互作用的主要区域为0-40cm土层。
     5.红三叶留茬20cm刈割时,茎叶光合效率较高、有效光合时间较长,组织纤维化程度和分蘖数居中、分枝数高、总产量高,有利于草域的持续生产、总产量的提高。因此,20cm为红三叶草的适宜刈割高度。
     6.夏季晴天10:00气温迅速升高时,与覆草处理相比,‘覆草+遮阴’处理土壤温度低、升温慢,苹果叶片PSⅡ受体侧电子传递明显受阻,最大光化学效率和用于电子传递的量子效率显著降低;清耕处理土壤温度高、升温快,苹果叶片PSII受体侧电子传递明显受阻,用于电子传递的量子效率显著降低。覆草、‘覆草+遮阴’和清耕处理叶片净光合速率依次降低,覆草与清耕处理差异显著。说明生草制果园的覆盖厚度不宜过厚。‘覆草+遮阴’和覆草处理延迟了干旱和水分饱和胁迫条件下叶片光合效率的降低,促进了干旱复水后叶片光合效率的恢复。
     7.干旱第4d,红三叶、早熟禾和清耕处理苹果叶片P。分别为干旱第1d的29.0%、9.3%和1.4%,Plabs分别为干旱第1d的68.6%、60.3%和28.5%,说明红三叶和早熟禾处理提升了寒富苹果对干旱胁迫的耐受性,红三叶处理的效果优于早熟禾。复水后第3d红三叶、早熟禾和清耕处理叶片P。恢复到干旱第1d的81.3%、80.1%和64.1%,说明红三叶和早熟禾处理有利于干旱复水后苹果叶片光合效率的恢复,红三叶的效果优于早熟禾。白三叶处理缓解了淹水对苹果叶片PSII放氧复合体和受体侧的伤害,提高了Fv/Fm和用于电子传递的量子效率,维持了PSII较高的性能,使叶片具有较高的光合效率;早熟禾处理的效果与白三叶处理相反。
Coordinating the relationship between the fruit trees and the environment is the important pathway to the sustainable development of fruit industry. Therefore, keeping the high quality of soil, as the important medium for the sustainable development of fruit industry, is essential. Bare earth, the traditional soil management system, severely broke the biological processes in topsoil. It also decreased the content of soil organic matter and stability of the microbial community structure, and then resulting in soil nutrient imbalances and environmental degradation which has become one of the major bottlenecks to the sustainable development of fruit industry. Considering the important function of maintaining soil fertility and improving soil environment, orchard grassing has become one of the key technologies of safe and high-quality continuous fruit production. Photosynthesis is the basis of the fruit yield. Moisture and light are not only the important environmental factors affecting photosynthesis, but also the most sensitive environmental factors of the coexistent system between fruit and grass.'Hanfu' apple orchard, with grass coverage in cool region, was used to study the effect of grass coverage on moisture and light utilization characteristics of'Hanfu' apple, and physiological and ecological mechanism of interactions between trees and grass under shading and pruning (or mowing) conditions. Major factors affecting water and solar energy utilization of 'Hanfu' apple tree under grassing condition are discussed. The main results are as follows:
     1.ψo,φEo, RC/CSo, ETo/CSo, PIcs and ΔI were elevated with the enhanced photosynthetic capacity under grass coverage and bare earth conditions. RC/CSo, ETo/CSo, PICS and ΔI in young leaf were significantly higher than that in mature leaf under the two conditions. The function of PSII in young leaf have developed to a great extent. In May7, Fv/Fm, PIcs and ΔI under grass coverage condition were significant higher than that under bare earth. Development of PSII and PSI function under grass coverage were earlier than that under bare earth and therefore had a higher photosynthetic efficiency.
     2. Compared to bare earth condition, AQY and Pm of 'Hanfu' apple leaf in natural high-temperature and high-light were significantly higher under grass coverage condition. The energy flux (per reaction centre) for absorption (ABS/RC) and dissipation (DIo/RC) significantly decreased. The maximal quantum yield of primary photochemistry (Fv/Fm) and and the efficiency (ψo) significantly increased which lead to the significant increase of performance index (PIabs). Therefore, grass coverage is able to coordinate the relationship between the PSI and PSII, improved the activity of PSI and PSII and relieved the photoinhibition to photosynthetic apparatus in high-temperature and high-light.
     3. Compared to bare earth condition, the activity of SOD and POD in'Hanfu' apple leaf increased by an average of12.7%and11.4%, respectively, during leaf ageing under grass coverage. At the same time, the content of O2-and H2O2decreased by an average of21.2%and2.8%, respectively, which reduced or delayed the occurrence of membrane lipid peroxidation and mitigated the damage to function and structure of chloroplast. Fv/F0and Fm under grass coverage were significantly higher than that under bare earth at mid-late and late stage. Pn under grass coverage condition was significantly higher than that under bare earth at early-middle, middle and late-middle stage of leaf ageing. The results indicated that grass coverage, to a certain extent, could reduce or delay the damage of senescence on structure and function of PSⅡ. It also improved the leaf ability of manufacturing the assimilates,
     4. From May to October, the soil water content (SWC) of10cm layer in alley grassing area in June, July, September and October were significantly higher than that in alley bare earth area, and SWC of20cm layer were significantly higher than that in alley bare earth from June to September. However, SWC of30cm layer were significantly higher than that in alley bare earth only in June, and SWC of40cm layer were significantly higher from August to October. It can be speculated that0-30cm topsoil was the main root distribution area of grass. SWC of10cm layer in June, and60cm layer from June to October in grass mulch area were significantly higher than that in bare earth area inline, while SWC of20cm layer from May to September,30cm alyer from May to August, and40cm layer in July and September significantly lower than that in bare earth area inliine. It can be inferred that0-40cm topsoil was the main apple root distribution area in grass mulch area, and the distribution of apple root were deeper in bare earth area than that in grass mulch area. The results suggested that the0-40cm topsoil was the main area, where existed the interaction for water between apple trees and grass.
     5. Mowing for20cm of red clover stubble increased photosynthetic efficiency, prolong the effective photosynthetic time and increased branching number. In addition, the degree of fibrosis and the number of tillers of red clover were in the middle compared with the other treatments. Mowing for20cm stubble were beneficial to establishing the continuous production of grass group and improvement of total output. Therefore, mowing for20cm stubble was the suitable height for the planted red clover group.
     6. Compared to the 'grass mulch'(GM) treatment, Soil temperature in'grass mulch+shade'(GM+S) treatment was too low and increased slowly, while the air temperature rose rapidly at10:00in summer.'GM+S'also accelerated the accumulation of QA-in acceptor side of PSⅡ and the significantly reduction of maximum quantum yield of primary photochemistry and quantum yield for electron transport. Soil temperature in 'bare earth' treatment (CK) was the highest among the three treatments and increased rapidly. The quantum yield for electron transport of apple leaf significantly decreased than that in GM due to the accumulation of QA-in acceptor side of PSII. The Pn of apple leaf were descending order in GM,'GM+S'and CK treatments, and the Pn was significant difference between GM and CK treatments. Therefore, the thickness of grass mulch shouldn't be too thick in grass coverage orchard. However,'GM+S'and'GM' treatments delay the period of the photosynthetic efficiency decline under drought and water saturation stress conditions, and promoted the recovery of the photosynthetic efficiency under rewatering after drought stress.
     7. The Pn of apple leaf, at the4d after drought, were decreased into the29.0%,9.3%and1.4%of the Pn at the1d after drought in red clover, bluegrass and bare earth treatments, respectively, and PIabs were decreased into the68.6%,60.3%and28.5%of the PIabs at the1d after drought, respectively. This indicated the adaptability of apple trees to drought stress were improved by red clover and bluegrass treatments compared with the bare earth, while the adaptability in red clover treatment was better than that in bluegrass. At the3d after rewatering, Pn of apple leaf were recovered into the81.3%、80.1%and64.1%of the Pn at the1d after drought in red clover, bluegrass and clean tillage treatments, respectively. The results indicated that red clover and bluegrass treatments availed to the recovery of apple leaf photosynthetic efficiency in rewatering period, and the effect of red clover was better than that of bluegrass. White clover treatment alleviated the damage to oxygen evolving complex and the acceptor side of PSII, increased the maximum quantum yield of primary photochemistry and quantum yield for electron transport of PSII and maintained the higher performance of PSII during the flooding process. Finally, white clover treatment maintained the higher photosynthetic efficiency of apple leaf. The effect of bluegrass was opposite to the white clover.
引文
1. 安玉艳,郝文芳,龚春梅,等.2010.干旱—复水处理对杠柳幼苗光合作用及活性氧代谢的影响.应用生态学报,21(12):3047-3055.
    2. 蔡崇法,王 峰,丁树文,等.2000.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,7(3):219-222.
    3. 陈强,郭修武,胡艳丽,等.2008.淹水对甜樱桃根系呼吸强度和呼吸酶活性的影响.应用生态学报,19(7):1462-1466.
    4. 陈国祥,何兵,魏锦城,等.2000.低温下强光胁迫对小麦叶片光系统I结构与功能的影响.植物生理学报,26(4):337-342.
    5. 陈学森,韩明玉,苏桂林,等.2010a.当今世界苹果产业发展趋势及我国苹果产业优质高效发展的意见.果树学报,27(4):598-604.
    6. 陈学森,郝玉金,杨洪强,等.2010b.我国苹果产业优质高效发展的10项关键技术.中国果树,4:65-67.
    7. 邓丰产,安贵阳,郁俊谊,等.2003.渭北早塬苹果园的生草效应.果树学报,20(6):506-508.
    8. 杜国栋,吕德国,赵玲,等.2011.高温对仁用杏光合特性及PS Ⅱ光化学活性的影响.应用生态学报,22(3):701-706.
    9. 冯玉龙,刘恩举,孟庆超.1995.根系温度对植物的影响(Ⅱ)——根温对植物代谢的影响.东北林业大学学报,23(4):94-99.
    10.冯玉龙,孙国斌.1995.根系温度对植物的影响(Ⅰ)——根温对植物生长及光合作用的影响.东北林业大学学报,23(3):63-69.
    11.高阳,段爱旺,刘浩,等.2007.间作条件下水分在作物间的分配与利用研究进展.农业工程学报,23(7):281-285.
    12.高茂盛,廖允成,李侠,等.2010.不同覆盖方式对渭北旱作苹果园土壤贮水的影响.中国农业科学,43(10):2080-2087.
    13.高茂盛,温晓霞,黄金辉,等.2009.耕作方式和秸秆覆盖对渭北苹果园土壤保蓄水性能及酶活性的影响.中国农业大学学报,14(4):91-97.
    14.郝海平,姜闯道,石雷,等.2009.根系温度对光核桃幼苗光合机构热稳定性的影响.植物生态学报,33(5):984-992.
    15.侯启昌.2009.黄河故道地区梨园生草栽培的生态效应.果树学报,26(5):739-743.
    16.惠竹梅,李华,龙妍,等.2010a.葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系.园艺学报,37(9):1395-1402.
    17.惠竹梅,李华,王美丽,等.2005b.行间生草对葡萄叶片光合特性的影响.西北农业学报,14(5):83-86,91.
    18.惠竹梅,李华,张振文,等.2004b.西北半干旱地区葡萄园生草对土壤水分的影响.干旱地区农业研究,22(4):123-126.
    19.惠竹梅,李华,张振文,等.2004c.行间生草对葡萄园微气候和葡萄酒品质的影响.西北农林科技大学学报(自然科学版),32(10):33-37.
    20.惠竹梅,张振文,马新丽,等.2010b.行间生草对赤霞珠葡萄与葡萄酒含氮化合物的影响.中国农业科学,43(19):4045-4052.
    21.姜卫兵,高光林,俞开锦,等.2002.水分胁迫对果树光合作用及同化代谢的影响研究进展.果树学报,19(6):416-420.
    22.姜仲书,张光伦,江国良,等.2008.金冠苹果树冠内光质构成及其与果实品质的相关性.果树学报,25(5):625-629.
    23.康绍忠,张建华,梁建生.1999.土壤水分与温度共同作用对植物根系水分传导的效应.植物生态学报,23(3):211-219.
    24.孔祥生,易现峰.2008.植物生理实验技术.北京:中国农业出版社,126-260.
    25.寇建村,杨文权,韩明玉,等.2010.我国果园生草研究进展.草业科学,27(7):154-159.
    26.李耕,高辉远,赵斌,等.2009.灌浆期干旱胁迫对玉米叶片光系统活性的影响.作物学报,35(10):1916-1922.
    27.李芳东.2008.幼龄寒富苹果园生草制生态效应研究.硕士学位论文.沈阳:沈阳农业大学.
    28.李国怀,伊华林.2005.生草栽培对柑橘园土壤水分与有效养分及果实产量、品质的影响.中国生态农业学报,13(2):161-163.
    29.李合生.2002.现代植物生理学.北京:高等教育出版社,85-111.
    30.李合生.2003.植物生理生化实验原理和技术.北京:高等教育出版社,134-137
    31.李会科,梅立新,高华.2009.黄土高原旱地苹果园生草对果园小气候的影响.草地学报,17(5):615-620.
    32.李会科,张广军,赵政阳,等.2007a.黄土高原旱地苹果园生草对土壤养分的影响.园艺学报,34(2):477-480
    33.李会科,张广军,赵政阳,等.2007b.生草对黄土高原旱地苹果园土壤性状的影响.草业学报,16(2):32-39.
    34.李会科,张广军,赵政阳,等.2008.渭北黄土高原旱地果园生草对土壤物理性质的影响.中国农业科学,41(7):2070-2076.
    35.李丽霞,梁宗锁,韩蕊莲.2001.干旱对沙棘休眠、萌芽期内源激素及萌芽特性的影响.林业科学,37(5):35-40.
    36.李敏敏,安贵阳,郭燕,等.2011.不同灌溉方式对渭北果园土壤水分及水分利用的影响.干旱地区农业研究,29(1):41-43.
    37.李培环,吴军帅,董晓颖,等.2012.苹果密闭园不同间伐方式对光照、光合和生长结果的影响.中国农业科学,45(11):2217-2223.
    38.李鹏民,高辉远,Strasser R J.2005快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理学与分子生物学,31(6):559-566.
    39.李天红,李绍华,王晶.2005.水分胁迫对苹果组培苗14C光合产物运输和分配的影响.中国农 业大学学报,10(5):44--48.
    40.李志霞.2010.东北山樱(Cerasus sachalinensis Kom.)根系呼吸代谢对根际环境的响应及机理研究.博士学位论文.沈阳:沈阳农业大学.
    41.刘群龙,王朵,吴国良,等.2011.硒对酥梨叶片衰老及抗氧化酶系统的影响.园艺学报,38(11):2059-2066.
    42.刘卫琴,汪良驹,刘晖,等.2006.遮阴对丰香草莓光合作用及叶绿素荧光特性的影响.果树学报,23(2):209-213.
    43.吕德国,秦嗣军,杜国栋,等.2012.果园生草的生理生态效应研究与应用.沈阳农业大学学报,43(2):131-136.
    44.罗旭辉,阮伏水,陈俊杰,等.2010.长期植草对山地果园土壤腐殖质的影响.草业科学,27(4):122-126.
    45.孟林,俞立恒,毛培春,等.2009.苹果园间种鸭茅和白三叶对园区小环境的影响.草业科学,26(8):132-136.
    46.孟平,张劲松,王鹤松,等.2005.苹果树蒸腾规律及其与冠层微气象要素的关系.生态学报,25(5):1075-1081.
    47.牛俊玲,解思敏.2000.果园生草对苹果树光合特性影响的研究.山西农业大学学报,20(4):353-355.
    48.潘学军,张文娥,樊卫国,等.2010.自然生草和间种绿肥对盆栽柑橘土壤养分、酶活性和微生物的影响.园艺学报,37(8):1235-1240.
    49.任丽丽,高辉远.2007.低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响植物生理与分子生物学学报,33(4):333-340.
    50.山仑,邓西平,苏佩,等.2000.挖掘作物抗旱节水潜力——作物对多变低水环境的适应与调节.中国农业科技导报,2(2):66-70.
    51.宋凯,魏钦平,岳玉苓,等.2010.不同修剪方式对‘红富士’苹果密植园树冠光分布特征与产量品质的影响.应用生态学报,21(5):1224-1230.
    52.宋备舟,王美超,孔云,等.2010.梨园芳香植物间作区主要害虫及其天敌的相互关系.中国农业科学,43(17):2590-3601.
    53.宋旭丽,胡春梅,孟静静,等.2011NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统Ⅰ的光抑制.植物生态学报,35(6):681-686.
    54.孙山,王少敏,王家喜,等.2008.黑暗中脱水对‘金太阳’杏离体叶片PSI和PSII功能的影响.园艺学报,35(1):1-6.
    55.孙协平,宋凯,王翠玲,等.2010.苹果不同栽植密度和套袋对冠层光照环境参数的影响.果树学报,27(5):673-677.
    56.谭冬梅.2007.干旱胁迫对新疆野苹果及平邑甜茶生理生化特性的影响.中国农业科学,40(5):980-986.
    57.王兵,刘世荣,崔向慧,等.2002.全球陆地生态系统水热平衡规律研究进展.世界林业研究,15(1):19-27.
    58.王婵娟,刘国顺,张彩霞,等.2010.烟叶生长发育过程中叶片光合特性及叶绿体超微结构的变化.江西农业大学学报,32(2):0254-0259.
    59.王建新,牛自勉,李志强,等.2011.乔砧富士苹果不同冠形相对光照强度的差异及对果实品质的影响.果树学报,28(1):8-14.
    60.王延平,韩明玉,张林森,等.2012.洛川苹果园土壤水分变化特征.应用生态学报,23(3):731-738.
    61.魏钦平,鲁韧强,张显川,等.2004.富士苹果高干开心形光照分布与产量品质的关系研究.园艺学报,31(3):291-296.
    62.邢述彦,刘虎,郑秀清,等.2012.秸秆覆盖厚度对冻融期土壤温度的影响.太原理工大学学报,43(6):741-744.
    63.徐雄,张健,廖尔华,等.2005.李园生草的不同利用方式对土壤理化性质及李树生长的影响.四川农业大学学报,23(4):420-423.
    64.徐凌飞,韩清芳,吴中营,等.2010.清耕和生草梨园土壤酶活性的空间变化.中国农业科学,43(23):4977-4982.
    65.许大全.2002.光合作用效率.上海:上海科学技术出版社,29-35.
    66.杨广东,朱祝军,计玉妹.2002.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报,8(1):115-118.
    67.姚广,高辉远,王未未,等.2009.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响.生态学报,29(3):1162-1169.
    68.叶乃好,翟衡,杜中军,等.2004.水分胁迫条件下10种苹果砧木抗旱性评价.果树学报,21(5):395-398.
    69.余叔文,汤章程.2001.植物生理与分子生物学(第二版).北京:科学出版社,188-210.
    70.俞立恒.2009.果园生草栽培对其园区生态环境的影响[硕士学位论文].兰州:甘肃农业大学.
    71.岳泰新,惠竹梅,孙莹,等.2009.行间生草对葡萄园土壤微生物特性的影响.西北农林科技大学学报(自然科学版),37(9):100-104.
    72.云雷,毕华兴,任怡,等.2009.晋西黄土区果农间作界面土壤水分分布.东北林业大学学报,37(9):70-78.
    73.张坤,尹小宁,刘小勇,等.2010.陇东早地果园覆沙对苹果树蒸腾耗水及果实品质的影响.应用生态学报,21(11):2755-2762.
    74.张义,谢永生,鞠艳,等.2010.生产力调控对翌年苹果园土壤水分和苹果叶片光合特性的影响.植物生态学报,34(8):973-978.
    75.张斌斌,姜卫兵,翁忙玲,等.2009.遮阴对园艺园林树种光合特性的影响.经济林研究,27(3):115-119.
    76.张先来,李会科,张广军,等.2005.种植不同牧草对渭北苹果园土壤水分影响的初步分析.西北 林学院学报,20(3):56-59.
    77.张显川,高照全,付占方,等.2007.苹果树形改造对树冠结构和冠层光合能力的影响.园艺学报,34(3):537-542.
    78.张子山,张立涛,高辉远,贾裕娇,部建雯,孟庆伟.2009.不同光强与低温交叉胁迫下黄瓜PS I与PS II的光抑制研究.中国农业科学,42(12):4288-4293
    79.赵政阳,李会科.2006.黄土高原旱地苹果园生草对土壤水分的影响.园艺学报,33(3):481-484.
    80.周珊珊,吴发启,张琛.2011.渭北高原矮化红富士苹果树蒸腾规律及水分供求关系.水土保持研究,18(2):180-183.
    81. Alexandrina S, Govindjee.2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem Ⅱ:Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B:Biology,104:236-257.
    82. Allakhverdiev S I, Kreslavski V D, Klimov V V, et al..2009. Heat stress:an overview of molecular responses in photosynthesis. Photosynth. Res.,98:541-550.
    83. Appenroth K J, Stockel J, Srivastava A, et al..2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela Polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution,115:49-64.
    84. Bond-Lamberty B, Wang C K, Gower S T.2004. A global relationship between the heterotrophic and autotrophic components of soil respiration. Glob Change Biol, (10):1756-1766.
    85. Bouma.2001. Estimating aged-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges, New Phytologist,150:685-695.
    86. Buchanan-Wollaston V.1997. The molecular biology of leaf senescence. Journal Experiment Botany, 48:181-199.
    87. Bukhov N G, Carpentier R.2003. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 820 nm and thermal dissipation. Planta,216:630-638.
    88. Castro M, Silva-Ferreira A C, Manaia C M, et al..2005. A case study of molinate application in a Portuguese rice field:herbicide dissipation and proposal of a clean-up methodology. Chemosphere, 59(7):1059-1065.
    89. Cheng X M, Baumgartner K.2004. Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol. Fertil. Soils,40:406-412.
    90. Choinski J S, Ralph P, Eamus D.2003. Changes in photosynthesis during leaf expansion in Corymbia gummifera. Aust. J. Bot.,51:111-118.
    91. Deeii J R, Toivonen P M A,2003. Practical applications of chlorophyll fluorescence in plant biology. London. Kluwer Academic Publishers,2-7.
    92. Dias P C, Araujo W L, Moraes G A B K,et al..2007. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology,164(12):1639-1647.
    93. Ferrero A, Sudiro L, Nosalewicz A, et al..2004. Effects of grass cover and tillage on temperature of soil in sloping vineyard. Int Agrophysics,18:121-126.
    94. Force L, Critchley C, Rensen J S.2003. New fluorescence parameters for monitoring photosynthesis in plants 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynthesis Research,78:17-33.
    95. Goh K M, Pearson D R, Daly M J.2001. Effects of apple orchard production systems on some important soil physical, chemical and biological quality parameters. Biol. Agric. Hortic.,18:269-292.
    96. Goltsev V, Zaharieva I, Chernev P, et al..2009. Delayed fluorescence in photosynthesis. Photosynth Res,101:217-232.
    97. Gomez J A, Guzman G M, Giraldez J V, et al..2009. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil & Tillage Research,106:137-144.
    98. Gratani L, Bonito A.2009. Leaf traits variation during leaf expansion in Quercus ilex L.. Photosynthetica,47:323-330.
    99. Gravano E, Bussotti F, Strasser R J, et al..2004. Ozone symptoms in leaves of wood plants in open-top chambers:ultrastructural and physiological characteristics. Physiologia Plantarum 121:620-633.
    100.Hao H P, Jiang Ch D, Zhang Sh R, et al..2011. Enhanced thermal-tolerance of photosystem Ⅱ by elevating root zone temperature in Prunus mira Koehne seedlings. Plant Soil Published online:18 November.
    101.Hartmut L, Alan W.1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans,11:591-592.
    102.Havaux N, Davaud A.1994. Photoinhibition of photosynthesis in chilled potato leaves with a loss of photosystem activity Ⅱ. Photosynthesis Research,40:75-92.
    103. Hernandez A J, Lacasta C, Pastor J.2005. Effects of different management practices on soil conserva-tion and soil water in a rainfed olive orchard. Agricultural Water Management,77:232-248.
    104.Hoagland L, Carpenter-Boggs L, Granatstein D, et al..2008. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol Fertil Soils,45:11-18.
    105. Jiang C D, Gao H Y, Zou Q.2002. Characterisitics of photosynthetic apparatus in Mn-starved leaves. Photosynthetica,40(2):209-213.
    106. Jose S, Gillespie A R, Pallardy S G.2004. Interspecific interactions in temperate agroforestry. Agroforestry Systems,61(1):237-255.
    107. Kern J, Renger G.2007. Photosystem Ⅱ:Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth. Res.,94:183-202.
    108. Khan S R, Rose R, Haase D L, Sabin T E.2000. Effects of shade on morphology, chlorophyll concentration, and chlorophyll fluorescence of four Pacific Northwest conifer species. New Forests, 19(2):171-186.
    109.Khanna-Chopra R.2012. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma,249:469-481.
    110.Korte N, Porembski S.2010. Suitability of different cover crop mixtures and seedlings for a new tree row management in an organic orchard. Gesunde Planzen,62(2):45-52.
    111. Kumar K, Goh K M.2000. Crop residues and management practices:effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron.,68:197-319.
    112.Lawlor D W, Cornic G.2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell and Environment,25(2):275-294.
    113. Lecoeur J, Sinclair T R.1996. Field pea transpiration and leaf growth in response to soil water deficits. Crop Science,36(2):331-335.
    114. Linares J, Scholberg J, Graetz D, et al..2010. Effects of perennial peanut and common bermudagrass on nitrogen and water uptake of young citrus tress. Journal of Plant Nutrition,33(2):200-218.
    115. Liu B, Tu C, Hu S J, et al..2007. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Applied Soil Ecology,37(3):202-214.
    116.Maayan I, Shaya F, Ratner K, et al..2008. Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels. Physiol. Plant,134:547-558.
    117. Mader P, Fliebbach A, Dubois D, et al..2002. Soil fertility and biodiversity in organic farming. Science,296:1694-1697.
    118. Mailloux J, Bellec F L, Kreiter S, et al..2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari:Phytoseiidae) in Guadeloupean citrus orchards. Exp Appl Acarol, 52:275-290.
    119. Marie-Claude P, Philippe J.2011. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environmental Research,111:520-529.
    120. Mateova I, Stevlikova T, Vjatrakova J, et al..2001. Influence of grassing on chosen soil biological properties in orchard. Central European Agriculture,2:49-55.
    121.Mathur S, Jajoo A, Mehta P, et al..2011a. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology,13:1-6.
    122.Mathur S, Singh P, Mehta P, et al..2011b. Effects of high temperature and low pH on photosystem 2 photochemistry in spinach thylakoid membranes. Biologia plantarum,55 (4):747-751.
    123. Mitchell A K, Arnott J T.1995. Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New Forests,10(1):79-98.
    124. Monteiro A, Lopes C M.2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture, Ecosystems and Environment,121:336-342.
    125.Monteith J L, Ong C K, Corlett J E.1991. Microclimatic interactions in agroforestry systems. Forest Ecology and Management,45(1):31-44.
    126. Oliveira M T, Merwin I A.2001. Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant and Soil,234(2):233-237.
    127.Papageorgiou G C, Govindjee.2004. Chlorophyll a Fluorescence:A Signature of Photosynthesis. Springer, Dordrecht, The Netherlands. Advances in Photosynthesis and Respiration,19:2-32.
    128.Papageorgiou G C, Tsimilli-Michael M, Stamatakis K.2007. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria:a viewpoint. Photosynth. Res.,94: 275-290.
    129.Parida A K, Jha P B.2010. Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. Journal of Plant Growth Regulation,29:137-148.
    130.Pfannschmidt T, Nilsson A, Allen J F.1999. Photosynthetic control of chloroplast gene expression. Nature,397:625-628.
    131.Redillas M C F R, Jeong J S, Strasser R J, et al..2011. JIP Analysis on Rice (Oryza sativa cv Nipponbare) Grown under Limited Nitrogen Conditions. J Korean Soc Appl Biol Chem,54(5): 827-832.
    132. Schansker G, Srivastava A, Govindjee, et al..2003. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct. Plant Biol.,30:785-796.
    133. Schansker G, Torn S Z, Strasser R J.2005. Methylviologen and dibro-mothymoquinone treatments of pea leaves reveal the role of photosystem in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta, 1706:250-261.
    134. Scheller H V, Haldrup A.2005. Photoinhibition of photosystem I. Planta,221:5-8.
    135.Seemann J R, Sharkey T D, Wang J L, et al..1987. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology,84(3): 796-802.
    136.Selote D S, Khanna-Chopra R.2010. Antioxidant response of wheat roots to drought acclimation. Protoplasma,245(1):153-163.
    137.Shui J G, Wang Q Zh, Liao G Q, et al..2008. Ecological and Economic Benefits of Vegetation Management Measures in Citrus Orchards on Red Soils. Pedosphere,18(2):214-221.
    138. Slesak I, Libik M, Karpinska B, et al..2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1):39-50.
    139. Smart R E.1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality-a review. Am. J. Enol. Vitic,36:230-239.
    140. Sofo A, Celano G, Dichio B, et al..2008. Functional and genetic fingerprinting of microbial soil community in a kiwifruit orchard under different management practices. Geophysical Research Abstracts,10:00986.
    141. Srivastava A, Strasser R J, Govindjee.1999. Greening of peas:parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of theinitial fluorescence level, delayed light emission, and P700. Photosynthetica,37:392.
    142. Strasser R J, Srivastava A, Govindjee.1995. Ployphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem. Photobio.,61:32-42.
    143. Strasser R J, Stirbet A D.1998. Heterogeneity of photosystem Ⅱ probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). Mathematics and computers in simulation,48(1):3-9.
    144. Strasser R J, Tsimilli-Michael M, Qiang Sh, et al..2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta,1797:1313-1326.
    145. Strasser R J, Tsimilli-Michael M, Srivastava A.2000. The fluorescence transient as a tool to characterise and screen photosynthetic samples. In:Yunus M, Pathre U, Mohanty P (eds). Probing Photosynthesis:Mechanisms, Regulation and Adaptation. London:Taylor and Francis Press,445-483.
    146. Strasser R J, Tsimill-Michael M, Srivastava A.2004. Analysis of the chlorophyll a fluorescence transient. In:Papageorgiou G, Govindjee (eds). Advances in photosynthesis and respiration. Netherlands:KAP Press,1-47.
    147.Taguas E V, Pena A,Ayuso J L, et al..2010. Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain. Earth Surface Processes and Landforms,35(7):750-760.
    148.Taiz L, Zeiger E,2002. Plant physiology. Sinauer Associates Inc., Sunderland.49-166.
    149.Tanaka A, Makino A.2009. Photosynthetic research in plant science. Plant Cell Physiol.50(4): 681-683.
    150. TerAvest D, Smith J L, Carpenter-Boggs L, et al..2010. Influence of orchard floor management and compost application timing on nitrogen partitioning in apple trees. HortScience,45(4):637-642.
    151.Tjus S E, Moler B L, Scheller H V.1998. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiology,116:755-764.
    152. Tsimilli-Michael M, Strasser R J.2008. In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. In:Varma A (eds) Mycorrhiza:genetics and molecular biology ecofunction biotechnology, eco-physiology, and structure and systematics. Springer, Berlin,679-703.
    153. Van Amerongen H, Valkunas L, Van Grondelle R.2000. Photosynthetic excitons. Singapore. World Scientific,2-8.
    154. Van Heerden P D R, Strasser R J, Kruger G H J.2004. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kineties. Physiologia Plantarum,121: 239-249.
    155. Van Heerden P D R, Tsimilli-Michael M, Kruger G H J, et al..2003. Dark chilling effects on soybean genotypes during vegetative development:parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol. Plant,117:476-491.
    156. Ventura M, Scandellari F, Bonora E, et al..2010. Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutr. Cycl. Agroecosyst,87:115-125.
    157. Verhoeven A S, AdamsW W, Demmig-Adams B, et al..1999. Xanthophyll cycle pigment localization and dynamics during exposure to low temperature and light stress in Vincamajor. Plant Physio.,120: 727-737.
    158. Wang H, Gu M, Cui J X, et al..2009a. Effects of light quality on CO2 assimilation, chlorophyll fluoescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus, Journal of Photochemistry and Photobiology B:Biology.96:30-37.
    159. Wang Q Y, Zhou D M, Cang L.2009b. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biology & Biochemistry,41:1504-1509.
    160.Wardlea D A, Yeates G W, Bonnera K I, et al..2001. Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota. Soil Biology & Biochemistry,33:893-905.
    161. Yao H Y, Bowman D, Rufty T, et al..2009. Interactions between N fertilization, grass clipping addition and pH in turf ecosystems:Implications for soil enzyme activities and organic matter decomposition. Soil Biology & Biochemistry,41:1425-1432.
    162. Yao S R, Merwin I A, Bird G W, et al..2005. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant and Soil,271:377-389.
    163.Yordanov I, Velikova V, Tsonev T.2000. Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica,38(2):171-186.
    164.Zhang Q D, Jiang G M, Zhu X G, et al..2001. Photosynthetic capability of 12 genotypes of Triticum aestivum. Acta Phytoecologica Sinica,25(5):532-536.
    165.Zheng S Q, Zeng G W.1999. Senescence of plant leaf and the molecular approach for its delaying. Acta Phytophysiologica Sinica,35(2):152-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700