用户名: 密码: 验证码:
亚种间杂交对东北粳稻的育种贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
籼稻(indica)和粳稻(japonica)作为亚洲栽培稻的两个亚种,在形态生理特性、遗传分化、地理分布上存在明显差别,亚种间有利基因互相利用,是高产育种的重要途径。从系谱分析近年来北方粳稻区生产上推广的品种绝大多数都是通过籼粳稻杂交育成的,东北粳稻产量日益突破,籼粳杂交的应用对北方粳稻的遗传进展及粮食安全做出了巨大的贡献,但这种贡献产生的分子基础非常复杂。以“日本晴”和“93-11”为代表的粳、籼两亚种的全基因组测序的完成,有力地推动了亚种分化功能位点研究的进展。本研究设计了190个SNPs位点从功能水平上剖析育种行为对北方粳稻遗传结构的影响,47个高遗传效应的亚种特异功能SNPs位点,结合中性亚种特异分化标记InDel和SSILP分子标记,分析东北粳型栽培稻的籼粳血缘比例,通过与日本粳稻与典型籼稻的比较,旨在从功能水平层面验证籼粳杂交对东北粳型水稻基因组的改变,并结合其与产量、品质等性状之间的关系,评价籼粳稻杂交对中国东北水稻育种的贡献,研究结果如下:
     1、北方现代粳稻育成品种功能SNPs位点的Shannon-Weiner多样指数极显著低于引入的早期品种和外来粳稻,遗传多样性的趋势表现为外来品种>早期品种>现代品种。育种家通过“选择”将籼粳杂交的优势基因固定,但在淘汰掉不利性状的同时也损失了大量与不利性状相关或相连锁的等位基因,导致了功能基因水平上多样性的狭窄。群体遗传结构和系统进化分析结果表明,籼粳杂交育种与生态环境趋异使中国北方粳稻育成品种基因组结构产生了一定的分化,形成了独特的遗传结构与进化地位。
     2、亚种特异功能标记的开发利用为明确粳稻中的籼稻成分和籼型位点提供了便利条件。籼粳分化位点在中性亚种特异标记(InDel, SSILP标记)和高遗传效应亚种特异功能标记(SNPs标记)水平上的表现是一致的,由于人工和自然选择,基因相互渗透,籼稻或粳稻分别导入了另一个亚种的等位基因。东北粳稻栽培品种功能位点上的籼稻基因频率为:辽宁(0.0588)>吉林(0.0514)>黑龙江(0.0368),极显著高于日本粳稻,体现了籼粳杂交优势利用理论对东北粳稻遗传基础的贡献。
     3、籼粳稻亚种准确定性,精确定量是亚种分化研究的重要手段和保证。本研究选用的籼粳特异标记、程氏指数法、维管束数目比法三种亚种分类方法之间符合度较高,均能达到90%以上。亚种特性和粳稻型基因频率与产量及穗部性状的相关分析结果表明:育种家在北方粳稻育种过程中有效的利用籼稻品种少孽多花的特性,使东北粳稻育成品种穗数减少,二次枝梗数和二次枝梗粒数、二次粒率、着粒密度、以及每穗粒数增加;同时将一次枝梗数和一次枝梗结实率和千粒重维持在较高水平,使东北粳稻育成品种产量显著提高。
     4、亚种特性和粳稻型基因频率与品质性状的相关分析结果表明:籼粳稻杂交使东北粳稻育成品种碾磨品质降低,但保持在优质粳稻范围内;垩白粒率和垩白度降低,长宽比增加,改善了外观品质;食味品质与日本粳稻还有一定差距,籼稻优良基因在粳稻基因组遗传背景下能够发挥增产效应,但同时以高产、高品质为目标的育种却是一个复杂的过程,东北地区水稻品种选育过程中总体上已经较好的解决了高产和优质的矛盾。
     5、本研究选用的135个亚种特异功能标记高密度地覆盖了12条染色体。在中性亚种特异功能位点上,第5号、第6号、第10号染色体籼型位点样本较多。在高遗传效应亚种特异功能位点上第2号和第10号染色体的籼型位点样本比例分别高达18.14%和13.38%。统计产量与品质克隆基因附近的籼型位点样本比例:东北粳稻在9号染色体上籼型功能位点样本数为0,而北方粳稻理想株型基因DEP1位于9号染色体上;1号染色体上控制落粒性的基因qSH1两侧位点全部为粳型样本。虽然不能确定哪些基因真正的被利用,但是可以确定东北粳稻选育过程保留了有利基因,淘汰了不利基因。
Indica and japonica are subspecies of Asian cultivated rice (Oryza sativa L.) and possess different biological characteristics.The strategy of breeding high-yielding rice is developing superiority gene of subspecies. In recent years, most cultivated varieties were bred by indica-japonica hybridization in northeast China through seeking pedigree, which realize further increases in rice yieldhave contributed to an improved understanding of the genetic and food security. However, how subspecific hybrid vigor contributes to the high yields of northern japonica rice cultivars is not thoroughly understood. Recent studies of genome-wide sequencing of 'Nipponbare' and '93-11' were developed permit quantitative analysis of indica and japonica components of the rice genome. In this study, we used sinple nucleotide polymorphism (SNP) to analyze genetic diversity and structure of rice cultivars that were cultivated in northern China,47large-effect SNP loci,33subspecies-differentiating InDel and55subspecies-specific intron length polymorphism (SSILP) molecular markers to study genotype frequencies based on subspecies-differentiating loci and detect genomic subspecies lineages compared with Japanese varieties and indica. By combining the relationship between indica or japonica pedigree and yield components, grain quality with correlation analysis to obtain molecular evidence for the contribution of indica-japonica hybridizationto rice breeding in northern China. The major results were as follows:
     1The present research showed that genetic diversity of novel rice cultivars bred in northern China were significantly lower than early breeding phase varieties and exotic varieties. Vigor genes of indica-japonica hybridization were fixed through 'selection', at the same time many functional alleles and their genetic linkage blocks to be purified at the population level along with the elimination of negative heterosis traits, which lead the decreased diversity at the functional genome level. Genetic structure and phylogenetic analyse ssuggest that the independent and unique phylogenetic status of modern breeding phase japonica has gradually arisen through the introduction of the indica lineage and natural selection in northern China.
     2Subspecies-specific functional molecular markers were developed that permit quantitative analysis of indica and japonica components of the rice genome. The genotype frequencies of subspecies-differentiating InDel, SSILP markers and large-effect SNP loci were significantly positively correlated. Indica and japonica import another subspecies allele respectively through hybridization and natural selection. Indica-type allele frequency of rice cultivars in northeast China, ranked from highest to lowest, was Liaoning (0.0588)> Jilin (0.0514)> Heilongjiang (0.0368), and significantly higher than Japan, which reflect the contribution of indica-japonica hybridization to rice breeding in northeast China.
     3The method of researching subspecies differentiation was very important. The consistent degree of classification based on Cheng's index, the vascular bundles characters and subspecies-specific markers was above90%. The correlation analysis of subspecies characters, japonica-type allele frequency and yield components indicated:secondary branches, grains on secondary branches, secondary branches grains rate, spikelets density and spikelets per panicles of novel rice cultivars bred in northeast China has increased and paniclesreduced through indica-japonica hybridization; Primary branches, seed setting rate of primary branches and103-grain weight kept on a higher level, all of these characters lead the yield significantly increased.
     4The correlation analysis of subspecies characters, japonica-type allele frequency and grain quality indicated:rice milling quality of novel rice cultivars bred in northeast China had reduced but maintain in the range of high quality standard; Exterior quality had improved since the chalky grain rate and chalkiness dropt, while ratio of grain length to width added; Taste score was not as great as Japanese varieties, breeding of northeast China had perfectly coordinated the relationship of high-yielding and high-quality generally though the process of achieving the objective was very difficult.
     5The135subspecies-specific functional markers used in our study were distributed among the12rice chromosomes. Indica-type loci on No.5, No.6and No.10was more than other chromosomes on neutrally-evolving loci; On large phenotypic effects functional loci level, the percentage of indica-type loci on No.2and No.10chromosomes achieved18.14%and13.38%, respectively. The correlation analysis of important cloning genes of agronomic characteristics and sample percentage of indica-type loci indicated:indica-type loci of large phenotypic effects functional loci was0on chromosomes9which hold the erect panicle gene DEP1; Two sides loci of shattering gene qSHl were all japonica-type on chromosomes1. Among these genes controlling agronomic traits, although did not know which gene was utilized, advantageous gene have already reserved in japonica rice and unfavourable gene was eliminated by selection during the process of breeding japonica rice in northeast China.
引文
1.鲍根良,奚永安.1997.粳稻垩白与产量性状、品质性状及其它性状的相关分析.浙江农业学报,9(1):1-4.
    2.蔡星星,刘晶,仇吟秋,等.2006。籼稻93-11和粳稻日本晴DNA插入缺失差异片段揭示的水稻籼粳分化.复旦学报(自然科学版),45(3):309-315.
    3.陈成斌,李道远,林登豪,等.1994.普通野生稻性状籼粳分化观察.西南农业学报,7(2):1-6.
    4.陈芬,陈雨,曲延英,等.2009.粤北普通野生稻籼粳分化的SSR分析.基因组学与应用生物学,28(1):51-56.
    5.陈峰,张正球,张士永,张洪瑞,杨连群,严长杰。2008。稻米淀粉的生物合成与品质改良的研究进展.山东农业科学,3:20-25.
    6.陈温福,徐正进,唐亮.2012.中国超级稻育种研究进展与展望。沈阳农业大学学报,43(6):643-649.
    7.陈温福,徐正进,张龙步,等.2001.新株型粳稻超高产育种研究进展.作物科学研究理论与实践,1:224-227.
    8.陈温福,徐正进,张龙步,等.2002.水稻超高产育种研究进展与前景.中国工程科学,4(1):31-35.
    9.陈温福,徐正进,张龙步,等.2007.北方粳型稻超高产育种理论与实践.中国农业科学,40(5):869-874。
    10.陈温福,徐正进,张龙步.2005.北方粳型超高产水稻育种的理论与方法.沈阳农业大学学报,36(1):3-8.
    11.陈文炳.1999.亚洲栽培稻起源分化的遗传学研究(综述).上海农业学报,15(3):42-48.
    12.陈英华,李红宇,侯昱铭,等.2009.东北地区水稻种质资源遗传多样性分析.华北农学报,24(3):165-173,
    13.陈雨,潘大建,曲延英,等.2007.水稻籼粳分化研究进展.广东农业科学,(12):3-7.
    14.陈雨,杨庆文,潘大建,等.2008.用SSR标记初步分析高州普通野生稻的籼粳分化.分子植物育种,6(2):263-267.
    15.陈志德,仲维功,杨杰,等.2003.不同类型水稻品种品质性状间相互关系的分析.上海交通大学学报:农业科学版,21(1):21-25.
    16.程方民,刘正辉,张嵩午.2002.稻米品质形成的气候生态条件评价及我国地域分布规律.生态学报,22(5):735-741.
    17.程侃声.1993.亚洲栽培稻籼粳亚种的鉴别,昆明:云南科技出版社,1-23.
    18.程式华,李建.2007.现代中国水稻.北京:金盾出版社,307-308.
    19.催莹莹,郭安平,王晓玲,等.2009.海南普通野生稻籼粳分化的SSR分析.江苏农业科学,(4):56-58.
    20.代西梅,黄群策,李国平,等.2006.同源四倍体水稻花粉的发育特征.中国水稻科学,20(2):165-170.
    21.戴小军.2008.栽培稻籼粳亚种间遗传差异及分子标记初步研究.湖南师范大学,10-14.
    22.邓华凤,何强,舒服,等.2006.中国杂交粳稻研究现状和对策.杂交水稻,21(1):1.
    23.丁颖,1957.中国栽培稻种的起源及其演变.农业学报,8(3):243-260.
    24.段中岗,郑枫,梁承邺.2006.不同亲和性水稻材料的同工酶遗传多样性分析.热带亚热带植物学报,14(5):366-373.
    25.樊叶杨,庄杰云,吴建利,等.2000.应用微卫星标记鉴别水稻籼粳亚种.中国农业科学,22(6):392-394.
    26.冯芳君,罗利军,李荧,等.2005.水稻InDel和SSR标记多态性的比较分析.分子植物育种,3(5):725-730.
    27.付深造,辛霞,张志娥,等.2011.利用热稳定蛋白特异条带鉴别籼粳稻的方法研究.植物遗传资源学报,12(1):19-24.
    28.高清松,杨泽峰,徐辰武.2009.水稻基因组进化的研究进展.扬州大学学报:农业与生命科学版,(2):34-44.
    29.耿文良,冯瑞英.1995.中国北方粳稻品种志.石家庄:河北科学技术出版社,14-30.
    30.顾铭洪.2010.水稻高产育种中一些问题的讨论.36(9):1431-1439.
    31.郭桂珍,刘才哲,丛文春,等.2002.日本稻种资源在吉林省水稻常规育种上的利用.吉林农业科学,27(6):20-5.
    32.韩龙植.2006.水稻种质资源描述规范和数据标准.北京:中国农业出版社,66-73.
    33.何光华,郑家奎,阴国大,等.1994.亚洲栽培稻分类性状的评价.西南农业大学学报,7(1):1-5.
    34.华蕾,袁筱萍,余汉勇.2007.我国水稻主栽品种SSR多样性的比较分析.中国水稻科学,21(2):150-154.
    35.黄洪河,张海峰,蔡秋华,等.2004.优质晚籼稻产量因素分析及育种应用探讨.福建稻麦科技,22(4):7-9.
    36.姜健,李金泉,徐正进.2002.水稻籼粳交杂种优势的研究.吉林农业科学,27(1):3-7.
    37.姜健,李金泉,徐正进.2003.水稻籼粳杂交育种研究进展.吉林农业科学,28(1):9-14.
    38.姜树坤.2010.水稻重要农艺性状遗传基础解析及株型QTL精细定位.沈阳:沈阳农业大学博士 论文.
    39.柯蓓.2009.水稻籼粳亚种间杂交衍生系的SSR分析.福建:福建农林大学硕士论文.
    40.李晨,潘大建,毛兴学,等.2005.利用SSR标记对高州野生稻遗传多样性的研究.广东农业科学,(6):5-8.
    41.李红宇,侯昱铭,陈英华,等.2009.用SSR标记评估东北三省水稻推广品种的遗传多样性.中国水稻科学,23(4):383-390.
    42.李茂柏.2007.辽宁省杂草稻遗传多样性研究.沈阳农业大学农学院,4-19。
    43.李任华,徐才国,何予卿,等.1998.水稻亲本遗传分化程度与籼粳杂种优势的关系.作物学报,24(5):564-576.
    44.李任华,徐才国,孙传清,等.1999.栽培稻的基因型差异程度和分类.作物学报,25(4):518-526.
    45.李荣华,夏岩石,刘顺枝,孙莉丽,郭培国,缪绅裕,陈健辉.2009.改进的CTAB提取植物DNA方法.实验室研究与探索,28(9):14-16.
    46.李欣,顾铭洪,潘学彪.1987.常见水稻品种稻米品质的研究.江苏农学院学报,8(1):1-8.
    47.林世成,闵绍楷.1991.中国水稻品种及其系谱.上海:科学技术出版社,2-23.
    48.刘迪.2011.不同年代东北水稻遗传关系分析.沈阳:沈阳农业大学硕士论文.
    49.刘化龙.2012.寒地粳稻品种骨干亲本遗传演变及耐冷性研究.沈阳:沈阳农业大学博士论文.
    50.刘万友,杨振玉.1991.应用程氏指数法进行籼粳交F1分类.沈阳农业大学学报,22(增刊):82-86.
    51.卢宝荣,蔡星星,金鑫,等.2009.籼稻和粳稻的高效分子鉴定方法及其在水稻育种和进化研究中的意义.自然科学进展,19(6):628-638.
    52.罗玉坤,朱智伟,陈能,等.2004.中国主要稻米的粒型及其品质特性.中国水稻科学,18(2):135-139.
    53.毛艇,徐海,郭艳华,等.2009.利用SSR分子标记进行水稻籼粳分类体系的初步构建.华北农学报,24(1):119-124.
    54.毛艇,徐海,郭艳华,朱春杰,陈凯,王嘉宇,姜树坤,徐正进.2010.籼粳交重组自交系的亚种属性与稻米品质性状的关系.中国水稻科学,24(5):474-478.
    55.毛艇.2009.籼粳稻杂交后代亚种分类及与稻米品质的关系.沈阳农业大学硕士论文.
    56.梅捍卫,黎志康,王一平,等.1997."Lemont/特青”重组自交系的六性状籼粳分类研究.中国水稻科学,11(4):193-197.
    57.闵绍楷,熊振民,程式华.1990.水稻亚种间广亲和性鉴定标准的研究.浙江农业学报,2(1):1-6.
    58.齐永文,张冬玲,张洪亮,等.2006.中国水稻选育品种遗传多样性及其近50年变化趋势.科学通报,51(6):693-699.
    59.钱惠荣,沈波,林鸿宣,等.1994.水稻籼粳特异性RFLP标记及广亲和品种亲缘关系分析,中国 水稻科学,8(2):65-71.
    60.邵国军,李玉福,秋福林.1995.辽宁省水稻育种研究与进展.辽宁农业科学,(6):28-33.
    61.沈新平,沈明星,顾丽,等.2007.太湖流域晚粳稻地方种质资源的表型遗传多样性.生态学报,27(1):189-196.
    62.孙传清,王象坤,吉村淳,等.1997a.普通野生稻和亚洲栽培稻核基因组的RFLP分析.中国农业科学,30(4):37-44.
    63.孙传清,王象坤,吉村淳,等.1997b.普通野生稻和亚洲栽培稻核基因组的遗传分化.中国农业大学学报,2(5):65-71.
    64.孙传清,王象坤,吉村淳,等.1997c.普通野生稻和亚洲栽培稻叶绿体DNA的籼粳分化.农业生物技术学报,5(4):319-324.
    65.孙凌飞,李绍波,官杰,等.2008.亚洲栽培稻的籼粳分化.现代农业科技,(22):157-159.
    66.孙新立,才宏伟,等.1996.亚洲栽培稻的同工酶数值分类.作物学报.22(6):693-699.
    67.王伯伦,刘新安,陈健.2002.1949年以来辽宁省水稻发展形势的分析.沈阳农业大学学报,33(2):83-86.
    68.王明军,王云月,陆春明,等.2010.利用籼粳稻特异InDel标记分析云南糯稻品种的籼粳特性.云南农业大学学报,25(3):333-337.
    69.王瑞,陈林姣,赵玉辉,等.2007.中国水仙的核型分析和小孢子发生中的细胞学研究.细胞生物学杂志,29:140-146.
    70.王松文,刘霞,王勇,等.2006.RFLP揭示的籼粳基因组多态性,中国农业科学,39(5):1038-1043.
    71.王象坤,才宏伟,孙传清,等.1994.中国普通野生稻的原始型及其是否存在籼粳分化的初探.中国水稻科学,8(4):205-210.
    72.王象坤,李任华,孙传清,等.1997.亚洲栽培稻的亚种及亚种间杂交稻的认定与分类.科学通报,42(24):2596-2603.
    73.王象坤,孙传清,才宏伟,等.1998.中国稻作的起源与演化,科学通报,43(22):2354-2363.
    74.王英典,黑田平喜,平野贡,等.1998.日本作物学会纪事,67(4):549-554.
    75.王志东,赖穗春,李宏,黄道强,卢德城,周德贵,王重荣,周少川.2011.稻米食味品质评价方法的研究进展与展望.广东农业科学,13:18-20.
    76.吴长明,孙传清,付秀林,等.2003.稻米品质性状与产量性状及籼粳分化度的相互关系研究.作物学报,29(6):822-828.
    77.吴洪恺,梁国华,严长杰,顾燕娟,单丽丽,王芳,顾铭洪.2006.水稻不同生态型品种间直链淀粉含量的变异及其遗传分析.作物学报,32(9):1301-1305.
    78.徐大勇,金军,杜永.2002.江苏省主要高产粳稻品种品质性状分析.江苏农业学报,(4):203-207.
    79.徐海,陶士博,唐亮,等.2012.栽培稻的籼粳分化与杂交育种研究进展.沈阳农业大学学报,43(6):704-710.
    80.徐正进,陈温福,马殿荣,等.2005.辽宁水稻食味值及其与品质性状的关系.作物学报,31(8):1092-1094.
    81.徐正进,陈温福,张龙步,等.1990.日本水稻育种的现状与展望.水稻文摘,9(5):1-6.
    82.徐正进,陈温福,张龙步,等.1996.水稻穗颈维管束性状的类型间差异及其遗传的研究.作物学报,22(2):167-172.
    83.徐正进,陈温福,张龙步,等.2005.水稻理想穗型设计的原理与参数.科学通报,50(18):2037-2039.
    84.徐正进,陈温福,张文忠,等.2004.北方粳稻新株型超高产育种研究进展.中国农业科学,37(10):1407-1413.
    85.徐正进,邵国军,韩勇,等.2006.东北三省水稻产量和品质及其与穗部性状关系的初步研究.作物学报,32(12):1878-1883.
    86.徐正进,张龙步,陈温福,等.1991.从日本超高产品种(系)的选育看粳稻高产的方向.沈阳农业大学学报,22(增刊):27-330.
    87.许旭明,梁康迳,张受刚,等.2009.利用ILP标记分析水稻籼粳杂交亲本和衍生系的籼粳分化.中国农业科学,42(10):3388-3396.
    88.许旭明,梁康迁,张受刚,等.2008.用ILP分子标记测定水稻品种的籼粳分化度.中国作物学会学术年会论文摘要集,16-18。
    89.许旭明.2009.水稻籼粳亚种间杂交衍生系遗传基础的研究.福建:福建农林大学博士论文。
    90.严长杰,田舜,张正球,韩月澎,陈峰,李欣,顾铭洪.2005.水稻栽培品种淀粉合成相关基因来源及其对品质的影响.中国农业科学,39(5):865-871.
    91.杨守仁.1986.籼粳稻杂交育种的进展及前景.中国农业科学,(6):15-18.
    92.杨守仁.1987a.水稻超高产育种新动向.沈阳农业大学学报,18(1):1-5.
    93.杨守仁.1987b.株型育种.中国农业百科全书.北京:中国农业出版社,877-878.
    94.杨守仁.1996.水稻超高产育种的理论与方法.作物学报,22:295-304.
    95.杨振玉.1994.粳型杂交水稻育种的进展.杂交水稻,(3-4):46-49.
    96.瑶海根,姚坚,汤美玲,等.2000.近20年来浙江省晚粳稻和晚糯稻品种推广应用概况及今后育种方向.浙江农业科学,4:155-159.
    97.应杰政,施勇烽,庄杰云,等.2007.用微卫星标记评估中国水稻主栽品种的遗传多样性.中国 农业科学,40(4):649-654.
    98.游俊梅,陈慧查,金桃叶,等.2005.贵州地方旱稻种质资源遗传多样性评价.种子,24(4):79-84.
    99.俞履圻,林权.1962.中国栽培稻亲缘的研究.作物学报,1(3):233-258.
    100.袁隆平.1990.两系法杂交水稻研究的进展.中国农业科学,23(3):1-6.
    101.袁隆平.1996.从育种角度展望我国水稻的增产潜力.杂交水稻,(4):1-2.
    102.袁隆平.1997.杂交水稻超高产育种.杂交水稻,12(6):1-6.
    103.袁隆平.2000.超级杂交稻.中国水稻研究通报,8(1):13-14.
    104.张建勇,袁位清,李仕贵,等.2005.微卫星标记分析籼粳亚种间的遗传多样性.山东理工大学学报,19(2):22-27.
    105.张喜娟.2009.水稻超高产品种的生理特性及遗传基础.沈阳:沈阳农业大学博士论文.
    106.张兴伟,王志德,刘艳华,等.2008.内含子多态性标记及其在烟草分子育种上的应用.安徽农业科学,36(8):3147-3148,3159.
    107.张尧忠,徐宁生.1998.酯酶酶带分类法及稻种籼粳分类体系的讨论.西南农业学报,11(3):88-93.
    108.张媛媛,曹桂兰,韩龙植.2007.中国不同地理来源籼稻地方品种的亲缘关系研究.作物学报,33(5):757-762.
    109.赵建亚,张瑛英,梁康迳.2009.利用ILP分子标记分析籼粳杂交水稻的遗传多样性.石河子大学学报,27(3):291-294.
    110.赵伟,夏寒冰,章淑杰,等.2008.籼、粳稻特异插入/缺失分子标记揭示的稻属植物遗传分化.复旦学报(自然科学版),47(3):281-287.
    111.赵向前.2007.水稻内含子长度多态性分子标记的开放和应用.杭州:农业与生物技术学院,1-50.
    112.周广春,王乐丰,郭桂珍,等.2002.东北三省水稻优质米品种现状与对策.吉林农业科学,27(1):17-25.
    113.周汇,Glaszmann J C,程侃声,等.1988.栽培稻分类方法的比较.中国水稻科学,2(1):1-7.
    114.周开达,马玉清,刘清.1995a.杂交水稻亚种间重穗型组合的选育一交水稻超高产育种的理论与实践.四川农业大学学报,13(4):403-407.
    115.周开达,马玉清,刘太清.1995b.穗重型杂交稻育种.四川农业大学学报,13(4):403-407.
    116.朱春杰,徐海,郭艳华等.籼粳交重组自交系亚种属性判别及维管束性状变异.中国水稻科学,2007,21(6):619-624.
    117.朱作峰,孙传清,付永彩,等.2002.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性.中国农业科学,35(12):1437-1441.
    118.朱作峰,孙传清,李自超,等.2001.用SSR标记对水稻品种的分类研究.农业生物技术学报, 9(1):58-61.
    119. Abdelkhalik A F, Shishido R, Nomura K, Ikehashi H.2005. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet,110(7):1226-1235.
    120. Akagi H,Yokozeki Y,Inagaki A,et al.1997. Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these micarosatellite loci.Theor Appl Genet,94:61-67.
    121. Amanda j, Garris,Tmomas H, Tai, Jason Coburn, et al.1998. Genetic Structure and Diversity in Oryza sativa L. Genetics 169:1631-1638.
    122. Ashikari M, Sakakibara HI, Lin SY, et al. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
    123. Chen X, Temnykh S, Xu Y, et al.1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L). Theor Appl Genet,95:553-567.
    124. Cheng KS.1985.A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. Rice genetics newsletter,2:46-48.
    125. Davierwala A P, Chowdari K V, Kumar S, et al.2000. Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica,108:269-284.
    126. Evanno G, Regnaut S, Goudet J.2005. Detecting the number of cluster of individuals using the software structure:a simulation study. Mol Ecol,14:2611-2620.
    127. Falush D, Stephens M, Pritchard JK.2007. Inference of population structure using multilocus genotype data:dominant markers and null alleles.Mol Ecol Note,7:574-578.
    128. Falush D, Wirth T, Lina B, et al.2003. Traces of human migrations in Helicobacter pylori populations. Science,299:1582-1585.
    129. Fan C, Xing Y, Mao H, et al.2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor.Appl.Genet,112: 1164-1171.
    130. Gabriel S, Ziaugra L, Tabbaa D.2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current protocols in human genetics:2.12.11-12.12.16.
    131. Garris AJ, Tai TH, Coburn J, Kresovich S, McCOUCH S.2005. Genetic structure and diversity in Oryza sativa L. Genetics 169(3):1631-1638
    132. Glaszmarm JC.1987. Isozymes and classification of Asian rice varieties. Theor Appl Genet:21-30.
    133. Goff S A, Ricke D, Lan TH, et al.2002. A draft sequence of the rice genomes(Oryza sativa L. ssp. Indica). Science,296:92-100.
    134. Hittalmani S, Paroo A, Mew TV, et al.2000.Theor Appl Genet,100:1121-1128.
    135. Huang N, Angeles ER, Domingo J, et al.1997.Theor Appl Genet,95:313-320.
    136. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X.2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet,41(4):494-497.
    137. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z.2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature genetics 42(11):961-967.
    138. Huang XZ, Qian Q, Liu ZB, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics,2009,41(4):494-497.
    139. Jeanmaire Molina, Martin Sikora, Nandita Garud, et al.2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA,108:8351-8356.
    140. Jeanmaire Molina, Martin Sikora, Nandita Garud, et al.2011. Reply to Ge and Sang:A single origin of domesticated rice. Proc Natl Acad Sci USA,108:E756.
    141.Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics,2010,42(6):541-544.
    142. Jin J, Huang W, Gao J P, et al.2008. Genetic control of rice plant architecture under domestication. Nature Genetics,40(11):1365-1369.
    143. Konishi S, Izawa T, Lin S Y, et al.2006. An SNP caused loss of seed shattering during rice domestication. Science,2006,312:1392-1396.
    144. Li C, Zhou A, Sang T.2006. Rice domestication by reduced shattering. Science,311:1936-1939.
    145. Liu RH, Meng JL.2003.MapDraw:a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (Beijing),25 (3):317-321.
    146. Londo JP, Chiang YC, Hung KH, et al.2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA, 103:9578-9583.
    147. Londo JP, CHIANG YC, Hung KH, et al.2006. Phylogeography of Asian wild rice, Oryza rufipogon,reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA,103:9578-9583.
    148. Lu BR, Cai X, Xin J.2009. Efficient indica and japonicarice identification based on the InDel molecular method:Its implication in rice breeding and evolutionary research. Progress in Natural Science 19(10):1241-1252.
    149. Matsuo TM.1990. Great Achievement of Rice Science.Tokyo Nousangyoson Culture Society, (1):419-423.
    150. Molina J, Sikora M, Garud N et al.2010. Molecular evidence for a single evolutionary origin of domesticated rice. PNAS, Proc Natl Acad Sci USA DOI:10.1073/pnas.1104686108.
    151. Morales MR, Corts MC, Crespo Martinez.2000. Variation of PGM and IDH isozymes for identification of alfalfa varieties. Euphytica,112:137-143.
    152. Nagasaki H, Ebana K, Shibaya T, Yonemaru J-i, Yano M.2010. Core single-nucleotide polymorphisms-a tool for genetic analysis of the Japanese rice population. Breeding science 60(5): 648-655.
    153. Oka HI.1953. Variations in various characters and character combinations among rice varieties. Jpn J.Breed,3:33-43.
    154. OKa HI.1958. Intervarietal variation and classification of cultivated rice. Indian J.Genet.plant breed, 18:79-89.
    155. Olsen KM, Caicedo AL, Polato N, et al.2006. Selection under domestication:evidence for a sweep in the rice Waxy genomic region. Genetics,173:975-983.
    156. Olufowote JO, Xu Y, Chen X, et al. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L) using microsatellite and RFLP markers. Genome,1997,40:370-378.
    157. Prichard JK, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data. Genetics,155:925-959.
    158. Sang T, Ge S.2007. The puzzle of rice domestication. J Integr Plant Biol,49:760-768.
    159. Sang T, Ge S.2011. Inappropriate model rejects independent domestications of indica and japonica rice. Proc Natl Acad Sci USA,108:E755.
    160. Sano RH, Morishima.1992. Indica-Japonica differentiation of rice cultivars viewed from variation in key characters and isozymes with special reference to landraces from the Himalayan hilly areas. Theor appl genet,84:266-274.
    161. Sato Y.1990. Nonrandom association of genes and characters found in indicaxjaponica hybrids of rice. Heredity,65:75-79.
    162. Second G.,1985. Origin of the genic diversity of cultivated rice(Oryza spp.); study of the polymorphism scored at 40 isozyme loci. Jpn.J.Genet,57:25-57.
    163. Shen YJ, Jiang H, Jin JP, et al.2004. Development of genomewide DNA polymorphism database for map-based cloning of rice genes.Plant Physiol,135:1198-1205.
    164. Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics,2008,40:1023-1028.
    165. Song XJ, Huang W, Shi M, et al.2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics.39:623-630.
    166. Sun J, Liu D, Wang JY, Ma DR, Tang L, Gao H, Xu ZJ, Chen WF. 2012. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor Appl Genet 125 (6):1149-1157.
    167. Sweeny MT, Thomson MJ, Pfeil BE, et al.2006. Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell,18(2):283-294.
    168. Tan L, Li X, Liu F, et al.2008. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics,40(11):1360-1364.
    169. Terri Grodzicker, Carl Anderson, Phillip A, et al.1974. Conditional Lethal Mutants of Adenovirus 2-Simian Virus 40 Hybrids.Host Range Mutants of Ad2-ND1,13:1237-1244.
    170. Thomas CM.1995. Identification of AFLP marker tightly linked to the tomato CF-9 gene for resistance to cladosporrium fulvum.The Plant Journal,8(5):785-794.
    171. Virk P, Ford-Lloyd BV, Jackson MT, et al.1996. The use of RAPD for the study of diversity within germplasm collections. Heredity,74:170-179.
    172. Wang E, Wang J, Zhu X, et al.2008. Control of rice grain -filling and yield by a gene witha potential signature of domestication.Nature Genetics,40(11):1370-1374.
    173. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q.2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature genetics 44(8):950-954.
    174. Wang XS, Zhao XQ, Zhu J, et al.2005. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res,12(6):417-427.
    175. Yamamoto T, Nagasaki H, Yonemaru J-i, Ebana K, Nakajima M, Shibaya T, Yano M.2010. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC genomics 11(1):267.
    176. Yan C J, Yan S, Yang Y C, et al.2009. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica,169:215-226.
    177. Yang GP, Saghai MA, Marooof C, et al.1994.Comparative analysis of microsatellite DNA polymorphism in Landraces and cultivars of rice.Mol Gen Genet,245:187-194.
    178. Yonemaru J-i, Yamamoto T, Ebana K, Yamamoto E, Nagasaki H, Shibaya T, Yano M.2012. Genome-Wide Haplotype Changes Produced by Artificial Selection during Modern Rice Breeding in Japan. PLoS One 7(3):e32982.
    179. Yu J, Hu S, Wang J, et al.2002. A draft sequence of the rice genome(Oryza sativa L. ssp. Indica). Science,296:79-92.
    180. Zhang J, Zheng H G, Aarti A, et al.2001. Theor Appl Genet,103:19-29.
    181. Zhang QF., Saghai Maroof MA, Lu TY, et al.1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet,83:495-499.
    182. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J.2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature communications 2:467.
    183. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A.2010. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5(5):e10780.
    184. Zhao X, Yang L, Zheng Y, Xu Z, Wu W.2009. Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genomics 36(7):435-442
    185. Zhixi Tiana, Qian Qian, Qiaoquan Liu, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. PNAS,2009,106(51):21760-21765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700