用户名: 密码: 验证码:
花生谷子间作水分养分高效利用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究从花生谷子间作条件下作物地上部和地下部生长、光合生理、产量和水分利用效率、土壤水分养分空间分布与吸收利用、水肥运筹对间作花生谷子生长发育和水分养分利用效率影响等方面开展研究,以期探清花生谷子间作水分养分高效利用机理,得到以下结论:
     (1)花生谷子间作改善作物群体结构和作物光合生理,提高光能利用效率,增加土地当量比。
     研究表明花生谷子间作能够增加谷子叶片外部光照强度和光合速率,降低花生外部有效光强度。作物生长旺盛期间作花生和谷子的叶片叶绿素a、叶绿素b和叶绿素(a+b)高于单作花生和谷子。相对于单作,间作能够降低强光对谷子叶片的可逆失活,提高花生PS Ⅱ原初光能转化效率,同时间作增加作物叶片表观量子效率和光饱和点,提高对强光的吸收。间作花生叶片可提高对弱光的吸收和利用效率,中午能够在单作花生出现光抑制的情况下保持较好的光合速率。
     间作能够抑制花生果针分化,提高花生成果率,但产量受光照等因素影响会降低,2011年和2012年产量较单作花生分别降低13.90%和9.51%,主要表现在花生单株荚数大幅度减少。间作下谷子产量大幅度提高,2011年和2012年产量较单作谷子分别提高48.01%和45.21%,主要表现在穗重和穗粒重大幅度提高。2011年和2012年花生谷子间作土地当量比分别为1.17和1.18,间作能够提高土地的利用效率。
     (2)花生谷子问作影响作物根系、土壤水分、养分分布,降低作物对水分需求程度,提高群体抗旱性。
     花生谷子间作0~50cm平均单位面积根系表面积较花生单作提高78.95%,较谷子单作降低47.14%;平均土壤速效氮含量较花生单作降低8.17%,较谷子单作提高7.03%;平均土壤速效磷含量较花生单作提高12.37%,较谷子单作提高7.75%;平均土壤速效钾含量较花生单作降低9.46%,较谷子单作提高17.47%。
     整个生育期花生谷子间作较花生单作0~100cm土壤含水量降低0.27个百分点,较谷子单作提高0.97个百分点。花生根系主要对土壤0~30cm的土壤含水量产生明显影响,谷子根系则影响0~50cm甚至以下土壤水分。生育期内花生谷子间作较花生单作农田耗水量增加10.93mm,较谷子单作降低33.70mm。生育期花生谷子间作Kc平均值较花生单作减少0.12,较谷子单作提高0.04,花生和谷子间作能够提高间作群体的抗旱性,减少其对水分的需求程度,整个生育期花生谷子间作需水量较花生单作和谷子单作分别减少9.68mm和20.55mm。
     (3)花生谷子间作促进水分养分横向移动,协调土壤水分养分纵向与作物根系分布的偏离度,改变土壤水分养分的有效性。
     花生谷子间作在横向上作物根系与土壤水分养分“重心”偏离较大,会产生水分、养分梯度,将为间作群体中水分养分水平运移提供重要动力。花生谷子间作后可以有效协调根系在土壤中的纵向分布,改变土壤水分养分有效系数,0~50cm平均土壤水分有效系数较花生单作提高316.67%,较谷子单作提高49.57%;土壤氮素有效系数较花生单作降低19.05%,较谷子单作提高36.00%;土壤磷素有效系数较花生单作提高107.43%,较谷子单作降低19.98%;土壤钾素有效系数较花生单作提高20.69%,较谷子单作降低31.43%。
     (4)花生谷子间作提高水分利用效率当量,影响作物对土壤水分养分的吸收和利用,影响作物生理和产品品质。
     间作花生和谷子日平均叶片水分利用效率显著高于单作花生和谷子,花生谷子间作水分利用效率当量为1.21,能够提高作物群体的水分利用效率。花生谷子间作能够促进花生对磷的吸收,间作花生植株内各器官磷含量均高于单作花生。间作条件下花生在生育旺盛期叶片保持较多的氮素和磷素含量,这与该时期间作花生叶片叶绿素含量较高有关,生育后期间作花生叶片钾素快速转移,叶片叶绿素快速降解,含量快速下降,叶片氮素含量也下降。间作花生荚果钾含量在生育后期高于单作,这可能是导致花生仁淀粉含量升高的重要原因之一。间作花生荚果含氮量一直低于单作,由此导致间作花生仁的蛋白质含量低于单作。间作能够促进谷子氮、磷和钾素积累量,间作谷子叶片和茎的氮素及钾素含量高于单作,这与间作谷子叶片叶绿素含量、光合速率和光补偿点高于单作相一致,间作谷子穗磷素和钾素含量高于单作,可能与间作谷子蛋白质和油脂含量较高有关。
     (5)花生谷子间作合理运筹土壤水分养分,可以促进作物生长,增加作物产量,提高水分养分利用效率。
     在花生谷子间作体系中,随着氮肥施用量的增加,花生和谷子叶片SPAD值呈增加趋势。磷素和水分过少或水分过多会导致叶片SPAD值降低。对谷子光合速率和蒸腾速率影响最大的为水分,其次为氮素,再次为磷素,对作物叶片气孔导度的影响磷素大于氮素。总体上与花生叶片和荚果干重、谷子茎梗和叶片干重影响最大的水分、其次为氮素、再次为磷素;与花生茎和总干重、谷子根、穗和总干重影响最大的水分、其次为磷肥、再次为氮肥;与花生根干重影响最大的为磷素,其次为水分,再次为氮素。
     花生谷子间作条件下,在其他两因素处于丰富水平,随着土壤水分的提高,花生叶片水分利用效率呈下降趋势,谷子呈先升高后下降的趋势;随着氮肥和磷肥施用量的增加,花生和谷子叶片水分利用效率呈升高趋势;随着土壤水分水平的提高,花生氮素积累量和谷子钾素积累量呈先升高后降低趋势,花生磷素和钾素积累量、谷子氮素和磷素积累量呈逐渐升高趋势;随着施氮量的增加,花生和谷子氮素积累量呈增加趋势,花生钾素积累量、谷子磷素和钾素积累量呈先升高后降低趋势;随着磷素水平的不断提高,花生氮素和钾素积累量呈先升高后降低趋势,花生磷素、谷子氮素、磷素和钾素积累量均呈逐渐升高趋势。间作条件下,花生适宜的土壤含水量为占田间持水量的57.3%,适宜的氮素和磷素施用量分别为0.98g/盆和0.39g/盆,谷子适宜的土壤含水量为占田间持水量的59.1%,适宜的氮素和磷素施用量分别为0.57g/盆和0.45g/盆。
Peanut and millet intercropping aboveground and underground part growth, photosynthetic physiology, yield and water use efficiency, soil nutrient and moisture spatial distribution and absorption use, the effects of water and nutrient on crops growth for millet and peanut intercropping, water and nutrient use efficience in the different water and nutrient condition, had been studied, and comed to the conclusion that:
     (1) Crop population structure, light energy interception amount and light energy use efficiency were improved in peanut and millet intercropping, and land equivalent ratio was increased.
     Research shows that the external light intensity and the photosynthetic rate of millet leaves was increased, and the peanut effective external light intensity was reduced in peanut and millet intercropping. Crop leaves chlorophyll a, chlorophyll b and chlorophyll (a+b) of peanut and millet intercroppingwas higher than which of peanut and millet monoculture in the exuberant crop growth period.Reversible inactivation of highlight to millet leaves was lower, peanut PS II original light energy conversion efficiency was improved, crops leaves apparent quantum efficiency, light saturation point and highlight absorption efficiency were increased in peanut and millet intercropping, compared with the monoculture for each one. low light absorption efficiency of peanut leaves was increased, and the photosynthetic rate was keep a high rate in the noontime, which photoinhibition was appeared in monoculture.
     Peanut needle differentiation was suppressed, that peanut setting ratio increased in peanut and millet intercropping, but production has been reduced for influencing factors such as light. Peanut yield reduced by13.90%and9.51%in2011and2012respectively, than monoculture, compared with the monoculture, mainly manifested in the decrease of panicle weight and grain weight per panicle. Millet yield increased significantly under intercropping, enhanced by48.01%and45.21%in2011and2012respectively, mainly manifested in the increased of peanut pod number per plant. Intercropping improved land use efficiency, land equivalent ratio of peanut and millet were1.17and1.17in2011and2012.
     (2)Crop root, soil moisture, nutrient distribution were changed in peanut and millet intercropping, Crop demand for water was reduced, and drought resistance was enhance.
     Root surface area density of0~50cm soil was increased by78.95%in peanut and millet intercropping compared with the peanut monoculture, and reduced by47.14%compared with the millet monoculture; The average soil available nitrogen content was reduced by8.17%compared with peanut monoculture, and enhanced by7.03%compared with the millet monoculture; The average soil available phosphorus content was enhanced by12.37%compared with peanut monoculture, and enhanced by7.75%compared with the millet monoculture; The average soil available potassium content was reduced by9.46%compared with peanut monoculture, and enhanced by17.47%compared with the millet monoculture.
     Soil moisture content of0~100cm soil was reduced by0.27percent point in peanut and millet intercropping compared with the peanut monoculture, and enhanced by0.97point compared with the millet monoculture in the whole growth period.0~30cm soil water content significantly be affected by peanut roots, and0~50cm or even the following soil water content significantly be affected by millet roots. Farmland water consumption increased by10.93mm compare with peanut monoculture, and reduced by33.70mm compare with millet monoculture. Mean value of Kc was reduced by0.12compared with the peanut monoculture, and increased0.04compared with the millet monoculture in the whole growth period. Crop demand for water was reduced and drought resistance was enhance in peanut and millet intercropping, water demand of peanut and millet intercropping were reduced by9.68mm and20.55mm compared with the peanut monoculture and millet monoculture respectively.
     (3)Millet intercropping peanut, water nutrient horizontal movement of water and nutrition was promoted, degree of deviation between crop root system and soil water or soil nutrition was coordinated, soil water and nutrition availability was changed. Horizontal centroid deviation between crop roots and soil water or nutrition was longer distance in peanut and millet, result in Water and nutrient horizontal gradients, to provide important power for soil water and nutrients migration. Deviation of crop roots, soil water and soil nutrition was coordinated, soil water and nutrition availability was changed. Soil water effective coefficient of0~50cm was increased by316.67%and49.57%compared with peanut monoculture and millet monoculture respectively. Soil Nitrogen effective coefficient was reduced by19.05%compared with peanut monoculture, and increased by36.00%compared with millet monoculture. Soil phosphorus effective coefficient was increased by107.43%and reduced by19.98%compared with peanut and millet monoculture respectively. Soil potassium effective coefficient was increased by20.69%compared with peanut monoculture, and reduced by31.43%compared with millet monoculture.
     (4)Water equivalent ratio was increased in peanut and millet intercropping, crops absorption and utilization of soil moisture and nutrient were changed, and crop physiology and product quality were affected.
     Interplanting millet daily average leaf water use efficiency was significantly higher than monoculture millet, and intercropping peanut leaf water use efficiency was significantly higher than monoculture peanuts. Water equivalent ratio was1.21in peanut and millet intercropping, water use efficiency was enhanced. The peanut absorption of phosphorus was enhanced, each organ phosphorus content ware higher than monoculture peanuts, peanut leaves content more nitrogen and phosphorus in exuberant fertility period under the intercropping condition, which related to the leaves more chlorophyll content of intercropping peanut at this time. Late growth stage, intercropping peanut leaf potassium transfer quickly, the chlorophyll disintegrated quickly and declined rapidly, and leaf nitrogen content also decreased. Intercropping peanut pods potassium content higher than monoculture all the time, resulting in intercropping peanut protein content is lower than monoculture.Intercropping millet accumulation of nitrogen, phosphorus and potassium were promoted, is consistent with higher chlorophyll content, photosynthetic rate and light compensation point. Interplanting millet protein and fat content were higher than monoculture, perhaps because of the higher phosphorus and potassium content of intercropping millet grain.
     (5) Dry matter accumulation of crop organs, yield, water and nutrition use efficiency were effected by different water and nutrient conditions in peanut and millet intercropping.
     Under the condition of peanut and millet intercropping, The peanut and millet leaf SPAD value increased with the increase of nitrogen. Phosphorus and water too little or too much lead to reduced leaf SPAD value. Water was one of the biggest factors to affect the photosynthetic rate and transpiration rate of millet, followed by nitrogen, again for phosphorus. Phosphorus effect was greater than nitrogen on crop leaf stomatal conductance. In the mass, Water was one of the biggest factors to affect the dry matter of peanut leaves and pod, millet stem, peduncle and leaves, followed by nitrogen, again for phosphorus; Water was one of the biggest factors to affect the dry matter of peanut stem and gross, millet root, grain and gross, followed by phosphorus, again for nitrogen; Phosphorus was one of the biggest factors to affect the dry matter of peanut root, followed by water, again for nitrogen.
     In the other two factors in a rich level, Peanut leaf water use efficiency is on the decline and millet first rises then falls with the improvement of soil moisture. Peanut and millet leaf water use efficiency showed a trend of rise with the increase of applying nitrogen and phosphorus. The amounts of peanuts accumulated nitrogen and millet potassium accumulation first rises then falls with the improvement of soil moisture, while the amounts of peanut phosphorus and potassium accumulation, millet nitrogen and phosphorus accumulation showed a trend of rise. The amounts of peanut and millet nitrogen accumulation showed a trend of rise with the increase of applying nitrogen, while the amounts of peanut potassium accumulation and millet potassium and potassium accumulation first rises then falls. The amounts of peanut potassium accumulation first rises then falls with the increase of applying phosphorus, while the amounts of peanuts phosphorus, millet nitrogen, phosphorus and potassium showed a trend of rise. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for57.3%of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were0.98g/pot and0.39g/pot, respectively. Likewise, the soil moisture content optimal for millet was59.1%of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were0.57g/pot and0.45g/pot, respectively.
引文
[1]北京市农业科学院农业气象研究室.1977.作物间作套种的光能利用研究.植物学报[J],(4):272-282.
    [2]蔡昆争.2011.作物根系生理生态学.北京:化学工业出版社.
    [3]曹敏建.2002.耕作学[M],中国农业出版社.
    [4]陈伟,薛立.2004.根系间的相互作用——竞争与互利[J].生态学报,24(6):1243-1251.
    [5]陈辉.施国新.徐勤松等.2009.Cr6+对菹草叶绿素荧光参数、抗氧化系统和超微结构的胁迫影响[J].植物研究,(5):559~564.
    [6]陈龙池,汪思龙.2003.杉木根系分泌物化感作用研究[J].生态学报,23(2):393~398.
    [7]迟伟,王荣富,张成林.2001.遮荫条件下草莓的光合特性变化[J].应用生态学报,12(4):566-568.
    [8]邓振镛,董宏儒.1986.我国带田农业气候研究概述[J].气象科技,(3):80-85,98.
    [9]杜占池,何妙光,杨宗贵.1982.遮阴对谷子和花生光合特性的影响.植物生态学报,6(3):219-226.
    [10]段文学,于振文,张永丽等.2012.施氮量对旱地小麦耗水特性和产量的影响[J].作物学报,38(9):1657-1664.
    [11]冯强.胡聃.李娜.2009.典型城区与郊区环境大叶黄杨气体交换及叶绿素荧光特性比较[J].生态学报[J],(7):3477~3484.
    [12]古世禄,郭志利.1996.谷豆分带种植对谷子生理过程的影响[J].生态农业研究,4,26~30.
    [13]郭桂英,申建波,江荣风等.2006.小麦与花生间作改善花生铁营养的效应研究[J].中国生态农业学报,14(1):60-62.
    [14]郝洪波,李明哲.2010.配方施肥对成熟期谷子氮磷钾吸收及产量的影响[J].湖北农业科学,14,62-64,72.
    [15]胡恒觉,黄高宝.1999.新型多熟种植研究[M].兰州:甘肃科学技术出版社.
    [16]黄俊,郭世荣,吴震等.2007.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,18(2):352~358.
    [17]焦念元,李增嘉,宁堂原等.2003.套作对不同类型玉米苗期展开叶生长的影响[J].玉米科学,11(1):60~62.
    [18]焦念元,宁堂原,赵春等.2006.玉米花生间作复合体系光合特性的研究[J].作物学报,32(6):917-923.
    [19]雷钧杰,赵奇,陈兴武等.2012.杏麦间作复合群体中小麦生长发育及产量结构的初步探讨[J].中国农学通报,28(15):97-101.
    [20]李隆,李晓林,张福锁等.2000.小麦大豆间作条件下作物养分吸收利用对间作优势的贡献[J].植物营养与肥料学报,6(2):140-146.
    [21]李隆.1999.间作作物种间促进与竞争作用的研究[D].北京:中国农业大学.
    [22]李秋祝,余常兵,胡汉升等.不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异[J].植物营养与肥料学报2010,16(4):777-785.
    [23]李淑敏.2004.间作作物吸收磷的种间促进作用机制研究[D].中国农业大学博士学位论文.
    [24]李廷强,王昌全.2001.植物钾素营养研究进展[J].四川农业大学学报,19(3):281-285
    [25]李晓,冯伟,曾晓春.2006.叶绿素荧光分析技术及应用进展[J].西北植物学报,26(10):2186-2196.
    [26]梁德印,徐美德.1986.钾在植物生理中的作用[J].(9):83-86.
    [27]梁争光.1975.作物间套复种与光能利用[J].中国农业科学,(1):94-115.
    [28]刘德平,杨树青,史海滨等.2011.基于3414试验的小麦向日葵间作施肥模型研究[J].灌溉排水学报,30,127~131.
    [29]刘广才,杨祁峰,李隆等.小麦压米间作优势及地上部与地下部因素的相对贡献[J].植物生态学报,2008,32,477-484.
    [30]刘秀芬,马瑞霞,袁光林,等.1996.根际区他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,16(1):1~10.
    [31]刘巽浩.1982.我国不同农业地区能量转换效率与自然资源利用.自然资源[J],(4):1~8.
    [32]刘洋,孙占祥,白伟等.2010.辽西不同玉米沙打旺间作模式的土壤水分和产量效应的研究[J].干旱地区农业研究,28(6):147-152.
    [33]刘洋,孙占祥,白伟,等.2011.玉米大豆间作对辽西地区作物生长和产量的影响[J].大豆科学,2011,30(2):224~228.
    [34]陆成彬,张伯桥,高德荣等.2006.施氮量与追肥时期对弱筋小麦扬麦9号产量和品质的影响[J].扬州大学学报,27(3):62~64,75.
    [35]倪蕙文,钟树福.1994.春玉米间大豆行比研究[J].江西农业大学学报,16(1):99-105.
    [36]逄焕成.2010.节水节肥型多熟超高产理论与技术[M].科学出版社.
    [37]彭晓邦,蔡靖,姜在民 等.2009.光能竞争对农林复合生态系统生产力的影响[J].生态学报, 29(1):545~552.
    [38]彭晓邦,王新军,张硕新.2011.黄土区农林复合生态系统中大豆和绿豆的光合生理特性[J].西北植物学报,31(2):363~369
    [39]史晓丽,郭小平,毕华兴等.2009.晋西果农间作光竞争及产量研究[J].北京林业大学学报,31(增2):115-118.
    [40]宋日,牟瑛,王玉兰等.2002.玉米大豆间作对两种作物根系形态特征的影响[J].东北师范大学学报自然科学版,34(3):83-86
    [41]苏世鸣,任丽轩,霍振华等.2008.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J].中国农业科学,41(3):704-712.
    [42]苏艳红,黄国勤,刘秀英等.2005.红壤旱地玉米大豆间作系统的增产增收效应及其机理研究[J].江西农业大学学报,27(2):210-213.
    [43]隋鹏,陈阜,高旺盛.2000.海河低平原区小麦玉米套种高产技术研究[J].作物杂志,2:10-11.
    [44]孙文涛,孙占祥,王聪祥等.2006.滴灌施肥条件下玉米水肥耦合效应的研究.中国农业科学,39,563-568.
    [45]王瑜,宁堂原,迟淑筠等.2012.不同施磷水平下灌水量对小麦水分利用特征及产量的影响[J].水土保持研究,26(3):232~237.
    [46]王兵,刘文兆,党廷辉等.2008.黄土塬区旱作农田长期定位施肥对冬小麦水分利用的影响.植物营养与肥料学报[J],14(5):829~834
    [47]王俊鹏,马林,蒋骏等.2000.宁南半干旱地区谷子微集水种植技术研究[J].水土保持通报,20(3):41-43.
    [48]王树起,沈其荣,褚贵新等.2006.种间竞争对旱作水稻与花生间作系统根系分布和氮素吸收积累的影响[J].土壤学报,43(5):860-863
    [49]王小燕,于振文.2008.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响[J].中国农业科学,41(10):3015-3024
    [50]王义甫,唐桂馥,陈源.1989.氮肥对覆膜花生固氮活性与产量的影响[J].微生物学杂志,(4):42-45.
    [51]王政权,张彦东.2000.水曲柳落叶松根系之间的相互作用研究[J].植物生态学报,24(3):346-350.
    [52]吴志勇,闫静,施维新等.2008.“3414”肥料效应试验的设计与统计分析[J].新疆农业科学, 45,135~141.
    [53]肖文发,徐德应,刘世荣等.2002.杉木人工林针叶光合与蒸腾作用的时空特征[J].38(5):38~46.
    [54]肖焱波,李隆,张福锁.2005.小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J].中国农业科学,38,965~973.
    [55]谢慧,王兴祥,戴传超等.2007.花生与药材套种对土壤微生物区系的影响[J].应用生态学报,18(3):693~696.
    [56]谢运河,李小红,王业建等.2011.玉米大豆间作行比对早熟春大豆农艺性状及产量的影响[J].湖南农业科学,31(5):26~28.
    [57]熊凡.1985.花生纳入旱地多熟种植制度初探[J].耕作与栽培,(1):11~14.
    [58]许大全.1994.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理通讯,30(2):81-87
    [59]杨春峰.1990.关中灌区种植制度的系统发展论[J].西北农林科技大学学报(自然科学版),(4):8-15.
    [60]叶子飘,于强.2008.光合作用光响应模型的比较[J].植物生态学报,32(6):1356-1361.
    [61]余常兵,孙建好,李隆.2009.种间相互作用对作物生长及养分吸收的影响[J].植物营养与肥料学报,15(1):1~8.
    [62]张红刚.2006.蚕豆、大豆和玉米根际磷酸酶活性和有机酸差异及其间作磷营养效应研究[D].中国农业大学硕士学位论文.
    [63]张辉.2009.不同供水条件下小麦间作蚕豆复合群体对化感物质的响应[D].甘肃农业大学硕士学位论文.
    [64]张建华,马义勇,王振南等.2006.间作系统中玉米光合作用指标改善的研究[J],玉米科学,14(4):104~106
    [65]张翔,李刘杰,张新友,等.2010.花生氮素营养研究进展[J].花生学报,39(2):41-44.
    [66]章家恩,高爱霞,徐华勤等.2009.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报,20(7):1597-1602
    [67]赵光强,付循成,曹慧.2007.高等植物的磷营养研究[J].安徽农业科学,35(31):9851-9854.
    [68]赵静静,张明,刘斌,等.2010.种间竞争对小麦生长过程的影响[J].安徽农学通报,16(11):63-64.102.
    [69]赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J],15(1):63-66
    [70]赵雪娇,孙东宝,王庆锁.2012.玉米甘蓝间作对土壤水分时空分布及水分利用效率的影响[J].中国农业气象,33(3):374-381
    [71]郑成岩,于振文,马兴华.2008.高产小麦耗水特性及干物质的积累与分配[J].作物学报,34(8):1450-1458.
    [72]中国工程院“东北水资源”项目组.2006.东北地区有关水土资源配置、生态与环境保护和可持续发展的若干战略问题研究[J].中国工程科学,8(5):1-24.
    [73]周丽莉.2005.蚕豆、大豆、玉米根系质子和有机酸分泌差异及其在间作磷营养中的意义[D].中国农业大学硕士学位论文.
    [74]周绍松,李永梅,周敏等.2008.小麦、大麦与蚕豆间作对耗水量和水分利用率的影响[J],西南农业学报,21,602-607.
    [75]周苏玫,马淑琴,李文.1998.玉米花生问作系统优势分析[J].河南农业大学学报,32(1):17-22.
    [76]#12
    [77]Aerts R.1999. Interspecif iccompetit ion in natural plant communities:mechanisms, trade-offs and plant-soil feed backs[J] Journal of Experimental Botany,50:29-37.)
    [78]Aphalo P J, Ballare C L.1995. On the importance of information-acquiring sustems in plant-plant interactions[J].Functional Ecology,9:5-14.
    [79]Arild Eranstsen, Jurgen Hansen.1986. Influence of gibberellic acid and stock plant irradiance on carbohydrate content and rooting in cuttings of Scits pine seedlings(Pinus sylvestris L.) [J].Tree Physiology,1:115-125
    [80]Ballare C L, Scopel A L.1997. Pytochrome signaling in plant canopies:testing its population-level implications with photoreptor mutants of Arabidopsis[J].Functional Ecology,11:441-450.
    [81]Bethlenfalway G J,Reyes-soils M G.Camel S K, Ferrera-cerrato R.1991.Nutrient transfer between the root zones of soybean and maize plants conected by a comnlon mycorrhizal mycelium[J]. Plant Physiology,82,423-432.
    [82]Bhatt JG,Rao mrk.1981.Heterosis in Growth and Photosynthetic Rate in Hybrids of Cotton[J].Euphytica,(3):129-133.
    [83]Campbell C A, Read D W L.1968. Influence of air temperature, light intensity and soil moisture on the growth, yield and some growth analysis characteristics of Chinook wheat grown in the growth chamber[J]. Canadian Journal of Plant Science,48:299-311.
    [84]Casper B B, Jackson R B.1997. Plant competition underground[J]. Annual Review of Ecology and Systematics,28:545-570.
    [85]Cerrato Me, Blackmer AM.1990. Comparision of models for describing corn yield response to nitrogen fertilizer[J]. Agronomy Journal,82,38-43.
    [86]Chris V K, Christopher H.2000.Agricultural management of mgrain legumes:has it led to an increase in nitrogen fixation [J]. Field Crops Research,65,165-181.
    [87]Collins B, Wein G.2000. Stem elongation response to neighbor shade in sprawling and upright polygonum species[J]. Annals of botany,86:739-744.
    [88]Comas L H, Bouma T J,2002. Eissenstat D M. Linking root traits to maximum potential growth rate among eleven mature temperate tree species[J]. Oecologia,132:34-43.
    [89]Dai CC, Xie H, Wang XX, et al.2009. Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China[J]. Afri. J. Biotech.,8(16):3739-3746.
    [90]Dang T H, Cai G X, Guo S L et al.2006. Effect of nitrogen management on yield and water use efficiency of rainfed wheat and maize in northwest China[J]. Pedosphere,16:495-504
    [91]Egli D B.1999. Variation in leaf starch and sink limitation during seed filling in soybean[J]. Crop Science,39:1361-1368.
    [92]Espeleta J F, Donovan L A.2002. Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species[J]. Functional Ecology,16:113-121.
    [93]Falik O, Reides P, Gersani M, et al.2003. Self/non-self discrimination in roots[J].Journal of Ecology,91:525-531.
    [94]Fan F L, Zhang F S, Song Y N, etal.2006. Nitrogen fixtion of faba bean(Vicia faba L.) interating with a non-legume in two contrasting intercropping systems[J].Plant Soil,283:275-286.
    [95]Feng L S, Zheng M Z, Sun Z X et al.2010.Water consumption and use efficiency of major crops in southern kerqin sandy land[J]. Journal of Agricultural,Biotechnology&Ecology,3,252-262.
    [96]Gause G F.1934.The Struggle for Existence[M].Baltimore:Waverley Press.
    [97]Gersani M, Brown J S, O'Brien E, etal.2001. Tragedy of the commons as a result of root competition[J]. Journal of Ecology,89:660-669.
    [98]Hauggaaed-Nielsen H., Ambus P., Jesen E.S.2001. Interspecific competition, N use and interference with weeds in pea-barley inter cropping[J]. Field Crop Res.,70:101-109.
    [99]Hauggaard-Nielsen H. Ambus P,Jensen E S.2001.Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique[J]. Plant and Soil,236:63-74.
    [100]Holzapfel C, Alpert P.2003. Root cooperation in a clonal plant:connected strawberries segregate roots[J]. Oecologia,134:72-77.
    [101]Hulugalle N R, Lal R.1986. Soil water balance of intercropped maize and cowpea grown in a tropical hydromorphic soil in western NigeriafJ]. Agronomy Journal.78(1):86-90.
    [102]Jensen E.S.1966. Grain yield, symbiltic N2 fixation and interspecific competition for ingrganic N in pea-barley intercrop[J]s. Plant Soil,182:25-38.
    [103]Kadmon R.1995. Plant competition along soil moisture gradients:a field experiment with the desert annual Stipacapensis[J]. Journal of Ecology,83:253-262.
    [104]Kiniry J R, Willians JR.1991. A general, process-oriented model for two competing plant species[J]. Trans of ASAE,35(3):801-810.
    [105]Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C.2001. Wheat/maize or wheat/soybean strip intercropping:Ⅰ. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Res,71,123-137
    [106]Li L, Tang C X, Renge Z, etal.2003. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J].Plant Soil,248:297-303.
    [107]Li L, Tang C, Rengel Z and Zhang FS.2004. Calcium, microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea[J]. Plant and Soil,261,29-37.
    [108]Li L,Yang S H,Li X L,Zhang F S et al.1999. Interspecific complementary and competitive interactions between intercropped maize and fababean[J]. Plant and Soil,212,105-114.
    [109]Li S M, Li L, Zhang F S, Tang C.2004. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany,94,297-303.
    [110]Lili Mao, Lizhen Zhangb, Weiqi Li,et al.2012. Yield advantage and water saving in maize/pea intercrop[J].Field Crops Research,138:11-20.
    [111]Lloveras J, Lopez A, Ferran J, Espachs S et al.2001. Bread-making wheat and soil nitrate as affected by nitrogen fertilization in irrigated mediterranean conditions[J]. gronomy Journal,93:1183-1190.
    [112]Meese BG, Carter PR, Oplinger ES, et al.1991. Corn/soybean rotation effect as influenced by tillage, nitrogen, and hybrid/cultivar[J]. Production agriculture, (4):74-80.
    [113]Midmore, D J.I 993.Agronomic modification of resource use and intercrop production[J]. Field Crops Research,34,357-380.
    [114]Morris R A, Garrity D P.1993. Resource capture and utilization in intercropping:water[J]. Field Crop Research,34(34):303-317.
    [115]Morris R A.1990. Water use by monocropped and intercropped cowpea and sorghum grown after rice[J]. Agronomy Journal,82(4):664-668.
    [116]Natarjan M,Willey R.W.1996. The effects of water stress on yield advantages of intercropping system[J]. Field crops research, (13):117-131.
    [117]Nobel P S.1997. Root distributions and seasonal production in the Northwestern Sonoran Desert for a C3 subshrub, a C3 bunchgrass, and a CAM leafs ucculent[J]. American Journal of Botany,84: 949-955.
    [118]Palta J A, Kobata T, Turner N C, Fillery I R.1994. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficit[J]. Crop Science,34:118-124.
    [119]Plaut Z, Butow B J, Blumenthal C S, Wrigley C W.2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficits and elevated temperature [J].Field Crops Research,86:185-198.
    [120]Pugnaire F I, Luque M T.2001. Changes in plant interactions along a gradient of environmental stress [J]. Oikos,93:42-49.
    [121]Raghothama K G. Phosphate acquisition.1999. Annu rev plant physiol[J].PlantMol Biol,50:665-693.
    [122]Reddy M S, Willey R W.1981. Growth and resource use studies in an intercrop of peal millet/groundnut[J]. Field CropResearch, (4):13-24.
    [123]Richard G Allen, Luis S Pereira, Dirk Raes Martin Smith.1998. Guidelines for computing crop water requirements [M].FAO Irrigation and Drainage,56.
    [124]Rizvi S J H, M ishra G P, Rivi V.1989. Allelopathic effects of nicotine on maize, its possible importance in crop rotation[J]. Plant Soil,116(2):289-291.
    [125]Rubio G, Walk T, Ge Z Y, et al.2001. Root gravitropism and below-ground competition among neighbouring plants:a modelling approach[J].Annals of Botany,88:929-940.
    [126]Sahin U, Kuslu Y, Tune P, Kiziloglu F M.2009. Determining crop and pan coefficients for cauliflower and red cabbage crops under cool season semiarid climatic condition[J]. Agricultural Sciences in China,8(2):167-171.
    [127]Schrevens E, Cornell J.1993.Design and analysis of mixture systems:Applications in hydroponic, plant nutrition reasearch[J]. Plant and Soil,154,45-52.
    [128]Sepaskhah A R, Azizian A, Tavakoli A R.2006. Optimal applied water and nitrogen for winter wheat under variable seasonal rainfall and planning scenarios for consequent crops in a semi-arid region[J].Agric Water Manag,84:113-122
    [129]Singh RA,Singh,HB.1981. Effect of Row Orientation and Plant Density on Yield and Quality of Rainfed Barley [J].Plant and Soil,(2):167-172.
    [130]Smith H.1990. Phytochrom action at high photon fluence rates:rapid ectension rate responses of light-grown mustard to variations influence rate and red:far red ratio[J]. Photochemistry and Photobiogy,52:131-142
    [131]Stern W R.1993. Nitrogen Fixation and transfer in intercrop systems[J]. Field Crops Research,34,335-356.
    [132]Tim L., Setter Brian A., Flannigan, Jeff Melkonian.2000. Loss of kernel set due to water deficit and shade in maize:carbohydrate supplies, abscisic acid and cytokinins[J]. Crop Sci.,41:1530-1540
    [133]Tofinga M P, Snaydon R W.1992.The rot activity of cereals and peas when grow in pure stands and mixtures[J]. Plant Soil,142:281-285.
    [134]Trenbath B R,Angns J F.1975. Leaf Inclination and Crop Production[J].Field Crop,28:31-44.
    [135]Trenbath BR.1974. Biomass Productivity of Mistures[J].Adv Agron,26:177-210.
    [136]Van Kleunen M., Fischer M, Schmid B.2001. Effects of in traspecific competition on size variation and reproductive allocation in a clonal plant [J].Oikos,94:515-524.
    [137]Vandermeer J H.1989.The Ecology of Intercropping[M].New York:Cambridge University Press.
    [138]Venkateswarlu S,Bala S V.1990.Productivity of some rainfed crop s in sole and intercrop systems[J]. Indian Journal of Agricultural Science,60,106-109.
    [139]Walter I A, Allen R G, Elliott R et al.2005. ASCE's Standardized Reference Evapotranspiration Equation.
    [140]Wang Z Q, Zhang Y D.2000. Study on the root interactions between Fraxinus mandshurica and Larixgmelinii[J]. Acta Phytoecologica Sinica,24(3):346-350.
    [141]Willey R W.1979.Intercropping-its importance and research needs:Ⅱ. Agronomy and research approaches[J]. Field Crops Abstr,32,73-85.
    [142]Wilson S D, Tilman D.1993. Plant competition and resource availability in response to disturbance and fertilization[J]. Ecology,74:599-611.
    [143]Xiao Y B, Li L, Zhang F S.2004. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques[J].Plant Soil,262:45-54.
    [144]Xu Z Z, Yu Z W, Wang D, Zhang Y L.2005. Nitrogen accumulation and translocation for winter wheat under different irrigation regimes[J]. Agronomy and Crop Science,191:439-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700