用户名: 密码: 验证码:
小麦产量和氮素吸收利用特性的改良特征及生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物之一,提高小麦产量潜力和氮素吸收利用效率是解决全球粮食安全和保护生态环境的重要手段。品种改良是提高小麦产量和氮素吸收利用效率的重要措施之一,明确小麦品种产量和氮素吸收利用特性改良的规律及其生理基础对于阐释小麦产量形成机理和高效利用氮素机制及确定未来小麦高产高效育种目标均具有重要的意义。本研究选用20世纪50年代以来长江中下游冬麦区不同年代育成或引进的32个具有广泛代表性的小麦品种,采用大田试验在3个施氮处理(OkgNha-1,112.5kgNha-1和225kgNha-1)下研究了小麦品种改良过程中产量、主要农艺性状和氮素吸收利用特性的变化规律及生理基础。并在前期研究的基础上选用5个具有广泛代表性的小麦品种,采用大田和盆栽试验进一步探讨了不同年代小麦品种根系形态与生理特性、植株衰老特性和光合特性的差异及其与产量和氮素吸收利用的关系。主要研究结果如下:
     1小麦产量和主要农艺性状的改良特征及生理基础
     小麦籽粒产量随品种改良进程逐步提高,产量的演变特征在不同施氮条件下差异显著。产量年遗传进展在N225处理(53.8kgha-1yr-1)显著大于N112.5(43.7kgha-1yr-1)和NO (32.4kg ha-1yr-1)处理。小麦品种改良过程中穗粒数、千粒重和收获指数显著增加,而单位面积穗数从50年代至80年代显著下降,随后保持稳定。现代小麦品种对氮肥的响应增强,增施氮肥显著提高了小麦产量、单位面积穗数、穗粒数,但降低了千粒重;提高了开花期叶面积、叶面积指数和单穗产量,但降低了粒叶比,说明氮肥对优化小麦源库关系和提高产量具有重要的作用。同时也说明品种的氮肥效应在品种改良评价过程中应加以考虑。小麦品种改良过程中产量提高主要来源于以下几个方面:
     (1)单穗产量和收获指数的提高:在品种改良过程中单穗产量和收获指数显著增加,而生物产量在60年代降低,随后没有明显的变化。说明产量的增加主要来源于单穗产量和收获指数的增加而与生物产量没有明显的关系。比较收获指数和产量构成因素对产量的贡献发现,收获指数增加对产量贡献最大,在高氮处理千粒重对籽粒的贡献大于穗粒数,在低氮处理穗粒数大于千粒重,总体来看穗粒数和千粒重对产量的贡献几乎相同。穗粒数的增加来源于小穗结实率的提高,而与小穗数没有明显的关系。千粒重的提高来源于化后物质积累的增加和灌浆速率的提高。
     (2)植株形态的改良:小麦品种改良过程中株高从50年代至80年代显著降低,80年代以后保持相对稳定,基部节间在株高中的比例下降,而穗和穗下茎的比例升高,同时穗下颈在穗下节间的比例下降,说明旗叶和穗的相对位置升高。同时随着品种改良小麦叶片增大、叶面积指数提高、粒叶比增加。说明品种改良改善了植株形态、优化了源库关系,有利于提高抗倒伏能力和优化穗和旗叶的受光姿态,为小麦光合能力的提高奠定了基础。
     (3)叶片光合功能的改善:随着小麦品种改良小麦功能叶叶面积、叶面积持续期(LAD)、叶绿素含量、光合速率和光合高值持续期(PAD)显著提高,为产量提高提供了物质和能量来源。现代小麦品种实际光量子效率(ΦPSII)和最大光能转化效率(Fv/Fm)的下降速率较慢,表明品种改良提高了小麦花后光能利用能力和防御光抑制的能力,延缓了光合系统的衰老,是小麦产量提高的生理基础。
     (4)植株抗氧化能力的增强:小麦旗叶SOD.CAT和POD活性随品种育成年代显著提高,MDA含量显著降低,进一步表明品种改良通过提高小麦的活性氧清除能力,从而维持和延长LAD和PAD,为提高光合能力和获得高产奠定了生理基础。
     (5)灌浆速率的提高:现代小麦品种籽粒灌浆速率显著提高,最大灌浆时期提前,对提高籽粒产量和抵御后期灾害具有重要的意义。早期品种籽粒灌浆期库源比显著高于现代品种,说明品种改良降低了籽粒灌浆过程中源的限制性,使源库关系更加平衡。
     (6)物质积累转运的增加:品种改良过程中小麦拔节前和开花后物质积累量、群体生长速率显著提高,而拔节至开花阶段显著降低。花前干物质转运量、转运率和贡献率均随年代推进显著提高。说明品种改良协调了小麦不同生育阶段物质积累,平衡了花前和花后干物质对籽粒的贡献。品种改良降低了功能叶比叶重,提高了功能叶物质转运量和物质输出能力,表明现代品种资源获取能力和生产力增强,为产量的增加奠定了物质基础。
     综上:适当降低并稳定单位面积穗数和生物产量,提高单穗产量和收获指数是品种改良的重要特征。提高拔节前营养生长、增加花后干物质积累和花前物质转运是小麦产量改良的生物学基础。稳定叶面积指数,提高花后光合能力,在增加花后物质积累的基础上提高花前物质转运从而提高单穗产量是今后高产育种的重要目标。
     2小麦氮素吸收利用特性的改良特征及生理基础.
     品种改良过程中小麦氮素吸收利用效率逐步提高,主要由于以下形态和生理过程的变化引起的:
     (1)氮素积累转运特性的变化:品种改良过程中小麦旗叶可溶性蛋白含量、硝酸还原酶(NR)活性和谷氨酰胺合成酶(GS)活性显著提高,说明品种改良提高了小麦植株氮同化能力,为氮积累量的增加和氮效率的提高奠定了生理基础。氮效率的提高与花前氮素积累转运特性的改良关系密切。品种改良过程中小麦花前氮积累量、各器官的氮转运能力和拔节至开花阶段积累率显著提高,氮肥吸收效率和氮肥农学效率与开花前氮积累量和氮转运量显著正相关,叶片的转运量和转运率提高对氮效率的贡献最大。因此,增加花前氮积累量和拔节至开花阶段氮积累比例,提高营养器官氮素的转运能力是品种氮效率提高的重要原因。
     (2)根系形态生理的变化:品种改良提高了小麦拔节至开花阶段根系干物质积累量、生长速率和花后根系干物质转运量;增加了根系总根长、根系表面积、根体积、060cm各土层根重密度和上层根的分布比例。现代小麦品种根系活力显著提高,同时根系可溶性蛋白含量、SOD活性显著提高,MDA含量显著降低,说明品种改良改善了根系形态、延缓了根系的衰老,为产量和氮素吸收利用效率的提高奠定了生理基础。
     (3)光合面积和光合能力的提高:叶面积和光合能力提高与氮吸收利用效率关系密切。功能叶叶面积和叶面积持续期(LAD)与氮素籽粒生产效率(NYE)、氮肥吸收效率(NUpE)、氮素生理效率(NPE)显著正相关,最大光合速率与NUpE、NPE显著正相关,单位氮叶面积持续期(LADN)和单位氮光合持续期(PADN)与NFY和NHI显著正相关,与NUpE显著负相关。说明光合面积和光合能力的改良能拉动植株对氮的吸收,提高LADN和PADN可增加营养器官氮素向籽粒的转运,同时也说明LADN和PADN可作为氮转运和氮效率改良的评价指标。
     综上所述,品种改良通过提高花前NR、GS活性提高了植株的氮同化能力,从而增加了花前氮素积累量和拔节至开花阶段氮积累率;通过提高光合面积、光合能力、根系总根长、根系吸收面积、根系活力和根系氮同化能力提高了植株氮素吸收能力;通过增加氮素在叶片中的分配,提高了花前氮转运量。因此,提高NR、GS舌性和叶片光合能力、提高根系吸收面积和根系活力、增加开花期氮素在叶片中的分配是品种氮效率改良的生理基础,也是未来氮高效品种选育的重要目标。
Wheat is an important food crop worldwide. Genetic improvements have contributed much to wheat production since the1960s. Verifying the evolution of agronomic traits and the physiological basis of grain yield will facilitate breeders and agronomists in developing new wheat cultivars, with the aim of stable and high yields. Thirty-three wheat cultivars, bred or widely planted in the Yangtze River Basin from1950to2005, were grown in field experiments under three N rates (0,112.5, and225kg N ha-1) from2007to2011in Nanjing, China. And grain yield, main agronomic traits and physiological basis of nitrogen uptake during the wheat cultivars genetic improvement process were mensurated. Thereafter five represent culitvars were selected to further explore the relationship among root morphology and physiology, plant aging properties, properties of source and sink and nitrogen uptake use relation and the response of nitrogen fertilizer by field and pot experiment. The main results were summarized as follows:
     1Characteristics of genentic improvements on grain yield and agronomic traits of winter wheat and their physiological basis
     Wheat grain yield increased gradually with the genetic improvement process, the differences of the evolution characteristics on grain yield under different nitrogen rates were significant. Grain yield also increased with increased N fertilization rate; the annual increment was higher at225N (53.8kg ha-1year-1) than at112.5N (43.7kg ha-1year-1) and ON (32.4kg ha-1year-1), indicating that modern improved cultivars were more sensitive to increased N fertilizer application. Kernel number per spike and TKW increased linearly with genetic development of cultivars. Leaf area, LAI, and Pn increased significantly with increasing nitrogen fertilizer. Grain yield, spikes per unit land, and kernels per spike increased significantly with increasing nitrogen fertilizer, but TKW and HI decreased, indicating that nitrogen plays an important role to improve the grain yield and optimize the source-sink relationships of wheat. The grain yields increases were mainly related to the aspects as the follows:
     (1) The increase of spike yield and harvest index. Spike yield and HI increased linearly with cultivar development from1950s to2000s. Biomass decreased significantly from1950s to1960s but did not changed significantly in cultivars developed since the1960s. This indicates that the improved grain yield of the wheat cultivars was mainly related to improve spike yield and HI, not biomass. The contribution of HI was higher than kernels and TKW to grain yield. The contribution of TKW to grain yield was higher than kernels under high nitrogen rates (N225), but lower at N112.5and NO. In the whole, the kernels and TKW almost had the same contribution to grain yield. The grain number increase was mainly related to the increase of spikelet fertility, but not spikelet number, and the grain weight increase was mainly related to dry matter accumulation and grain filling rate.
     (2) The improvement of plant type. Cultivar height decreased with cultivar development from the1950s to the1980s, and remained relatively stable in subsequent cultivars. The proportion of the length of the top internode to total plant height increased with cultivar development from the1950s to the1980s and thereafter fell, while the length of the basal internode (BI) maintained a shortening trend. The proportion of the length of the spike to whole plant length and the ratio of neck-panicle node (NPN) length to top internode (T1) length decreased with cultivar development, indicating that the relative height of the spike and flag leaf increased, improving the position and light interception of the spike and flag leaf.
     (3) The improvement of photo synthetic function. Leaf area per culm, leaf area index (LAI) chlorophyll content, Pn and photosynthetic activity duration (PAD) increased with cultivar development, and the ΦPSII and Fv/Fm declining rate of modern cultivars were slower than earlier cultivars, the results showed that cultivars improvement increased the light energy use ability at after-anthesis and defense photoinhibition ability, delaying the aging of photosynthetic system, is the physiological basis of wheat source enhanced, which was the physiological basis of wheat source imcrease.
     (4) The improvement of plant antioxidant capacity. SOD, CAT and POD activity of flag leaf were improved significantly with the cultivars genetic progress, and the MDA content decreased significantly, which further showed that cultivars improvement improved the clearance ability of O2-, in order to maintain and extend the LAD and PAD, to establish the physiological basis for high yield.
     (5) The improvement of the grain filling rate. The grain filling rate of modern wheat cultivars increased significantly, the maximum grain filling period in advance of great significance to improve grain yield and to resist the post-disaster. Which were higher significantly than the early cultivars of the grain filling stage of library source than modern cultivars, nitrogen application significantly reduces the source-sink ratio, indicating that the improved cultivars to reduce the grain filling restrictive, so that a more balanced source-sink relationship.
     (6) The increase of dry matter accumulation and translocation. Genetic improvement increased the dry matter accumulation and growth rate in the growth stage of emergence to jointing and anthesis to maturity whereas reduced contribution of post-anthesis accumulated dry matter to grains (CPA). Grain yield was significantly positive associated with contribution of pre-anthesis translocation to grains (CPT), dry matter accumulation and growth rate from emergence to jointing and anthesis to maturity, whereas significantly negative with CPA, dry matter accumulation and growth rate from jointing to anthesis. Dry matter production capacity and production efficiency were improved during wheat cultivar improvement, yet dry matter accumulation at different growth stage were coordinated and the contribution of pre-anthesis and post-anthesis accumulation to grains became more balance.
     In conclusion, breeding for high yield should be related to improvement in kernels per spike and TKW per unit land and increased sink-source ratios with a feasible LAI, and N fertilizer management should be considered during breeding for higher yields. Improving the pre-jointing vegetative growth post-anthesis accumulation and CPT are important physiological basis for wheat grain yield enhancement, which will be a key improvement target for high yield wheat breeding in the future.
     2Characteristics of genentic improvements on nitrogen uptke and utilization of winter wheat and their physiological basis
     The nitrogen uptake and utilization efficiency increased gradually during the cultivars genetic imprvement, and the increase of nitrogen utilization efficiency were mainly due to the improvement of the morphological and physiological process as the following:
     (1) The improvement of N accumulation and translocation. Soluble protein content, nitrate reductase (NR) and glutamine synthase (GS) activity of wheat flag leaf increased significantly with cultivars genetic progress, indicating that cultivars genetic improvement improved the assimilation nitrogen and ammonium nitrate ability of the plant. The pre-anthesis nitrogen accumulation, nitrogen translocation of each organs increased significantly, nitrogen residual of plant vegetative organs in maturation decrease and grain nitrogen accumulation were improved, which showed that the improvement of nitrogen efficiency were closely related to pre-anthesis nitrogen accumulation, distribution and translocation enhancement. The nitrogen accumulation of different wheat cultivars were jointing to anthesis stage in peak, along with aging propulsion, wheat flowering stage to jointing stage accumulation rate significantly increased. Modern cultivars leaf nitrogen distribution and translocation rate increased significantly. Therefore, increasing the pre-anthesis nitrogen accumulation and improving nitrogen distribution in leaves are the important characteristics of nitrogen efficiency improved, also the important breeding nitrogen efficiency index.
     (2) The improvement of root type and root physiology. The root dry matter accumulation, growth rate and after-anthesis dry matter translocation from jointing to flowering stage were improved during the cultivars genetic improvement. And the total root length, root surface area and root volume have gradually improvement with cultivar genetic progress, wheat cultivar improvement enhanced distribution proportion about the root weight of0to60cm soil and root density in0-20cm of the soil. Along with the incubation of cultivars genetic progress, wheat root soluble protein content, SOD activity improved significantly and significantly reduce the MDA content, root activity was improved significantly explaining that genetics improvement delayed the root of aging, to improve yield and nitrogen uptake efficiency. Nitrogen efficiency was significantly and positively associated with total root length, root surface area, root volume, NR, GS and SOD activity, was significantly and negatively associated with root MDA content at flowering time, indicating that increasing total root length, and root surface root volume, improving NR, GS and SOD activity, reducing the MDA content played an important role on the nitrogen efficiency.
     (3) The improvement of photosynthetic area and photosynthetic ability. The leaf area duration per unit nitrogen (LADN) and photosynthetic activity duration per unit nitrogen (PADN) increased linearly with cultivars genetic progress, and there were different expression in different nitrogen treatment under the different leaves, showed that the enhanced source that could pull plant nitrogen-uptake, meanwhile that nitrogen fertilizer plays an important regulated role of the source-sink balance and nitrogen uptake. The maximum effective leaf area was significantly and positively associated with nitrogen grain yield efficiency (NYE), nitrogen uptake efficiency (NUpE), nitrogen physiological efficiency (NPE), the biggest photosynthetic rate was significantly and positively associated with NRE and NPE, PAD was significantly and positively associated with NYE and NPE, yield per-spike was significantly and positively associated with NYE, NAE, NUpE and NPE. LADN and PADN was significantly and positively associated with NFY and NH, while was significantly and negatively associated with NUpE. Indicating that improve LADN and PADN could improve nitrogen translocation from vegetative organs to grain, also explaining LADN and PADN could be used as nitrogen translocation and nitrogen efficiency evaluation index.
     In conclusion, cultivars improvement increased NR and GS activity of flag leaf at pre-antheshis to improve nitrogen assimilation ability of the plant, thereby increasd the amount of nitrogen accumulation and nitrogen accumulation rato of jointing to anthesis stage; increased the photosynthetic area, photosynthetic capacity, root, total root length, root absorption area, root activity and root nitrogen assimilation improved the nitrogen uptake capacity; increasing the distribution of nitrogen in the leaves, the nitrogen translocation of pre-anthesis. Therefore, the improvement of the NR GS activity and leaf photosynthetic capacity, root absorption area and root activity, to increase the distribution of nitrogen in the leaves are the important physiological basis for wheat N efficiency enhancement, which will be a key improvement target for high N efficiency wheat breeding in the future.
引文
[1]肖世和.产量潜力改良.中国小麦品种改良及系谱分析[M].庄巧生主编.北京:中国农业出版社:2003;498-519.
    [2]Novoselovic, D., Drezner, G., Lalic, A. Contribution of wheat breeding to increased yields in Croatia from 1954 to 1985. year[J]. Cereal Research Communications,2000,28:95-99.
    [3]张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [4]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):154-157.
    [5]Jing, Q., Bouman, B., Hengsdijk, H., Van Keulen, H., Cao, W. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. European Journal of Agronomy,2007,26 (2):166-177.
    [6]Zelitch, I. The close relationship between net photosynthesis and crop yield[J]. BioScience,1982, 796-802.
    [7]He, J., Tan, B. H. G., Qin, L. Source-to-sink relationship between green leaves and green pseudobulbs of C3 orchid in regulation of photosynthesis[J]. Photosynthetica,2011,1-10.
    [8]Brown, R., Bhagsari, A. Leaf photosynthesis and its correlation with leaf area[J]. Crop Science,1986, 26(1):127-132.
    [9]Nelson, C. Genetic associations between photosynthetic characteristics and yield:review of the evidence[J]. Plant Physiology and Biochemistry,1988,26 (4):543-554.
    [10]Evans, L. T. Crop evolution, adaptation and yield Cambridge Univ Press[J]. Cambridge, UK,1993, 169-267.
    [11]Lawlor, D. W. Photosynthesis, productivity and environment[J]. Journal of Experimental Botany, 1995,46 (special issue):1449-1461.
    [12]Kongjika, E., Mathis, P. Photosynthetic characteristics of some varieties and mutantsof wheat as the yield components. Photosynthesis:from Light to Biosphere. Vol. V[A].1995; 801-804.
    [13]Reynolds, M., Pfeiffer, W. Applying physiological strategies to improve yield potential[J]. Durum Wheat Improvement in the Mediterranean Region:New Challenges. CIHEAM-Options Mediterraneennes,2000,95-103.
    [14]Tian, Z., Jing, Q., Dai, T., Jiang, D., Cao, W. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China[J]. Field Crops Research, 2011,124 (3):417-425.
    [15]Cabrera-Bosquet, L., Albrizio, R., Araus, J. L., Nogues, S. Photosynthetic capacity of field-grown durum wheat under different N availabilities:A comparative study from leaf to canopy[J]. Environmental and experimental botany,2009,67 (1):145-152.
    [16]Makine, A., Mac T, C. K. Changes in photosynthetic capacity in rice leaves fromemergence through senescence-analysis from ribulose 1,5-bisphosphate carboxylase and leafconductance[J]. Plant Physiol,1984,25:511-521.
    [17]Richards, R. A. Selectable traits to increase crop photosynthesis and yield of grain crops[J]. Journal of Experimental Botany,2000,51 (Special Issue):447-458.
    [18]Sharma, K., Dhingra, K. K., Dhillon, M. S. Physiological in diees for high yield potential in different genotypes of wheat[J]. Environment and Ecology,1994,12:717-719.
    [19]Akita, S. Improving yield potential in tropical rice[J]. In Progress in Irrigated Rice Res. IRRI, Los Banos,1989,41-43.
    [20]Evans, L. T., Dunstone, R. L. Some physiological aspects of evolution in wheat[J]. Aust. J. Biol. Sci.,1970,23 (4):725-742.
    [21]Jiang, G., Sun, J., Liu, H., Qu, C., Wang, K., Guo, R., Bai, K., Gao, L., Kuang, T. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years[J]. Journal of plant research,2003,116 (5):347-354.
    [22]Sayre, K. D., Rajaram, S., Fischer, R. A. Yield potential progress in short bread wheats in northwest Mexico[J]. Crop Science,1997,37 (1):36-42.
    [23]Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z. M., Condon, A. G., Saavedra, A. L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies[J]. Crop Science,1998,38 (6):1467-1475.
    [24]Lakkineni, K., Sivasankar, A., Kumar, P., Nair, T., Abrol, Y. Carbon dioxide assimilation in urea-treated wheat leaves[J]. Journal of plant nutrition,1995,18 (10):2213-2217.
    [25]Lu, Z., Percy, R. G., Qualset, C. O., Zeiger, E. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures[J]. Journal of Experimental Botany,1998, 49 (Special Issue):453-460.
    [26]Fischer, R. A. Optimizing the use of water and nitrogen through breeding of crops[J]. Plant and Soil, 1981,58(1):249-278.
    [27]Reynolds, M., Balota, M., Delgado, M., Amani, I., Fischer, R. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions[J]. Functional Plant Biology, 1994,21 (6):717-730.
    [28]Reynolds, M., Ortiz-Monasterio, J., McNab, A. Application of physiology in wheat breeding[M]. Cimmyt,2001.
    [29]Peng, S., Krieg, D. R., Girma, F. S. Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines[J]. Photosynthesis. Research,1991,28 (1):1-7.
    [30]Jiang, G. M., Hao, N. B., Bai, K. Z., Zhang, Q. D., Sun, J. Z., Guo, R. J., Ge, Q. Y., Kuang, T. Y. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars[J]. Photosynthetica,2000,38 (2):227-232.
    [31]Aliev, J., Guliev, N., Kerimov, S. K., Hidayatov, R. Photosynthetic enzymes of wheat genotypes differing in productivity[J]. Photosynthetica,1996,32:77-85.
    [32]Fischer, R. The importance of grain or kernel number in wheat:A reply to Sinclair and Jamieson[J]. Field Crops Research,2008,105 (1-2):15-21.
    [33]Raj, T., Gill, D., Singh, B., Sidhu, S. Studies on Source-Sink Relationship of Plant Architecture Manipulation and Biomass Partitioning in Wheat (Triticum Aestivum L.)[J]. Indian Journal of Agricultural Research,2011,45 (4):291-298.
    [34]Ayeneh, A., Van Ginkel, M., Reynolds, M. P., Ammar, K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress[J]. Field Crops Research,2002,79 (2-3): 173-184.
    [35]Foulkes, M. J., Snape, J. W., Shearman, V. J., Reynolds, M. P., Gaju, O., Sylvester-Bradley, R. Genetic progress in yield potential in wheat:recent advances and future prospects[J]. Journal of Agricultural Science,2007,145 (1):17-29.
    [36]Fischer, R. A. Understanding the physiological basis of yield potential in wheat[J]. Journal of Agricultural Science,2007,145 (2):99-113.
    [37]Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., Spiertz, H. J. A flexible sigmoid function of determinate growth[J]. Annals of Botany,2003,91 (3):361-371.
    [38]Yin, X., Guo, W., Spiertz, J. H. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes[J]. Field Crops Research,2009,114 (1): 119-126.
    [39]刘克礼,翟利剑,高聚林,张永平,刘景辉.春小麦源库特性及其关系的研究(Ⅱ)--—-群体库源比及其与产量的关系[J].麦类作物学报,2004,23(4):63-65.
    [40]宋荷仙,李跃建,冯君成,刘宗典,杨永澄.小麦收获指数和源,库性状的遗传研究[J].中国农业科学,1993,26(3):21-26.
    [41]Reynolds, M. P., Pellegrineschi, A., Skovmand, B. Sink-limitation to yield and biomass:a summary of some investigations in spring wheat[J]. Annals of Applied Biology,2005,146 (1):39-49.
    [42]Miralles, D. J., Slafer, G. A. Sink limitations to yield in wheat:how could it be reduced?[J]. Journal of Agricultural Science,2007,145 (2):139-149.
    [43]Bancal, P. Decorrelating source and sink determinism of nitrogen remobilization during grain filling in wheat[J]. Annals of Botany,2009,103 (8):1315-1324.
    [44]Panozzo, J., Eagles, H. Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments[J]. Australian Journal of Agricultural Research,1999,50 (6):1007-1015.
    [45]Rajala, A., Hakala, K., Makela, P., Muurinen, S., Peltonen-Sainio, P. Spring wheat response to timing of water deficit through sink and grain filling capacity[J]. Field Crops Research,2009,114 (2):263-271.
    [46]Ali, M., Hussain, M., Khan, M., Ali, Z., Zulkiffal, M., Anwar, J., Sabir, W., Zeeshan, M. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum)[J]. International Journal of Agriculture and Biology,2010,12 509-515.
    [47]Borras, L., Slafer, G. A., Otegui, M. E. Seed dry weight response to source-sink manipulations in wheat, maize and soybean:a quantitative reappraisal[J]. Field Crops Research,2004,86 (2): 131-146.
    [48]Liu, H., Jiang, G., Zhang, Q., Sun, J., Guo, R., Gao, L., Bai, K., Kuang, T. Gas Exchange Responses to CO 2 Concentration Instantaneously Elevated in Flag Leaves of Winter Wheat Cultivars Released in Different Years[J]. Photosynthetica,2002,40 (2):237-242.
    [49]Rajcan, I., Tollenaar, M. Sourcea:asink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research,1999,60 (3):245-253.
    [50]Zhu, C., Zhu, J., Zeng, Q., Liu, G., Xie, Z., Tang, H., Cao, J., Zhao, X. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation[J]. Functional Plant Biology,2009,36 (4):291-299.
    [51]Wang, Z., Yin, Y., He, M., Cao, H. Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat[J]. Photosynthetica,1998,35 (3):453-459.
    [52]Blum, A., Mayer, J., Golan, G. The effect of grain number per ear (sink size) on source activity and its water-relations in wheat[J]. Journal of Experimental Botany,1988,39 (1):106-114.
    [53]Uddling, J., Gelang-Alfredsson, J., Karlsson, P. E., Sellden, G., Pleijel, H. Source-sink balance of wheat determines responsiveness of grain production to increased CO2 and water supply [J]. Agriculture, Ecosystems & Environment,2008,127 (3):215-222.
    [54]Madani, A., Shirani-Rad, A., Pazoki, A., Nourmohammadi, G., Zarghami, R., Mokhtassi-Bidgoli, A. The impact of source or sink limitations on yield formation of winter wheat (Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies[J]. Plant, Soil and Environment,2010,56 (5): 218-227.
    [55]Fischer, R. A., Ris, H., Lambers, D. Effect of environment and cultivar on source limitation to grain weight in wheat[J]. Australian Journal of Agricultural Research,1978,29 (3):443-458.
    [56]Koshkin, E., Tararina, V. Yield and source/sink relations of spring wheat cultivars[J]. Field Crops Research,1989,22 (4):297-306.
    [57]Kruk, B. C., Calderini, D. F., Slafer, G. A. Grain weight in wheat cultivars released from 1920 to 1990 as affected by post-anthesis defoliation[J]. Journal of Agricultural Science,1997,128 273-281.
    [58]Slafer, G., Savin, R. Source--sink relationships and grain mass at different positions within the spike in wheat[J]. Field Crops Research,1994,37 (1):39-49.
    [59]Masoni, A., Ercoli, L., Mariotti, M., Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy,2007,26 (3):179-186.
    [60]Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M., Martre, P. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat:An experimental and simulation study[J]. Field Crops Research,2010,117 (2-3):245-257.
    [61]李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):1992-2000.
    [62]刘万代,尹钧,朱高纪.剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响[J].中国农业科学,2007,2007,40(7):1353-1360.
    [63]Morgounov, A., Zykin, V., Belan, I., Roseeva, L., Zelenskiy, Y., Gomez-Becerra, H. F., Budak, H., Bekes, F. Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900-2008[J]. Field Crops Research,2010,117(1):101-112.
    [64]李国强,汤亮,张文宇,曹卫星,朱艳.不同株型小麦干物质积累与分配对氮肥响应的动态分析[J].作物学报,2009,35(12):2258-2265.
    [65]张法全,王小燕,于振文,王西芝,白洪立.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [66]雷振生,林作楫.河南小麦品种农艺性状演变及今后育种方向[J].中国农业科学,1995,28(增刊):28-33.
    [67]Fang, Y., Xu, B.-c., Turner, N. C., Li, F.-M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning[J]. European Journal of Agronomy,2010,33 (4):257-266.
    [68]陆增根,戴廷波,姜东,荆奇,吴正贵,周培南,曹卫星.氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响[J].作物学报,2007,33(4):590-597.
    [69]Beers, E. P. Programmed cell death during plant growth and development[J]. Cell Death and Differentiation,1997,4 (8):649.
    [70]Thomas, H., Ougham, H. J., Wagstaff, C., Stead, A. D. Defining senescence and death[J]. Journal of Experimental Botany,2003,54 (385):1127-1132.
    [71]Yoshida, S. Molecular regulation of leaf senescence[J]. Current opinion in plant biology,2003,6(1): 79-84.
    [72]Lim, P. O., Woo, H. R., Nam, H. G Molecular genetics of leaf senescence in Arabidopsis[J]. Trends in plant science,2003,8 (6):272-278.
    [73]Humbeck, K., Quast, S., Krupinska, K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants[J]. Plant, Cell & Environment,1996,19 (3):337-344.
    [74]Lu, C., Lu, Q., Zhang, J., Kuang, T. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field[J]. Journal of Experimental Botany,2001,52 (362):1805-1810.
    [75]Lu, C., Lu, Q., Zhang, J., Zhang, Q., Kuang, T. Xanthophyll cycle, light energy dissipation and photosystem Ⅱ down-regulation in senescent leaves of wheat plants grown in the field[J]. Functional Plant Biology,2001,28 (10):1023-1030.
    [76]Cassan, L., Corbineau, F., Limami, A. M. Genetic variability of nitrogen accumulation during vegetative development and remobilization during the forcing process in witloof chicory tuberized root (Cichorium intybus L.)[J]. Journal of Plant Physiology,2008,165 (16):1667-1677.
    [77]Evans, L., Fischer, R. Yield potential:its definition, measurement, and significance[J]. Crop Science, 1999,39 (6):1544-1551.
    [78]Cox, T. S., Shroyer, J. P., Ben-Hui, L., Sears, R. G., Martin, T. J. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987[J]. Crop Science,1988,28 (5):756-760.
    [79]Donmez, E., Sears, R., Shroyer, J., Paulsen, G. Genetic gain in yield attributes of winter wheat in the Great Plains[J]. Crop Science,2001,41 (5):1412-1419.
    [80]McCaig, T. N., DePauw, R. M. Breeding hard red spring wheat in western Canada:Historical trends in yield and related variables[J]. Canadian Journal of Plant Science,1995,75387-393.
    [81]Brancourt-Hulmel, M., Doussinault, G., Lecomte, C., Berard, P., Le Buanec, B., Trottet, M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science,2003,43 (1):37-45.
    [82]Shearman, V. J., Sylvester-Bradley, R., Scott, R. K., Foulkes, M. J. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science,2005,45 (1):175-185.
    [83]Canevara, M. G., Romani, M., Corbellini, M., Perenzin, M., Borghi, B. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900[J]. European Journal of Agronomy,1994,3 (3):175-185.
    [84]Fanny, A., Julio, I., Dolors, V., Luis, F., Garcia, d. M., Conxita, R. Old and modern durum wheat varieties from Italy and Spain differ in main spike components[J]. Field Crops Research,2008,106 (1):86-93.
    [85]Calderini, D. F., Dreccer, M. F., Slafer, G. A. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends[J]. Plant Breeding,1995,114 (2): 108-112.
    [86]Ortiz-Monasterio, R. J. I., Sayre, K. D., Rajaram, S., Mcmahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates[J]. Crop Science,1997,37 (3):898-904.
    [87]庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社:2003.
    [88]周阳.中国冬小麦产量潜力及重要农艺性状的遗传改良[D].陕西:西北农林科技大学2005.
    [89]Austin, R., Ford, M., Morgan, C. Genetic improvement in the yield of winter wheat:a further evaluation[J]. Journal of Agricultural Science,1989,112 (3):295-301.
    [90]Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L., Taylor, M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes[J]. Journal of Agricultural Science,1980,94 (3):675-689.
    [91]Acreche, M. M., Slafer, G. A. Grain weight response to increases in number of grains in wheat in a Mediterranean area[J]. Field Crops Research,2006,98 (1):52-59.
    [92]Sinclair, T. R., Jamieson, P. D. Grain number, wheat yield, and bottling beer:an analysis[J]. Field Crops Research,2006,98 (1):60-67.
    [93]Duggan, B. L., Domitruk, D. R., Fowler, D. B. Yield component variation in winter wheat grown under drought stress[J]. Canadian Journal of Plant Science,2000,80 (4):739-745.
    [94]Sadras, V. O. Evolutionary aspects of the trade-off between seed size and number in cropsfJ]. Field Crops Research,2007,100 (2-3):125-138.
    [95]Yu, S. R., Wu, Z. S., Yang, Z. P. Genetic improvement in yield and its associated traits of wheat cultivars in northern Jiangsu Province since 1970s[J]. Sci. Agric. Sin.,1988,21 (4):15-21.
    [96]Zhou, Y., Zhu, H. Z., Cai, S. B., He, Z. H., Zhang, X. K., Xia, X. C., Zhang, G. S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000[J]. Euphytica,2007,157 (3):465-473.
    [97]吴兆苏,魏燮中.长江下游地区小麦品种更替中产量及有关性状的演变与发展方向[J].中国农业科学,1984,17(3):14-21.
    [98]俞世蓉,吴兆苏,杨竹平.江苏淮南地区70年代以来小麦品种产量及产量因素的演变[J].中国农业科学,1988,21(4):15-21.
    [99]许为钢,胡琳,吴兆苏,盖钧镒.关中地区小麦品种产量与产量结构遗传改良的研究[J].作物 学报,2000,26(3):352-358.
    [100]Peltonen-Sainio, P., Peltonen, J. Progress since the 1930s in breeding for yield, its components, and quality traits of spring wheat in Finland[J]. Plant Breeding,1994,113 (3):177-186.
    [101]Boyadjieva, D. A study on the wheat productivity criteria for the breeding of drought tolerant cultivars[J]. Cereal Research Communications,1996,24 (3):299-305.
    [102]Worland, A., Sayers, E., Korzun, V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes[J]. Euphytica,2001,119 (1):157-161.
    [103]徐相波,张爱民,李新华,孙永堂.小麦矮源的利用和矮秆基因的研究进展[J].核农学报,2001,15(3):188-192.
    [104]Balyan, H. S., Singh, T. The usefulness of biparental matings and geno-phenotypic selection for yield improvement in wheat (Triticum aestivum L.)[J]. Indian Journal of Genetics and Plant Breeding,1997,57 (4):401-410.
    [105]Yagbasanlar, T., Oezkan, H., Gene, I. Relationships of growth periods, harvest index and grain yield in common wheat under Mediterranean climatic conditions[J]. Cereal Research Communications,1995,23:59-59.
    [106]Uddling, J., Gelang-Alfredsson, J., Karlsson, P. E., Sellden, G., Pleijel, H. Source-sink balance of wheat determines responsiveness of grain production to increased CO2 and water supply[J]. Agr. Ecosyst. Environ.,2008,127 (3-4):215-222.
    [107]Flintham, J. E., Gale, M. D. The Tom Thumb dwarfing gene Rht3 in wheat[J]. Theor Appl Genet, 1983,66 (3):249-256.
    [108]Rastogi, N. K. Multiple regression analysis as screening tool for yield improvement in wheat[J]. Advances in Plant Sciences,1997,10211-213.
    [109]Mondal, A., Sadhu, D., Sarkar, K. Correlation and path analysis in bread wheat[J]. Environment and Ecology,1997,15:537-539.
    [110]Donald, C. The breeding of crop ideotypes[J]. Euphytica,1968,17 (3):385-403.
    [111]Rasmusson, D. A plant breeder's experience with ideotype breeding[J]. Field Crops Research,1991, 26 (2):191-200.
    [112]Rajaram, S., Hettel, G. P. Wheat breeding at CIMMYT:commemorating 50 years of research in Mexico for global wheat improvement:Ciudad Obregon, Sonora, Mexico,21-25 March,1994[M]. Cimmyt,1995.
    [113]韩胜芳,李淑文,吴立强,文宏达,肖凯.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J].应用生态学报,2007,18(4):807-812.
    [114]孙传范,戴廷波,荆奇,姜东,曹卫星.小麦品种氮利用效率的评价指标及其氮营养特性研 究[J].应用生态学报,2004,15(6):983-987.
    [115]Moll, R. H., Kamprath, E. J., Jackson, W. A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal,1982,7526-564.
    [116]Noyoa, R., Loomis, R. Nitrogen and plant production[J]. Plant and Soil,1981,58 (1):177-204.
    [117]李韵珠,陆锦文,罗远培.土壤水和养分的有效利用[M].北京农业大学出版社,1994.
    [118]彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Buresh,R.,Witt,C.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [119]Zhu, Z., Chen, D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63 (2):117-127.
    [120]刘学军,赵紫娟,巨晓棠,张福锁.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    [121]Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C. E., Hawkesford, M. J. Nitrogen efficiency of wheat:Genotypic and environmental variation and prospects for improvement[J]. European Journal of Agronomy,2010,33 (1):1-11.
    [122]Gaju, O., Allard, V, Martre, P., Snape, J. W., Heumez, E., LeGouis, J., Moreau, D., Bogard, M., Griffiths, S., Orford, S., Hubbart, S., Foulkes, M. J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes[J]. Field Crops Research,2011,123 (2):139-152.
    [123]Cornelius, P., Mackown, C., May, L., Van Sanford, D. Genetic Variation for Nitrogen Use in Soft RedxHard Red Winter Wheat Populations[J]. Crop Science,1991,31 (3):626-630.
    [124]李艳,董中东,郝西,崔党群.小麦不同品种的氮素利用效率差异研究[J].中国农业科学,2007,40(3):472-477.
    [125]张洋,张继,强晓敏,翟丙年,王朝辉.不同氮效率基因型冬小麦生理特征的比较研究[J].植物营养与肥料学报,2010,16(6):1319-1324.
    [126]毕珍,翟丙年,张敏敏,李生秀,石辉.不同氮效率冬小麦品种生长发育特征比较研究[J].干旱地区农业研究,2008,26(6):91-96.
    [127]韩胜芳,李淑文,文宏达,李雁鸣,肖凯.不同氮效率小麦品种的光合碳同化特性[J].植物营养与肥料学报,2006,12(6):797-804.
    [128]Schenk, M. Regulation of nitrogen uptake on the whole plant level[J]. Plant and Soil,1996,181 (1):131-137.
    [129]Hocking, P., Stapper, M. Effects of sowing time and nitrogen fertiliser on canola and wheat, and nitrogen fertiliser on Indian mustard. Ⅱ. Nitrogen concentrations, N accumulation, and N fertiliser use efficiency[J]. Australian journal of agricultural research,2001,52 (6):635-644.
    [130]Hou, Y. L., O Brien, L., Zhong, G. R. Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat[J]. Acta Agronomica Sinica,2001,27 (4): 493-499.
    [131]杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J].中国农业科学,2011,44(1):36-46.
    [132]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报,1996,2(4):331-336.
    [133]李淑文,周彦珍,文宏达,李雁鸣,肖凯.不同小麦品种氮效率和产量性状的研究[J].植物遗传资源学报,2006,7(2):204-208.
    [134]Wilkins, P., Macduff, J., Raistrick, N., Collison, M. Varietal differences in perennial ryegrass for nitrogen use efficiency in leaf growth following defoliation:performance in flowing solution culture and its relationship to yield under simulated grazing in the field[J]. Euphytica,1997,98 (1): 109-119.
    [135]Mae, T. Physiological nitrogen efficiency in rice:Nitrogen utilization, photosynthesis, and yield potential[J]. Plant and Soil,1997,196 (2):201-210.
    [136]Dhugga, K. S., Waines, J. Analysis of nitrogen accumulation and use in bread and durum wheat[J]. Crop science,1989,29 (5):1232-1239.
    [137]Loffer, C., Rauch, T., Busch, R. Grain and plant protein relationships in hard red spring wheat[J]. Crop science,1985, (25):521-524.
    [138]Debaeke, P., Aussenac, T., Fabre, J., Hilaire, A., Pujol, B., Thuries, L. Grain nitrogen content of winter bread wheat (Triticum aestivum L.) as related to crop management and to the previous crop[J]. European Journal of Agronomy,1996,5 (3-4):273-286.
    [139]童依平,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究:1.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277.
    [140]童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究Ⅱ.影响吸收效率的因素分析[J].西北植物学报,1999,19(3):393-401.
    [141]Fageria, N., Baligar, V. Screening crop genotypes for mineral stresses[A]. In 1993; 142-165.
    [142]May, L., Van Sanford, D., MacKown, C., Cornelius, P. Genetic variation for nitrogen use in soft red X hard red winter wheat populations[J]. Crop Science,1991,31 (3):626-630.
    [143]Inukai, Y., Ashikari, M., Kitano, H. Function of the root system and molecular mechanism of crown root formation in rice[J]. Plant and cell physiology,2004,45(suppl):17.
    [144]Weaver, J. E. The ecological relations of roots[M]. Carnegie Institution of Washington,1919.
    [145]马新明,王志强,王小纯,王书丽.氮素形态对不同专用型小麦根系及氮素利用率影响的研 究[J].应用生态学报,2004,15(4):655-658.
    [146]冯福学,黄高宝,柴强,于爱忠,乔海军,黄涛.不同耕作措施对冬小麦根系时空分布和产量的影响[J].生态学报,2009,29(5):2499-2506.
    [147]汪晓丽,陶玥玥,盛海君,封克.硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J].麦类作物学报,2010,(1):129-134.
    [148]翟丙年,孙春梅,王俊儒,李生秀.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29(6):913-918.
    [149]姜东,于振文,苏波,许玉敏,余松烈.不同施氮时期对冬小麦根系衰老的影响[J].作物学报,1997,23(2):181-190.
    [150]高志红,陈晓远,罗远培.不同土壤水分条件下冬小麦根、冠平衡与生长稳定性研究[J].中国农业科学,2007,40(3):540-548.
    [151]王法宏,王旭清,李松坚,边麦玲,于振文,余松烈.高产小麦生育后期不同层次土壤中根系活性的研究[J].作物学报,2001,27(6):891-895.
    [152]孙敏,郭文善,朱新开,封超年,郭凯泉,彭永欣.不同氮效率小麦品种苗期根系的N03(?)-,NH4(?)+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [153]雍太文,陈小容,杨文钰,向达兵,樊高琼.小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究[J].作物学报,2010,36(3):477-485.
    [154]Chevalier, P., Schrader, L. E. Genotypic difference in nitrate absorption and partitioning of N among plant parts[J]. Crop Science,1977,17(6):897-901.
    [155]Barber, S. A. Soil nutrient bioavailability:A mechanistic approach[M]. New York:Wiley interscience,1984:382-409.
    [156]廖红,严小龙.高级植物营养[M].北京:科学出版社,2003:22-30.
    [157]程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266-272.
    [158]Passioura, J. Roots and drought resistance[J]. Agricultural Water Management,1983,7 (1-3): 265-280.
    [159]张岁岐,山仑,邓西平.小麦进化中水分利用效率的变化及其与根系生长的关系[J].科学通报,2002,47(17):1327-1331.
    [160]魏海燕,张洪程,张胜飞,杭杰,戴其根,霍中洋,许轲,马群,张庆,刘艳阳.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429-436.
    [161]Kamh, M., Wiesler, F., Ulas, A., Horst, W. J. Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency[J]. Journal of Plant Nutrition and Soil Science,2005,168(1):130-137.
    [162]魏海燕,张洪程,张胜飞,杭杰,戴其根,霍中洋,许轲,马群,张庆,刘艳阳.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429-436.
    [163]贾永国,安调过,李俊明,童依平,安忠民.不同小麦基因型孕穗期根系性状与吸氮量的关系[J].华北农学报,2006,21(3):37-40.
    [164]陈范骏,米国华,刘建安,张福锁.玉米自交系木质部伤流液中氮素形态差异及其与氮效率的关系[J].中国农业科学,1999,32(5):43-48.
    [165]Pace, G. M., McClure, P. R. Comparison of nitrate uptake kinetic parameters across maize inbred lines[J]. Journal of Plant Nutrition,1986,9(8):1095-1111.
    [166]孙敏,郭文善,朱新开,封超年,郭凯泉,彭永欣.不同氮效率小麦品种苗期根系的NO3-、NH4+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [167]Asseng, S., Turner, N., Keating, B. Analysis of water-and nitrogen-use efficiency of wheat in a Mediterranean climate[J]. Plant and Soil,2001,233 (1):127-143.
    [168]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [169]王月福,于振文.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [170]王洪刚,姜丽君,张德水,孔令让,李斯深.小麦叶片中硝酸还原酶活性、游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系研究[J].西北植物学报,1995,15(4):282-287.
    [171]李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):1992-2000.
    [172]Eichelberger, K. D., Lambert, R. J., Below, F. E., Hageman, R. H. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. I:Selection and correlated responses[J]. Crop science,1989,29 (6):1393-1397
    [173]曾建敏,崔克辉,黄见良,贺帆,彭少兵.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [174]Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., Dellay, C., Gouy, A., Cadiou, S., Retailliau, C., Falque, M., Gallais, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize[J]. Plant Physiology,2001125 (3):1258-1270
    [175]王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [176]Habash, D. Z., Massiah, A. J., Rong, H. L., Wallsgrove, R. M., Leigh, R. A. The role of cytosolic glutamine synthetase in wheat[J]. Annals of Applied Biology,2001,138(7):309-316.
    [177]谢祝捷,姜东,曹卫星,戴廷波,荆奇.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学学报,2003,29(4):309-316.
    [178]Cassman, K., Peng, S., Olk, D., Ladha, J., Reichardt, W., Dobermann, A., Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Research,1998,56 (1-2):7-39.
    [179]Novoa, R., Loomis, R. S. Nitrogen and plant production[J]. Plant and Soil,1981,58(1-3): 177-204.
    [180]江立庚.水稻品种氮素吸收利用效率的生理生态特征及调控研究[D].南京:南京农业大学2003.
    [181]Eriesson, T. Growth and shoot:root allocation of seedlings in relation to nutrient availability[J]. Plant and Soil,1995,168(1):205-214.
    [182]李燕婷,米国华,陈范骏,劳秀荣,张福锁.玉米幼苗地上部/根间氮的循环及其基因型差异[J].植物生理学报,2001,27(3):226-230.
    [183]Cooper, H. D., Clarkson, D. T. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals:A possible mechanism integrating shoot and root in the regulation of nutrient uptake[J]. Journal of Experimental Botany 1989,40(7):753-762.
    [184]杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型氮的吸收,转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260.
    [185]Masclaux, C., Quillere, I., Gallais, A., Hirel, B. The challenge of remobilisation in plant nitrogen economy:A survey of physioagronomic and molecular approaches[J]. Annals of Applied Biology, 2001,138(1):69-81.
    [186]宋海星,官春云,刘强,刘代平,荣湘民,陈社员.施氮对“双低”油菜吸氮特性及氮素生理效率的影响[J].水土保持学报,2006,20(4):106-109.
    [187]Andersson, A., Johansson, E., Oscarson, P. Nitrogen redistribution from the roots in post-anthesis plants of spring wheat[J]. Plant and Soil,2005,269(1-2):321-332.
    [188]Stamp, P., Banziger, M., Feil, B. Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat[J]. Crop science,1994,34 (2):440-446.
    [1]Cassan, L., Corbineau, F., Limami, A. M. Genetic variability of nitrogen accumulation during vegetative development and remobilization during the forcing process in witloof chicory tuberized root (Cichorium intybus L.)[J]. Journal of Plant Physiology,2008,165 (16):1667-1677.
    [2]庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社:2003.
    [3]Richards, R. A. Selectable traits to increase crop photosynthesis and yield of grain crops[J]. Journal of Experimental Botany,2000,51 (Special Issue):447-458.
    [4]Novoselovid, D., Drezner, G., Lalid, A. Contribution of wheat breeding to increased yields in Croatia from 1954. to 1985. year[J]. Cereal Research Commun.,2000,28(1/2):95-99.
    [5]Cox, T. S., Shroyer, J. P., Ben-Hui, L., Sears, R. G., Martin, T. J. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987[J]. Crop Science,1988,28 (5):756-760.
    [6]Donmez, E., Sears, R., Shroyer, J., Paulsen, G. Genetic gain in yield attributes of winter wheat in the Great Plains[J]. Crop Science,2001,41 (5):1412-1419.
    [7]McCaig, T. N., DePauw, R. M. Breeding hard red spring wheat in western Canada:Historical trends in yield and related variables[J]. Canadian Journal of Plant Science,1995,75(6):387-393.
    [8]Brancourt-Hulmel, M., Doussinault, G., Lecomte, C., Berard, P., Le Buanec, B., Trottet, M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science,2003,43 (1):37-45.
    [9]Shearman, V. J., Sylvester-Bradley, R., Scott, R. K., Foulkes, M. J. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science,2005,45(1):175-185.
    [10]Canevara, M. G., Romani, M., Corbellini, M., Perenzin, M., Borghi, B. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900[J]. European Journal of Agronomy,1994,3(3):175-185.
    [11]Fanny, A., Julio, I., Dolors, V., Luis, F., Garcia, d. M., Conxita, R. Old and modern durum wheat varieties from Italy and Spain differ in main spike components[J]. Field Crops Research,2008,106 (1):86-93.
    [12]Calderini, D. F., Dreccer, M. F., Slafer, G. A. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends[J]. Plant Breeding,1995,114 (2): 108-112.
    [13]Ortiz-Monasterio, R. J. I., Sayre, K. D., Rajaram, S., Mcmahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates[J]. Crop Science,1997,37 (3):898-904.
    [14]Sayre, K. D., Rajaram, S., Fischer, R. A. Yield potential progress in short bread wheats in northwest Mexico[J]. Crop Science,1997,37 (1):36-42.
    [15]Morgounov, A., Zykin, V., Belan, I., Roseeva, L., Zelenskiy, Y., Gomez-Becerra, H. F., Budak, H., Bekes, F. Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900-2008[J]. Field Crops Research,2010,117 (1):101-112.
    [16]吴兆苏,魏燮中.长江下游地区小麦品种更替中产量及有关性状的演变与发展方向[J].中国农业科学,1984,17(3):14-21.
    [17]俞世蓉,吴兆苏,杨竹平.江苏淮南地区70年代以来小麦品种产量及产量因素的演变[J].中国农业科学,1988,21(4):15-21.
    [18]Zhou, Y., Zhu, H. Z., Cai, S. B., He, Z. H., Zhang, X. K., Xia, X. C., Zhang, G. S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000[J]. Euphytica,2007,157 (3):465-473.
    [19]许为钢,胡琳,吴兆苏,盖钧镒.关中地区小麦品种产量与产量结构遗传改良的研究[J].作物学报,2000,26(3):352-358.
    [20]Han, Z.-J., Yu, Z.-W., Wang, D., Zhang, Y.-L. Effects of Supplemental Irrigation Based on Testing Soil Moisture on Dry Matter Accumulation and Distribution and Water Use Efficiency in Winter Wheat[J]. Acta Agronomica Sinica,2010,36 (3):457-465.
    [21]张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [22]王曙光,许轲,戴其根,张洪程,霍中洋,黄萍霞.氮肥运筹对太湖麦区弱筋小麦宁麦9号产量与品质的影响[J].麦类作物学报,2005,25(5):65-68.
    [23]Calderini, D., Dreccer, M., Slafer, G. Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends[J]. Plant Breeding,1995,114 (2):108-112.
    [24]Fischer, R. A. The importance of grain or kernel number in wheat:A reply to Sinclair and Jamieson[J]. Field Crops Research,2008,105(1-2):15-21.
    [25]Sinclair, T. R., Jamieson, P. D. Grain number, wheat yield, and bottling beer:an analysis[J]. Field Crops Research,2006,98(1):60-67.
    [26]Duggan, B. L., Domitruk, D. R., Fowler, D. B. Yield component variation in winter wheat grown under drought stress[J]. Canadian Journal of Plant Science,2000,80 (4):739-745.
    [27]Reynolds, M. P., Pellegrineschi, A., Skovmand, B. Sink-limitation to yield and biomass:a summary of some investigations in spring wheat[J]. Annals of Applied Biology,2005,146 (1):39-49.
    [28]Acreche, M. M., Slafer, G. A. Grain weight response to increases in number of grains in wheat in a Mediterranean area[J]. Field Crops Research,2006,98 (1):52-59.
    [29]Sadras, V. O. Evolutionary aspects of the trade-off between seed size and number in crops[J]. Field Crops Research,2007,100 (2-3):125-138.
    [30]Yu, S. R., Wu, Z. S., Yang, Z. P. Genetic improvement in yield and its associated traits of wheat cultivars in northern Jiangsu Province since 1970s[J]. Sci. Agric. Sin.,1988,21 (4):15-21.
    [31]Peltonen-Sainio, P., Peltonen, J. Progress since the 1930s in breeding for yield, its components, and quality traits of spring wheat in Finland[J]. Plant Breeding,1994,113 (3):177-186.
    [32]Boyadjieva, D. A study on the wheat productivity criteria for the breeding of drought tolerant cultivars[J]. Cereal Research Communications,1996,24(3):299-305.
    [33]Balyan, H. S., Singh, T. The usefulness of biparental matings and geno-phenotypic selection for yield improvement in wheat (Triticum aestivum L.)[J]. Indian Journal of Genetics and Plant Breeding,1997,57 (4):401-410.
    [34]Yagbasanlar, T., Oezkan, H., Gene, I. Relationships of growth periods, harvest index and grain yield in common wheat under Mediterranean climatic conditions[J]. Cereal Research Communications,1995,23:59-59.
    [35]Uddling, J., Gelang-Alfredsson, J., Karlsson, P. E., Sellden, G., Pleijel, H. Source-sink balance of wheat determines responsiveness of grain production to increased CO2and water supply [J]. Agr. Ecosyst. Environ.,2008,127 (3-4):215-222.
    [36]Miralles, D. J., Slafer, G. A. Sink limitations to yield in wheat:how could it be reduced[J]. Journal of Agricultural Science,2007,145 (2):139-149.
    [37]Rastogi, N. K. Multiple regression analysis as screening tool for yield improvement in wheat[J]. Advances in Plant Sciences,1997,10:211-213.
    [38]Mondal, A., Sadhu, D., Sarkar, K. Correlation and path analysis in bread wheat[J]. Environment and Ecology,1997,15(3):537-539.
    [39]Flintham, J. E., Gale, M. D. The Tom Thumb dwarfing gene Rht3 in wheat[J]. Theor Appl Genet, 1983,66 (3):249-256.
    [40]Slafer, G. A., Savin, R. Source-sink relationships and grain mass at different positions within the spike in wheat[J]. Field Crops Research,1994,37 (1):39-49.
    [41]雷振生,林作楫.河南小麦品种农艺性状演变及今后育种方向[J].中国农业科学,1995,28(增刊):28-33.
    [42]Sharma, S. K., Singh, K. R., Luthra, O. P., Dahiya, A. Influence of dwarfing genes on yield, yield components and harvest index of tall wheat varieties[J]. Annals of Biology,1999,15:17-20.
    [43]肖世和.产量潜力改良.中国小麦品种改良及系谱分析[M].庄巧生主编.北京:中国农业出版社:2003:498-519.
    [44]Foulkes, M. J., Snape, J. W., Shearman, V. J., Reynolds, M. P., Gaju, O., Sylvester-Bradley, R. Genetic progress in yield potential in wheat:recent advances and future prospects[J]. Journal of Agricultural Science,2007,145 (1):17-29.
    [45]Austin, R., Bingham, J., Blackwell, R., Evans, L., Ford, M., Morgan, C., Taylor, M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes[J]. Journal of Agricultural Science,1980,94 (3):675-689.
    [46]Singh, R. P., Huerta-Espino, J., Rajaram, S., Crossa, J. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL. 1RS in spring wheat[J]. Crop Science,1998,38 (1):27-33.
    [1]Zhu, Z., Chen, D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63 (2): 117-127.
    [2]刘学军,赵紫娟,巨晓棠,张福锁.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    [3]朱新开,郭文善,周正权,封超年,彭永欣,凌启鸿.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应[J].中国农业科学,2004,37(12):1831-1837.
    [4]Jing, Q., Bouman, B., Hengsdijk, H., Van Keulen, H., Cao, W. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. European Journal of Agronomy,2007,26 (2):166-177.
    [5]Richter, J., Roelcke, M. The N-cycle as determined by intensive agriculture-examples from central Europe and China[J]. Nutrient Cycling in Agroecosystems,2000,57(1):33-46.
    [6]Xing, G. X., Zhu, Z. L. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems,2000,57(1):67-73.
    [7]Zhu, Z. L., Chen, D. L. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63 (2-3):117-127.
    [8]Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C. E., Hawkesford, M. J. Nitrogen efficiency of wheat:Genotypic and environmental variation and prospects for improvement[J]. European Journal of Agronomy,2010,33 (1):1-11.
    [9]Gaju, O., Allard, V., Martre, P., Snape, J. W., Heumez, E., LeGouis, J., Moreau, D., Bogard, M., Griffiths, S., Orford, S., Hubbart, S., Foulkes, M. J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes[J]. Field Crops Research,2011,123 (2):139-152.
    [10]Haby, V. A., Alcoz, M. M., Hons, F. M. Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen[J]. Agronomy journal,1993,85 (6):1198-1203.
    [11]王月福,姜东,于振文,曹卫星.高低土壤肥力下小麦基施和追施氮肥的利用效率和增产效应[J].作物学报,2003,29(4):491-495.
    [12]李友军,郭天财.高产地小麦前氮后移施肥技术[J].作物杂志,1997,(3):15-16.
    [13]Cornelius, P., Mackown, C., May, L., Van Sanford, D. Genetic Variation for Nitrogen Use in Soft RedxHard Red Winter Wheat Populations[J]. Crop Science,1991,31 (3):626-630.
    [14]李艳,董中东,郝西,崔党群.小麦不同品种的氮素利用效率差异研究[J].中国农业科学,2007,40(3):472-477.
    [15]李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):19922000.
    [16]张洋,张继,强晓敏,翟丙年,王朝辉.不同氮效率基因型冬小麦生理特征的比较研究[J].植物营养与肥料学报,2010,16(6):1319-1324.
    [17]毕珍,翟丙年,张敏敏,李生秀,石辉.不同氮效率冬小麦品种生长发育特征比较研究[J].干旱地区农业研究,2008,26(6):91-96.
    [18]韩胜芳,李淑文,文宏达,李雁鸣,肖凯.不同氮效率小麦品种的光合碳同化特性[J].植物营养与肥料学报,2006,12(6):797-804.
    [19]Schenk, M. Regulation of nitrogen uptake on the whole plant level[J]. Plant and Soil,1996,181 (1): 131-137.
    [20]Hocking, P., Stopper, M. Effects of sowing time and nitrogen fertiliser on canola and wheat, and nitrogen fertiliser on Indian mustard. II. Nitrogen concentrations, N accumulation, and N fertiliser use efficiency[J], Australian journal of agricultural research,2001,52 (6):635-644.
    [21]Hou, Y. L., O Brien, L., Zhong, G. R. Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat[J]. Acta Agronomica Sinica,2001,27 (4): 493-499.
    [22]叶利庭,宋文静,吕华军,栗艳霞,沈其荣,张亚丽.不同氮效率水稻生育后期氮素积累转运特征[J].土壤学报,2010,(2):303-310.
    [23]樊剑波,沈其荣,谭炯壮,叶利庭,宋文静,张亚丽.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    [24]杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J].中国农业科学,2011,44(1):36-46.
    [25]韩胜芳,李淑文,吴立强,文宏达,肖凯.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J].应用生态学报,2007,18(4):807-812.
    [26]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000.
    [27]Arsenault, J. L., Poulcur, S., Messier, C., Guay, R. WinRHIZOTM, a Root-measuring System with a Unique Overlap Correction Method[J]. HortScience,1995,30 (4):906-906.
    [28]冯福学,黄高宝,柴强,于爱忠,乔海军,黄涛.不同耕作措施对冬小麦根系时空分布和产量的影响[J].生态学报,2009,29(5):2499-2506.
    [29]Bolinder, M., Angers, D., Dubuc, J. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops[J]. Agriculture, Ecosystems & Environment,1997,63 (1):61-66.
    [30]张宪政,陈凤玉,王荣富.植物生理学实验技术[J].沈阳:辽宁科学技术出版社,1994.
    [31]Rajasekhar, V., Mohr, H. Appearance of nitrite reductase in cotyledons of the mustard (Sinapis alba L.):seedling as affected by nitrate, phytochrome and photooxidative damage of plastids[J]. Planta, 1986,168 (3):369-376.
    [32]Zang, C., Peng, S., Bennett, J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development[J]. Journal of Plant Physiology,2000,156 (2):230-233.
    [33]Du, Z., Bramlage, W. J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts[J]. Journal of Agricultural and Food Chemistry,1992,40 (9): 1566-1570.
    [34]Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., Jiang, D. Alterations in photosynthesis and antioxidant en2yme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica,2008, 46(1):21-27.
    [35]姜丽娜,李春喜.超高产小麦氮素吸收,积累与分配规律的研究[J].麦类作物学报,2000,20(2):53-59.
    [36]侯有良,钟改荣,Brien, L.普通小麦营养器官氮素和果聚糖的运转[J].中国农业科学,2002,35(9):1066-1070.
    [37]王之杰,王纪华,黄文江,马智宏,王北洪,赵春江,赵明.冬小麦叶片氮素时空分布特征及其与籽粒品质的关系[J].作物学报,2004,30(7):700-707.
    [38]杨铁钢,戴廷波,姜东,荆奇,曹卫星.不同施氮水平下两种品质类型小麦植株氮素形态的变化特征[J].作物学报,2007,33(11):1763-1770.
    [39]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报,1996,2(4):331-336.
    [40]童依平,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究:Ⅰ.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277.
    [41]童依平,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究:Ⅲ影响利用效率的因素分析[J].西北植物学报,1999,19(4):598-604.
    [42]童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究Ⅱ.影响吸收效率的因素分析[J].西北植物学报,1999,19(3):393-401.
    [43]Palta, J. A., Fillery, I. R. P., Rebetzke, G. J. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake[J]. Field Crops Research,2007,104(1-3):52-59.
    [44]Ju, X. T., Gao, Q., Christie, P., Zhang, F. S. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops:A 15N tracer study[J]. Environmental Pollution,2007,146(2):534-542.
    [45]Chevalier, P., Schrader, L. E. Genotypic difference in nitrate absorption and partitioning of N among plant parts[J]. Crop Science,1977,17(6):897-901.
    [46]Barber, S. A. Soil nutrient bioavailability:A mechanistic approach[M]. New York:Wiley inter-science,1984:382-409.
    [47]廖红,严小龙.高级植物营养[M].北京:科学出版社,2003:22-30.
    [48]程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266-272.
    [49]张荣,张大勇.半干旱区春小麦不同年代品种根系生长冗余的比较实验研究[J].植物生态学报,2000,24(3):298-303.
    [50]Passioura, J. Roots and drought resistance[J]. Agricultural Water Management,1983,7 (1-3): 265-280.
    [51]张岁岐,山仑,邓西平.小麦进化中水分利用效率的变化及其与根系生长的关系[J].科学通报,2002,47(17):1327-1331.
    [52]魏海燕,张洪程,张胜飞,杭杰,戴其根,霍中洋,许轲,马群,张庆,刘艳阳.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429-436.
    [53]孙敏,郭文善,朱新开,封超年,郭凯泉,彭永欣.不同氮效率小麦品种苗期根系的NO3-,NH4+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [54]汪晓丽,陶玥玥,盛海君,封克.硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J].麦类作物学报,2010,(1):129-134.
    [1]Zelitch, I. The close relationship between net photosynthesis and crop yield[J]. BioScience,1982, 32(10):796-802.
    [2]He, J., Tan, B. H. G., Qin, L. Source-to-sink relationship between green leaves and green pseudobulbs of C3 orchid in regulation of photosynthesis[J]. Photosynthetica,2011,49(2):1-10.
    [3]Raj, T., Gill, D., Singh, B., Sidhu, S. Studies on Source-Sink Relationship of Plant Architecture Manipulation and Biomass Partitioning in Wheat (Triticum Aestivum L.)[J]. Indian Journal of Agricultural Research,2011,45 (4):291-298.
    [4]Richards, R. A. Selectable traits to increase crop photosynthesis and yield of grain crops[J]. Journal of Experimental Botany,2000,51 (Special Issue):447-458.
    [5]Jiang, G. M., Hao, N. B., Bai, K. Z., Zhang, Q. D., Sun, J. Z., Guo, R. J., Ge, Q. Y., Kuang, T. Y. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars[J]. Photosynthetica,2000,38 (2):227-232.
    [6]Tian, Z., Jing, Q., Dai, T., Jiang, D., Cao, W. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China[J]. Field Crops Research, 2011,124 (3):417-425.
    [7]Jiang, G., Sun, J., Liu, H., Qu, C., Wang, K., Guo, R., Bai, K., Gao, L., Kuang, T. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years[J]. Journal of plant research,2003,116 (5):347-354.
    [8]Zhu, C., Zhu, J., Zeng, Q., Liu, G., Xie, Z., Tang, H., Cao, J., Zhao, X. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation[J]. Functional Plant Biology,2009,36 (4):291-299.
    [9]Wang, Z., Yin, Y., He, M., Cao, H. Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat[J]. Photosynthetica,1998,35 (3):453-459.
    [10]Evans, L. T., Dunstone, R. L. Some physiological aspects of evolution in wheat[J]. Australian Journal of Biological Sciences,1970,23 (4):725-742.
    [11]Liu, H., Jiang, G., Zhang, Q., Sun, J., Guo, R., Gao, L., Bai, K., Kuang, T. Gas Exchange Responses to CO 2 Concentration Instantaneously Elevated in Flag Leaves of Winter Wheat Cultivars Released in Different Years[J]. Photosynthetica,2002,40 (2):237-242.
    [12]Rajcan, I., Tollenaar, M. Sourcea:asink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research,1999,60 (3):245-253.
    [13]Cazzonelli, C. I., Pogson, B. J. Source to sink:regulation of carotenoid biosynthesis in plants[J]. Trends in plant science,2010,15 (5):266-274.
    [14]Madani, A., Shirani-Rad, A., Pazoki, A., Nourmohammadi, G., Zarghami, R., Mokhtassi-Bidgoli, A. The impact of source or sink limitations on yield formation of winter wheat (Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies[J]. Plant, Soil and Environment,2010,56 (5): 218-227.
    [15]De Vita, P., Matteu, L., Mastrangelo, A. M., Di Fonzo, N., Cattivelli, L. Effects of breeding activity on durum wheat traits breed in Italy during the 20th century[J]. Italian Journal of Agronomy,2011, 2 (4s):451-462.
    [16]Blum, A., Mayer, J., Golan, G The effect of grain number per ear (sink size) on source activity and its water-relations in wheat[J]. Journal of Experimental Botany,1988,39 (1):106-114.
    [17]Uddling, J., Gelang-Alfredsson, J., Karlsson, P. E., Sellden, G, Pleijel, H. Source-sink balance of wheat determines responsiveness of grain production to increased CO2 and water supply [J]. Agriculture, Ecosystems & Environment,2008,127 (3):215-222.
    [18]Fischer, R. The importance of grain or kernel number in wheat:A reply to Sinclair and Jamieson[J]. Field Crops Research,2008,105 (1-2):15-21.
    [19]Fischer, R. A., Ris, H., Lambers, D. Effect of environment and cultivar on source limitation to grain weight in wheat[J]. Australian Journal of Agricultural Research,1978,29 (3):443-458.
    [20]Slafer, G, Savin, R. Source--sink relationships and grain mass at different positions within the spike in wheat[J]. Field Crops Research,1994,37 (1):39-49.
    [21]Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S., Shewry, P. R. Identifying traits to improve the nitrogen economy of wheat:Recent advances and future prospects[J]. Field Crops Research,2009,114 (3):329-342.
    [22]Gaju, O., Allard, V., Martre, P., Snape, J. W., Heumez, E., LeGouis, J., Moreau, D., Bogard, M., Griffiths, S., Orford, S., Hubbart, S., Foulkes, M. J. Identification of traits to improve the nitrogen-use efficiency of wheat genorypes[J]. Field Crops Research,2011,123 (2):139-152.
    [23]Brancourt-Hulmel, M., Doussinault, G, Lecomte, C., Berard, P., Le Buanec, B., Trottet, M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science,2003,43 (1):37-45.
    [24]Mu, H., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., Cao, W. long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat[J]. Journal of Agricultural Science,2010,196 (1):38-47.
    [25]Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., Spiertz, H. J. A flexible sigmoid function of determinate growth[J]. Annals of Botany,2003,91 (3):361-371.
    [26]Yin, X., Guo, W., Spiertz, J. H. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes[J]. Field Crops Research,2009,114 (1): 119-126.
    [27]刘建辉,孙建云,戴廷波,姜东,荆奇,曹卫星.不同小麦进化材料生育后期光合特性和产量[J].植物生态学报,2007,31(1):138-144.
    [28]Lu, Q., Li, W., Jiang, G, Ge, Q., Hao, N., Sun, J., Guo, R. Studies on the characteristics of chlorophyll fluorescence of winter wheat flag leaves at different developing stages[J]. Acta Botanica Sinica,2001,43 (8):801-804.
    [29]Panozzo, J., Eagles, H. Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments[J]. Australian Journal of Agricultural Research,1999,50 (6):1007-1015.
    [30]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [31]Du, Z., Bramlage, W. J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts[J]. Journal of Agricultural and Food Chemistry,1992,40 (9):1566-1570.
    [32]Moloi, M. J., Van Der Westhuizen, A. J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid[J]. Journal of Plant Physiology,2006,163 (11): 1118-1125.
    [33]Sui, N., Li, M., Liu, X. Y., Wang, N., Fang, W., Meng, Q. W. Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene[J]. Photosynthetica,2007,45 (3):447-454.
    [34]Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., Jiang, D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica,2008, 46(1):21-27.
    [35]Koshkin, E., Tararina, V. Yield and source-sink relations of spring wheat cultivars[J]. Field Crops Research,1989,22 (4):297-306.
    [36]Kruk, B. C., Calderini, D. F., Slafer, G. A. Grain weight in wheat cultivars released from 1920 to 1990 as affected by post-anthesis defoliation[J]. Journal of Agricultural Science,1997,128 273-281.
    [37]Ayeneh, A., Van Ginkel, M., Reynolds, M. P., Ammar, K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress[J]. Field Crops Research,2002,79 (2-3): 173-184.
    [38]Foulkes, M. J., Snape, J. W., Shearman, V. J., Reynolds, M. P., Gaju, O., Sylvester-Bradley, R. Genetic progress in yield potential in wheat:recent advances and future prospects[J]. Journal of Agricultural Science,2007,145 (1):17-29.
    [39]Fischer, R. A. Understanding the physiological basis of yield potential in wheat[J]. Journal of Agricultural Science,2007,145 (2):99-113.
    [40]Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J. C., Nogues, S., Araus, J. L., Martinez-Carrasco, R., Perez, P. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2[J]. Journal of Experimental Botany,2011,62 (11):3957-3969.
    [41]De Mao, H. X. Q. J. The characteristics of resistance to photooxidation of transgenic rice (Oryza sativa L.) plants with maize genes coding for C4 photosynthesis enzyme[J]. Acta Photophysiologica Sinica,2001,27 (5):393-400.
    [42]Jiao, D. M., Li, X., Huang, X. Q., Ji, B. H. The relationship among photoinhibition, photooxidation and early aging at a late development stage in different varieties with high yield[J]. Agricultural Sciences in China,2002,1 (6):618-625.
    [43]Aoki, N., Hirose, T., Furbank, R. T. Sucrose transport in higher plants:from source to sink[J]. Photosynthesis,2012,34(5):703-729.
    [44]刘克礼,翟利剑,高聚林,张永平,刘景辉.春小麦源库特性及其关系的研究(Ⅱ)—群体库源比及其与产量的关系[J].麦类作物学报,2004,23(4):63-65.
    [45]Ali, M., Hussain, M., Khan, M., Ali, Z., Zulkiffal, M., Anwar, J., Sabir, W., Zeeshan, M. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum)[J]. International Journal of Agriculture and Biology,2010,12(4):509-515.
    [1]Li, Z., Li, B., Tong, Y. The contribution of distant hybridization with decaploid agropyron elongatum to wheat improvement in China[J]. Journal of Genetics and Genomics,2008,35 (8):451-456.
    [2]庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社:2003.
    [3]Reynolds, M. P., Pellegrineschi, A., Skovmand, B. Sink-limitation to yield and biomass:a summary of some investigations in spring wheat[J]. Annals of Applied Biology,2005,146 (1):39-49.
    [4]Acreche, M. M., Slafer, G A. Grain weight response to increases in number of grains in wheat in a Mediterranean area[J]. Field Crops Research,2006,98 (1):52-59.
    [5]Sadras, V. O. Evolutionary aspects of the trade-off between seed size and number in crops[J]. Field Crops Research,2007,100 (2-3):125-138.
    [6]Sinclair, T. R., Jamieson, P. D. Grain number, wheat yield, and bottling beer:an analysis[J]. Field Crops Research,2006,98 (1):60-67.
    [7]Sayre, K. D., Rajaram, S., Fischer, R. A. Yield potential progress in short bread wheats in northwest Mexico[J]. Crop Science,1997,37 (1):36-42.
    [8]Duggan, B. L., Domitruk, D. R., Fowler, D. B. Yield component variation in winter wheat grown under drought stress[J]. Canadian Journal of Plant Science,2000,80 (4):739-745.
    [9]Brancourt-Hulmel, M., Doussinault, G., Lecomte, C., Berard, P., Le Buanec, B., Trottet, M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science,2003,43 (1):37-45.
    [10]Peterman, C., Kanemasu, E., Sears, R. Rate and duration of spikelet initiation in 10 winter wheat cultivars[J]. Crop Science,1985,25 (2):221-225.
    [11]Flintham, J. E., Gale, M. D. The Tom Thumb dwarfing gene Rht3 in wheat[J]. Theor Appl Genet, 1983,66 (3):249-256.
    [12]Slafer, G. A., Savin, R. Source--sink relationships and grain mass at different positions within the spike in wheat[J]. Field Crops Research,1994,37 (1):39-49.
    [13]雷振生,林作楫.河南小麦品种农艺性状演变及今后育种方向[J].中国农业科学,1995,28(增刊):28-33.
    [14]McDonald, L. D. Response of photosynthesis to genetic differences in sink-source ratios[D]. Texas Tech University in Partial Fulfillment,1985.
    [15]曹宏鑫,董玉红,王旭清,许金芳,高亮之.不同产量水平小麦最适叶面积指数动态模拟模型研究[J].麦类作物学报,2006,26(3):128-131.
    [16]朱艳,曹卫星,周治国,田永超.冬小麦生长适宜动态指标的知识模型[J].中国农业科学, 2004,37(1):43-50.
    [17]凌启鸿.作物群体质量[M].上海科学技术出版社,2000.
    [18]Fang, Y., Xu, B. C., Turner, N. C., Li, F. M. Gran yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning[J]. European Journal of Agronomy,2010,33 (4):257-266.
    [19]张法全,王小燕,于振文,王西芝,白洪立.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [20]屈会娟,李金才,沈学善,魏凤珍,王成雨,郅胜军.种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响[J].作物学报,2009,35(1):124-131.
    [21]Fischer, R. The importance of grain or kernel number in wheat:A reply to Sinclair and Jamieson[J]. Field Crops Research,2008,105 (1-2):15-21.
    [22]Tian, Z., Jing, Q., Dai, T., Jiang, D., Cao, W. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China[J]. Field Crops Research, 2011,124 (3):417-425.
    [23]刘克礼,翟利剑,高聚林,张永平,刘景辉.春小麦源库特性及其关系的研究(Ⅱ)—-群体库源比及其与产量的关系[J].麦类作物学报,2004,23(4):63-65.
    [24]Ali, M., Hussain, M., Khan, M., Ali, Z., Zulkiffal, M., Anwar, J., Sabir, W., Zeeshan, M. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum)[J]. International Journal of Agriculture and Biology,2010,12(4):509-515.
    [25]Panozzo, J., Eagles, H. Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments[J]. Australian Journal of Agricultural Research,1999,50 (6):1007-1015.
    [26]Jiang, G., Sun, J., Liu, H., Qu, C., Wang, K., Guo, R., Bai, K., Gao, L., Kuang, T. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years[J]. Journal of Plant Research,2003,116 (5):347-354.
    [27]Zhu, C., Zhu, J., Zeng, Q., Liu, G., Xie, Z., Tang, H., Cao, J., Zhao, X. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation[J]. Functional Plant Biology,2009,36 (4):291-299.
    [28]Wang, Z., Yin, Y, He, M., Cao, H. Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat[J]. Photosynthetica,1998,35 (3):453-459.
    [29]Evans, L. T., Dunstone, R. L. Some physiological aspects of evolution in wheat[J]. Australian Journal of Biological Sciences,1970,23 (4):725-742.
    [30]Liu, H., Jiang, G., Zhang, Q., Sun, J., Guo, R., Gao, L., Bai, K., Kuang, T. Gas exchange responses to CO2 concentration instantaneously elevated in flag leaves of winter wheat cultivars released in different years[J]. Photosynthetica,2002,40 (2):237-242.
    [31]Rajcan, I., Tollenaar, M. Sourcea:asink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research,1999,60 (3):245-253.
    [32]Ayeneh, A., Van Ginkel, M., Reynolds, M. P., Ammar, K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress[J]. Field Crops Research,2002,79 (2-3): 173-184.
    [33]Yin, X., Guo, W., Spiertz, J. H. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes[J]. Field Crops Research,2009,114 (1): 119-126.
    [34]Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., Spiertz, H. J. A flexible sigmoid function of determinate growth[J]. Annals of Botany,2003,91 (3):361-371.
    [35]De Mao, H. X. Q. J. The characteristics of resistance to photooxidation of transgenic rice (Oryza sativa L.) plants with maize genes coding for C4 photosynthesis enzyme[J]. Acta Photophysiologica Sinica,2001,27 (5):393-400.
    [36]Jiao, D. M., Li, X., Huang, X. Q., Ji, B. H. The relationship among photoinhibition, photooxidation and early aging at a late development stage in different varieties with high yield[J]. Agricultural Sciences in China,2002,1 (6):618-625.
    [37]Aoki, N., Hirose, T., Furbank, R. T. Sucrose transport in higher plants:from source to sink[J]. Photosynthesis,2012,34(5):703-729.
    [38]李絮花,杨守祥,于振文,余松烈.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    [39]李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):1992-2000.
    [40]毕珍,翟丙年,张敏敏,李生秀,石辉.不同氮效率冬小麦品种生长发育特征比较研究[J].干旱地区农业研究,2008,26(6):91-96.
    [41]韩胜芳,李淑文,文宏达,李雁鸣,肖凯.不同氮效率小麦品种的光合碳同化特性[J].植物营养与肥料学报,2006,12(6):797-804.
    [42]Schenk, M. Regulation of nitrogen uptake on the whole plant level[J]. Plant and Soil,1996,181 (1): 131-137.
    [43]Hocking, P., Stapper, M. Effects of sowing time and nitrogen fertiliser on canola and wheat, and nitrogen fertiliser on Indian mustard. Ⅱ. Nitrogen concentrations, N accumulation, and N fertilizer use efficiency [J]. Australian Journal of Agricultural Research,2001,52 (6):635-644.
    [44]Hou, Y. L., O Brien, L., Zhong, G. R. Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat[J]. Acta Agronomica Sinica,2001,27 (4): 493-499.
    [45]Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C. E., Hawkesford, M. J. Nitrogen efficiency of wheat:Genotypic and environmental variation and prospects for improvement[J]. European Journal of Agronomy,2010,33 (1):1-11.
    [46]Jing, Q., Bouman, B., Hengsdijk, H., Van Keulen, H., Cao, W. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. European Journal of Agronomy,2007,26 (2):166-177.
    [47]姜丽娜,李春喜.超高产小麦氮素吸收,积累与分配规律的研究[J].麦类作物学报,2000,20(2):53-59.
    [48]侯有良,钟改荣,Brien, L.普通小麦营养器官氮素和果聚糖的运转[J].中国农业科学,2002,35(9):1066-1070.
    [49]王之杰,王纪华,黄文江,马智宏,王北洪,赵春江,赵明.冬小麦叶片氮素时空分布特征及其与籽粒品质的关系[J].作物学报,2004,30(7):700-707.
    [50]杨铁钢,戴廷波,姜东,荆奇,曹卫星.不同施氮水平下两种品质类型小麦植株氮素形态的变化特征[J].作物学报,2007,33(11):1763-1770.
    [51]李艳,董中东,郝西,崔党群.小麦不同品种的氮素利用效率差异研究[J].中国农业科学,2007,40(3):472-477.
    [52]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报,1996,2(4):331-336.
    [53]童依平,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究:Ⅰ.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277.
    [54]童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究Ⅱ.影响吸收效率的因素分析[J].西北植物学报,1999,19(3):393-401.
    [55]童依平,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究:Ⅲ影响利用效率的因素分析[J].西北植物学报,1999,19(4):598-604.
    [56]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [57]王月福,于振文.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [58]王洪刚,姜丽君,张德水,孔令让,李斯深.小麦叶片中硝酸还原酶活性、游离氨基酸和粗蛋白含量与籽粒蛋白质含量关系研究[J].西北植物学报,1995,15(4):282-287.
    [59]李淑文,文宏达,周彦珍,李雁鸣,肖凯.不同氮效率小麦品种氮素吸收和物质生产特性[J].中国农业科学,2006,39(10):1992-2000.
    [60]韩胜芳,李淑文,吴立强,文宏达,肖凯.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J].应用生态学报,2007,18(4):807-812.
    [61]Eichelberger, K. D., Lambert, R. J., Below, F. E., Hageman, R. H. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. I:Selection and correlated responses[J]. Crop science,1989,29 (6):1393-1397
    [62]王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [63]Habash, D. Z., Massiah, A. J., Rong, H. L., Wallsgrove, R. M., Leigh, R. A. The role of cytosolic glutamine synthetase in wheat[J]. Annals of Applied Biology,2001,138(7):309-316.
    [64]曾建敏,崔克辉,黄见良,贺帆,彭少兵.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [65]Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., Dellay, C., Gouy, A., Cadiou, S., Retailliau, C., Falque, M., Gallais, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize[J]. Plant Physiology,2001125 (3) 1258-1270
    [66]谢祝捷,姜东,曹卫星,戴廷波,荆奇.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学学报,2003,29(4):309-316.
    [67]Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia,1989,78 (1):9-19.
    [68]Evans, J. R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology,1983,72 (2):297.
    [69]Camberato, J. J., Frederick, J. R. Leaf net CO2-exchange rate and associated leaf traits of winter wheat grown with various spring nitrogen fertilization rates[J]. Crop Science,1994,34 (2):432-439.
    [70]Sinclair, T., de Wit, C. T. Photosynthate and nitrogen requirements for seed production by various crops[J]. Science,1975,189 (4202):565-567.
    [71]董桂春,王余龙,张岳芳,陈培峰,杨连新,黄建哗.影响常规灿稻品种氮素籽粒生产效率的主要源库指标[J].2007,33(1):43-49.
    [72]Kato, Y. Grain nitrogen concentration in wheat grown under intensive organic manure application on andosols in Central Japan[J]. Plant Production Science,2012,15 (1):40-47.
    [73]Dordas, C. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source-sink relations[J]. European Journal of Agronomy, 2012,37(1):31-42.
    [74]Lynch, J. Root architecture and plant productivity [J]. Plant physiology,1995,109 (1):7-13.
    [75]郑圣先,聂军,戴平安,郑颖俊.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194.
    [76]Sullivan, W. M., Jiang, Z. C., Hull, R. J. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass[J]. Crop Science 2000,40 (3):765-772.
    [77]Bowman, D. C., Devitt, D. A., Engelke, M. C., Rufty, T. W. Root archutecture affects nitrate leaching from bent grass turf[J]. Crop Science,1998,38 (6):1633-1639.
    [78]Barber, S. A. Soil nutrient bioavailability:A mechanistic approach[M]. New York:Wiley Interscience,1984:382-409.
    [79]廖红,严小龙.高级植物营养[M].北京:科学出版社,2003:22-30.
    [80]张荣,张大勇.半干旱区春小麦不同年代品种根系生长冗余的比较实验研究[J].植物生态学报,2000,24(3):298-303.
    [81]Fageria, N. K., Moreira, A. The role of mineral nutrition on root growth of crop plants[J]. Advances in Agronomy,2011,110:251-331.
    [82]王月福,于振文,李尚霞,余松烈.土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响[J].植物营养与肥料学报,2003,9(1):39-44.
    [83]Egbhall, B., Maranville, J. W. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses[J]. Agronomy Journal,1993,85(1):147-152.
    [84]Robert, P., Durieux, R. P., Kamprath, E. J., Jakckson, W. A., Moll, R. H. Root distribution of corn: the effect of nitrogen fertilization[J]. Agronomy Journal,1994,86 (6):958-962.
    [85]王启现,王璞,杨相勇,翟志席,王秀玲,申丽霞.不同施氮时期对玉米根系分布及其活性的影响[J].中国农业科学,2003,36(12):1469-1475.
    [86]孙敏,郭文善,朱新开,封超年,郭凯泉,彭永欣.不同氮效率小麦品种苗期根系的N03-,NH4+吸收动力学特征[J].麦类作物学报,2006,26(5):84-87.
    [87]汪晓丽,陶明玥,盛海君,封克.硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J].麦类作物学报,2010,(1):129-134.
    [88]张洋,张继,强晓敏,翟丙年,王朝辉.不同氮效率基因型冬小麦生理特征的比较研究[J].植物营养与肥料学报,2010,16(6):1319-1324.
    [89]Evans, L., Fischer, R. Yield potential:its definition, measurement, and significance[J]. Crop Science, 1999,39 (6):1544-1551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700