用户名: 密码: 验证码:
福建桉树焦枯病菌鉴定及其诱导下桉树转录组和蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树(Eucalyptus spp.)是联合国粮农组织推荐的与松、杨齐名的速生丰产多用途树种。Calonectria spp.地域分布广、种类繁多、致病性强,其侵染桉树产生的桉树焦枯病(Cylindrocladium leaf blight)是热带、亚热带地区桉树商品林种植和苗木生产极具潜在危险性病害之一。从分子抗病机制角度研究桉树如何响应焦枯病菌的侵染对桉树抗焦枯病优良种系选育具有重要的现实指导意义。目前,相关研究报道主要从生理生化和形态结构水平探讨桉树对焦枯病菌的防御作用,而基因和蛋白质水平的研究鲜有报道。本研究以前期抗性筛选的福建主栽抗病种系尾细桉M1(E. urophylla×E. tereticornis M1)为材料,应用转录组学和蛋白组学,从差异表达基因和蛋白质层面探讨了焦枯病菌胁迫下桉树的响应情况,同时采用形态学结合系统发育树构建方法对福建省收集的Calonectria spp.进行分类鉴定,以及致病性测定,旨在了解福建省焦枯病菌分类地位,科学指导桉树焦枯病防治。研究初步成果如下:
     (1)通过形态特征描述结合BT、HIS3和TEF-1α等3个基因联合序列系统发育树分析,将焦枯病菌16个供试菌株鉴定为Ca. pseudoreteaudii、Ca.pseudocolhounii和Ca. kyotensis3个种。致病性测定结果表明,Ca.pseudoreteaudii、Ca. pseudocolhounii和Ca. kyotensis能够侵染不同抗性桉树叶片,其致病力依次减弱。焦枯病菌的收集与鉴定,对掌握Calonectria的分布动态,加强预测预报和植物检疫防控桉树焦枯病具有重要意义。
     (2)运用RNA-seq技术,对接种焦枯病菌Ca. pseudoreteaudii后第12h(潜伏期)及第24h(显症期)尾细桉M1叶片转录组进行高通量测序,将测序结果与巨桉(Eucalyptus grandis)基因组比对,并通过qRT-PCR进行验证,基因功能注释后,分析了接种Ca. pseudoreteaudii后基因的差异表达情况,并对差异基因进行GO和Pathway富集分析。结果表明:①Ca. pseudoreteaudii接种12h和24h后的差异表达基因分别为6956和7422,其中差异倍数|log2Ratio|≥15的基因分别有54个和117个,显著性富集的pathway分别有26条和28条,其中大部分pathway与植物的抗逆响应密切相关;②呼吸代谢途径相关基因上调表达,包括糖酵解、戊糖磷酸途径及三羧酸循环,这暗示了尾细桉M1在Ca. pseudoreteaudii侵染下,可能通过加强呼吸来提高对病原菌的抵御能力;③桉树在Ca.pseudoreteaudii胁迫下启动多条抗病信号通路,包括SA途径、JA/ET途径、BRs途径、CTK及Auxin途径、MAPK信号途径,其中CTK及Auxin途径基因下调表达,研究推测,作为速生植物,在受Ca. pseudoreteaudii胁迫时,尾细桉M1可能通过减缓生长速度来提高防御水平;④多个抗氧化相关基因表达发生变化,表明在Ca. pseudoreteaudii胁迫下,尾细桉M1可能通过调整活性氧清除剂的表达水平,以维持体内活性氧的平衡状态;⑤尾细桉M1苯丙烷类代谢途径及类异戊二烯代谢途径相关基因上调表达,表明尾细桉M1可能通过加强次生代谢物质(如木质素、酚类化合物、类异戊二烯化合物等)的合成来制造物理或化学障碍,以限制Ca. pseudoreteaudii的定殖及进一步扩展;⑥在尾细桉M1与焦枯病菌Ca.pseudoreteaudii互作过程中,调控因子RIN4基因下调表达,下游因子RPM1基因上调表达,这可能是尾细桉M1抗焦枯病菌的重要原因之一。
     (3)在转录组学研究的基础上,运用iTRAQ技术对经Ca. pseudoreteaudii诱导尾细桉M1叶片差异蛋白组进行研究,差异蛋白GO功能注释和Pathway富集分析后,进一步将差异蛋白与差异基因进行关联分析,最后筛选出与转录组关联性较强的抗病相关蛋白。结果表明:①Ca. pseudoreteaudii接种后12h,尾细桉M1叶片的差异基因及差异蛋白均显著富集于苯丙烷类代谢,类黄酮生物合成,亚麻酸代谢及代谢途径,而24h的差异基因和蛋白则显著富集在亚麻酸代谢,次生代谢物质合成,萜类化合物生物合成,半乳糖代谢,外芪类化合物、二芳基庚醇及姜辣素生物合成,类黄酮生物合成以及代谢途径,这些代谢途径均直接或间接地参与了植物的抗病反应;②焦枯病菌接种后12h尾细桉M1叶片转录组与蛋白组关联性较差,相关性仅为0.2935,而24h的关联性较好,相关性为0.6985;③通过筛选共获得128个与转录组关联性较强的差异蛋白,其中下调表达65个,上调表达63个。这些蛋白有的在焦枯病菌接种后持续表达,有的蛋白则在接种后12h或24h特异性表达。其中多数差异蛋白参与了植物的抗逆响应,如谷胱甘肽S-转移酶、苯丙氨酸解氨酶、丙二烯氧化物合成酶、二磷酸甲羟戊酸脱羧酶、病程相关蛋白、过氧化物酶、几丁质酶、脂氧合酶、脱水蛋白、枯草杆菌蛋白酶、筛管阻塞蛋白等。
Eucalyptus spp. being of versatile usage, is considered to be fast-growing andhigh-yielding trees resembling to pine and poplar by United Nations Food andAgriculture Organization. Calonectria spp. with numerous species, wide globaldistribution and strong pathogenicity, is the pathogen of Cylindrocladium leaf blight,which is the one of the most growing threats to Eucalyptus plantation and nursery intropic and subtropic areas. How Eucalyptus spp. responses to infection by Calonectriaplays an important role in guiding the selection for excellent Eucalyptus spp. cultivarresistant to Calonectria spp.. To date, related researches exploring defense mechanismof Eucalyptus to Calonectria spp. mainly focuses on the level of morphologicalstructure, physiology and biochemistry, rare on the protein and gene level. In thispaper, proteomics and transcriptomics were used to explore the impact of Ca.pseudoreteaudii on E. urophylla×E. tereticornis at the level of differential expressedgene and protein. At the same time, Calonectria spp. collected from Fujian Provincewere identified employing morphological characteristics and phylogenetic inference,and the pathogenicity was tested. The preliminary results showed as follows:
     (1) For the purpose of understanding dynamic distribution of Calonectria spp. inFujian Province, representive Calonectria spp collected from Eucalyptus commercialplantations and nurseries were identified as Ca. pseudoreteaudii、Ca. pseudocolhouniiand Ca. kyotensis employing morphological characteristics combining with DNAsequence comparisons for the β-tubulin, histone H3and translation elongationfactor-1α gene regions. And it would pay contribution to Cylindrocladium leaf blightprevention by means of forecasting and quarantine. Pathogenicity tests showed thatCa. pseudoreteaudii、Ca. pseudocolhounii and Ca. kyotensis were able to infectEucalyptus with different pathogenicity, and their pathogenicity manifested as Ca.pseudoreteaudii>Ca. pseudocolhounii>Ca. kyotensis. Pathogenicity tests wouldpropose that resistant cultivar to Calonectria spp. should be chosen for plantationfrom now on.
     (2) Leaves of E. urophylla×E. tereticornis M1after inoculating with Ca.pseudoreteaudii for12h and24h were used for testing materials. Both of the leaves’transcriptomics were analyzed by RNA-seq. The sequencing reads were then mappedto the reference genome sequence of Eucalyptus grandis. After the functionalannotation of the genes, the GO and KEGG Pathway enrichment analysis were carriedout, and six differentially expressed genes were confirmed by quantitative real-timePCR (qRT-PCR). The results showed as follows:①For12h and24h after inoculation,the differentially expressed genes were6956and7422respectively, among which thefold changes over15were54and117. Digital expressed genes involving inenrichment pathway were26at12h after inoculation, while24h were28, and most ofthem were closely related with the plant’s response to stress.②Genes relating with respiratory metabolism were up-regulated, including embden-meyerhof-parnas pathway,pentose phosphate pathway and tricarboxylic acid cycle, which suggested that E.urophylla×E. tereticornis M1was likely to strengthen the respiratory to defense theinfection of Ca. pseudoreteaudii.③Several signaling pathways regulateddisease-resistance were activated after the inoculation of Ca. pseudoreteaudii, they wereSApathway, JA/ET pathway, BRs pathway, CTK and Auxin pathway and MAPK signalpathway. Genes involving in CTK and Auxin pathways were down-regulated. Therefore,the paper suggested that being as fast-growing tree, E. urophylla×E. tereticornis, mayslow down the growth rate to enhance resistance against Ca. pseudoreteaudii.④Theexpression level of a variety of genes related to antioxidation altered under the stressof Ca. pseudoreteaudii. It demonstrated that E. urophylla×E. tereticornis M1maymediate the expression of antioxidant to maintain the status of the balance of reactiveoxygen species (ROS).⑤Genes involved in phenylpropanoid metabolism andisoprenoid metabolism were up-regulated, which indicated that E. urophylla×E.tereticornis M1may protect the plants from Ca. pseudoreteaudii by accelerating thesynthesis of secondary substances, such as lignin, phenolic compounds, andisoprenoid compounds.⑥RIN4, a negative regulator associated with plant-pathogeninteraction, was found down-regulated, and RPM1which was a positive regulator inthe downstream was up-regulated. So the paper inferred that this may contribute to theresistance of E. urophylla×E. tereticornis M1to Ca.pseudoreteaudii.
     (3)On the basis of transcriptomes, the differential proteomics of the leaves,inoculated with Ca. pseudoreteaudii, were analyzed by iTRAQ technology, and GO andpathway analysis were further performed to determine which differentially expressedproteins were remarkably enriched. Then, the correlation analysis between proteomicsand transcriptomes were conducted. Finally, disease resistant proteins, obviouslyassociated with transcriptome, were screened. The results were as followed:①Differentially expressed proteins and their genes of the leaves were all enriched onphenylalanine metabolism, flavonoid biosynthesis, Linoleic acid metabolism andmetabolic pathways after infection with Ca. pseudoreteaudii for12h, while enriched onLinoleic acid metabolism, biosynthesis of secondary metabolites, terpenoid backbonebiosynthesis, galactose metabolism, stilbenoid, diarylheptanoid and gingerolbiosynthesis, flavonoid biosynthesis and metabolic pathways after inoculated with Ca.pseudoreteaudii for24h. Those pathways were directly or indirectly related withdisease reistance.②The correlation analysises showed that after infection with Ca.pseudoreteaudii for12h, the correlation between the proteomics and transcriptomeswas low (r=0.2935), while the24h was higher (r=0.6985).③128differential proteinswith high correlation were screened, and65proteins were down-regulated and63up-regulated. For those proteins, some were continuously expressed induced by Ca.pseudoreteaudii, some were specifically expressed after induced by Ca. pseudoreteaudiiat12hor24h. Most differentialproteinswere closelyrelatedto plant’s stress resistance, such asglutathione S-transferases, phenylalnine ammonialyase, allene oxide synthase,diphosphomevalonate decarboxylase, pathogenesis-related proteins, peroxidase,chitinase, lipoxygenase, dehydrins, subtilisin and sieve element occlusion.
引文
[1]谢耀坚.中国桉树育种研究进展及宏观策略[J].世界林业研究,2011,24(4):50-54.
    [2]王豁然.桉树人工林发展与景观生态和生物多样性—StoraEnso桉树人工林对广西南部地理景观影响的例证研究[J].广西林业科技,2006,(35):192-194.
    [3]刘超洋.荧光假单孢杆菌防治桉树焦枯病的研究[D].长沙:中南林学院,2003
    [4]孙云霄,刘建锋.桉树病虫害的发生现状及防治策略[J].中国森林病虫,2004,23(5):36-38.
    [5]联合国粮食及农业组织.桉树栽培[M].罗马:意大利印刷,1979:1-5.
    [6]祁述雄编.中国桉树[M].中国林业出版社.2002,8:1-12.
    [7] Joha W, Grobbelaar Z, Wilhelm de Beer, et al. Discovery of Ophiostoma tsotsi on Eucalyptuswood chips in China. Mycoscience,2011,52(2):111-118.
    [8]殷亚方,杨民胜,王莉娟,等.巴西桉树人工林资源及其实木加工利用[J].世界林业研究,2005,18(1):60-64.
    [9]何方.中国经济林名优产品图志[M].北京:中国林业出版社,2001.
    [10]王承南,曹福祥.桉树及其次生代谢产物的综合利用[J].经济林研究,2004,22(3):57-59.
    [11]黄和亮,吴景贤,许少洪.桉树工业原料林的投资经济效益与最佳经济轮伐期[J].林业科学,2007,43(6):128-133.
    [12]朱建华,吴建勤,肖春辉,等.三明市森林植物检疫对象发生机危险性评估[J].福建林业科技,2002,29(4):60-62.
    [13]蒙美琼,文凤芝,黄金义.桉树的几种重要病害及防治[J].广西植保,1997:4-6.
    [14]弓明钦.尾叶桉的常见病害[J].广东林业科技,1992,2:20-23.
    [15] RAN LX, XIANG ML, ZHOU B, et al. Siderophores are the Main Determinants of FluorescentPseudomonas Strains in Supression of Grey Mould in Eucalyptus urophylla[J]. ACTAPHYTOPATHOLOGICASINICA,2005,35(1):6-12.
    [16]李瑞龙,王缉健.桂东南速生桉病害名录初探[J].广西农业科学,2002,3:139-141.
    [17]周彤桑.桉树紫斑病病原菌探讨[J].西南林学院学报,1990,10(2):180-183.
    [18]刘月廉.桉树枯枝病病害研究[J].森林病虫通讯,2000,1:6-8.
    [19]王缉健,甘德煜,李锋,等.速生桉五种重大病害及其防治[J].广西林业科学,2005,34(2):76-83.
    [20]余正国,钟琼和,易观路,等.桉树黄萎病的防治试验[J].热带林业,2005,33(3):43-44.
    [21]王忠,蔡卫群,杨红梅,等.桉树病虫草害主要种类与防治技术措施[J].湖南林业科技,2005,32(4):51-52.
    [22] Chen SF, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptusleaf blight in Southeast China[J]. Persoonia,2011,26:1-12.
    [23] Lombard L, Zhou XD, Crous PW, et al. Calonectria species associated with cutting rot ofEucalyptus[J]. Persoonia,2010,24:1-11.
    [24] Rodas CA, Lombard L, Gryzenhout M, et al. Cylindrocladium blight of Eucalyptus inColombia[J].Australasian Plant Pathology,2005,34:143-149.
    [25] Crous PW, Wingfield MJ. A monograph of Cylindrocladium, including anamorphs ofCalonectria[J]. Mycotaxon,1994,51:341-453.
    [26] Booth TH, Jovanovic T, Old KM, et al. Climatic mapping to identify high-risk areas forCylindrocladium quinqueseptatum leaf blight on eucalypts in mainland South East Asia andaround the world[J]. Environmental Pollution,2000,108:365-372.
    [27]郑美珠.桉树焦枯病发病规律的研究[J].福建林学院学报,2006,26(4):339-343.
    [28]吴孟科,周诗萍,黎丽霞,等.海南省儋州市森林植物检疫对象普查初报[J].热带农业科学,2000,5:30-33.
    [29]邓玉森,陈孝,林松煜,等.桉树焦枯病病原菌特性的观察[J].广东林业科技,1997,13(1):30-35.
    [30] Snyder WC, Hansen HN. Advantages of natural media and environments in the culture offungi [J]. Phytopathology,1947,37:420-421.
    [31] Sharma JK, Mohanan C, Rugmini P. Cultural characters and growth of Cylindrocladiumquinquesetatum isolates[J]. European Journal of Forest Pathology,1992,22:217-226.
    [32]陈英.桉树焦枯病的初步研究[D].福建农林大学硕士论文,2004.
    [33]孟祥民.桉树焦枯病发病规律与损失估计和防治指标的研究[D].福建农林大学硕士论文,2006.
    [34]朱建华,郭文硕,陈红梅,等.桉树焦枯病对桉树生长量的损失估计研究[J].中国森林病虫,2011,30(5):6-10.
    [35]朱建华,陈红梅,吴建勤,等.桉树焦枯病防治指标的研究[J].福建林业科技,2012,39(2):35-39.
    [36]庞联东,庞万伟,曾伟琼,等.桉树焦枯病药剂防治试验[J].植物检疫,2001,15(5):273-275.
    [37]朱建华,郭文硕,吴建勤,等.桉树焦枯病防治技术研究[J].福建林业科技,2011,38(3):41-47.
    [38]陈全助.桉树种系对焦枯病抗性的初步测定[J].福建林学院学报,2010,30(4):297-299.
    [39]冯丽贞,刘玉宝,郭素枝,等.桉树叶片的解剖结构与其对焦枯病抗性的关系[J].电子显微学报,2008,27(3):229-234.
    [40]冯丽贞,黄榕辉,郭文硕.桉树叶片的气孔特征与其对焦枯病抗性的关系[J].福建林学院学报,2009,29(4):293-296.
    [41]冯丽贞,陈全助,郭文硕,等.桉树的次生代谢与桉树对焦枯病抗性的关系[J].中国生态农业学报,2008,6(2):1-5.
    [42]冯丽贞,陈全助,郭文硕,等.植物防御酶与桉树对焦枯病抗性的关系[J].中国生态农业学报,2008,16(5):1188-1191.
    [43]冯丽贞.桉树种系对焦枯病的抗性机制研究[D].福建农林大学博士论文,2008.
    [44] Old KM, Wingfield MJ, Yuan ZQ. A manual of diseases of eucalypts in South-East Asia.Centre for International Forestry Research, Indonesia,2003, Pb.98.
    [45] Sharma JK, Mohanan C. Pathogenic variation in Cylindrocladium quinqueseptatum causingleaf blight of Eucalyptus[J]. European Journal of Forest Pathology,1991,21:210–217.
    [46] Crous PW. Taxonomy and pathology of Cylindrocladium(Calonectria) and allied genera. APSPress, St. Paul Minnesota, USA,2002.
    [47] Rodas CA, Lombard L, Gryzenhout M, et al. Cylindrocladium blight of Eucalyptus grandis inColombia[J].Australasian Plant Pathology,2005,34:143-149.
    [48] Schoch CL, Crous PW, Wingfeld BD, et al. Phylogeny of Calonectria based on comparisonsof β-tubulin DNAsequences[J]. Mycological Research,2001,105:1045-1052.
    [49] Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classifcation of theFungi[J]. Mycological Research,2007,111:509–547.
    [50] Schoch CL, Sung GH, López-Giráldez F, et al. The Ascomycota Tree of Life: A phylum-wide phylogeny clarifes the origin and evolution of fundamental reproductive and ecologicaltraits[J]. Systematic Biology,2009,58:224-239.
    [51] Lombard L, Crous PW, Wingfeld BD, et al. Species concepts in Calonectria (Cylindrocladium)[J].Studies in Mycology,2010,66:1-14.
    [52] Rossman AY. Calonectria and its type species, C. daldiniana, a later synonym of C. pyrochroa[J].Mycotaxon,1979,8:321-328.
    [53] Rossman AY. Holomorphic hypocrealean fungi: Nectria sensu stricto and telemorphs ofFusarium. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungalsystematics[M].(Reynolds DR, Taylor JW, eds.). CAB International, Wallingford, U.K.1993,149-160.
    [54] Lombard L, Crous PW, Wingfeld BD, et al. Phylogeny and systematics of the genus Calonectria[J].Studies in Mycology,2010,66:31-69.
    [55] Cannon PF, Kirk PM.The philosophy and practicalities of amalgamating anamorph andteleomorph concepts[J]. Studies in Mycology,2000,45:19-25.
    [56] Schoch CL, Crous PW, Wingfield BD, et al. The Cylindrocladium candelabrum speciescomplex includes four distinct mating populations[J]. Mycologia,1999,91:286-298.
    [57] Schoch CL, Crous PW, Cronwright G, et al. Recombination in Calonectriamorganiiand phylogenywith other heterothallic small-spored Calonectria species[J]. Mycologia,2000,92:665-673.
    [58] Schoch CL, Crous PW, Wingfield MJ, et al. Phylogeny of Calonectria and selected hypocrealeangenera with cylindrical macroconidia[J]. Studies in Mycology,2000,45:45-62.
    [59] Crous PW, Groenewald JZ, Risède JM, et al. Calonectria species and their Cylindrocladiumanamorphs: species withsphaeropedunculate vesicles[J]. Studies inMycology,2004,50:415-430.
    [60] Crous PW, Groenewald JZ, Risède JM, et al. Calonectria species and their Cylindrocladiumanamorphs: species with clavate vesicles[J]. Studies in Mycology,2006,55:213-226.
    [61] Graves AH. Root rot of coniferous seedlings[J]. Phytopathology,1915,5:213-217.
    [62] Massey LM. The crown canker disease of rose[J]. Phytopathology,1917,7:408-417.
    [63] Anderson PJ. Rose canker and its control[M]. Massachusetts Agricultural Experiment StationBulletin,1919,183:11-46.
    [64] French DW, Menge JA. Survival of Cylindrocladium floridanum in naturally and artificiallyinfested forest tree nurseries[J]. Plant Disease Reporter,1978,62:806-810.
    [65] Peerally A.The classification and phytopathology of Cylindrocladium species[J]. Mycotaxon,1991,40:323–366.
    [66] Wiapara NW, Di Menna ME, et al. Pathogenicity of Cylindrocladium scoparium to asturelover and grass species[J]. Australasian Plant Pathology,1996,25:205-211.
    [67] Crous PW, Phillips AJL, Wingfield MJ.The genera Cylindrocladium and Cylindrocladiella inSouth Africa, with special reference to forestry nurseries[J]. South African Forestry Journal,1991,157:69-85.
    [68] Lombard L, Rodas CA, Crous PW, et al. Calonectria (Cylindrocladium) species associatedwith dying Pinus cuttings[J]. Persoonia,2009,23:41-47.
    [69] Batista AC. Cylindrocladium scoparium Morgan var. brasiliensis Batista&Ciferri, a newfungus on Eucalyptus[J]. Boletim da Secretaria de Agricultura, Industria e Comercio doEstado de Pernambuco,1951,18:188-191.
    [70] Cox RS. Etiology and control of a serious complex of diseases of conifer seedlings[J].Phytopathology,1953,43:469.
    [71] Terashita T, It K. Some notes on Cylindrocladium scoparium in Japan. Bulletin of theForestry Experiment Station Tokyo,1956,87:33-47.
    [72] Sharma JK, Mohanan C. Cylindrocladium spp. associated with various diseases of Eucalyptusin Kerala[J]. European Journal of Forest Pathology,1982,12:129-136.
    [73] Sharma JK, Mohanan C, Maria Florence EJ. Nursery diseases of Eucalyptus in Kerala[J].European Journal of Forest Pathology,1984,14:77–89.
    [74] Brown BB, Ferreira FA. Disease during propagation of eucalypts. In: Diseases and pathogensof eucalypts[M].(Keane PJ, Kile GA, Podger FD, Brown BN, eds). CSIRO publishing,Australia,2000:119-151.
    [75] Taniguchi T, Tanaka C, Tamai S, et al. Identification of Cylindrocladium sp. causing damping-offdisease of Japanese black pine (Pinus thunbergii) and factor affecting the disease severity ina black locust (Robinia pseudoacacia)-dominated area[J]. Journal of Forest Research,2008,13:233-240.
    [76] Hodges CS, May LC. A root disease of pine, Araucaria, and Eucalyptus in Brazil caused by anew species of Cylindrocladium[J]. Phytopathology,1972,62:898-901.
    [77] El-Gholl NE, Kimbrough JW, Barnard EL, et al. Calonectria spathulata sp. nov[J].Mycotaxon,1986,26:151-164.
    [78] Park RF, Keane PJ, Wingfield MJ, et al. Fungal diseases of eucalypt foliage. In: Diseases andpathogens of eucalypts[M].(Keane PJ, Kile GA, Podger FD, Brown BN, eds). CSIROpublishing, Australia,2000:153–239.
    [79] Crous PW, Kang JC. Phylogenetic confirmation of Calonectria spathulata and Cylindrocladiumleucothoes based on morphology, and sequence data of the β-tubulin and ITS rRNA genes[J].Mycoscience,2001,42:51-57.
    [80] Gadgil PD, Dick MA. Fungi silvicolae novazelandiae:5[J]. New Zealand Journal of ForestryScience,2004,34:316-323.
    [81] Crous PW, Wingfield MJ, Mohammed C, et al. New foliar pathogens of Eucalyptus fromAustralia and Indonesia[J]. Mycological Research,1998,102:527-532.
    [82] Kang JC, Crous PW, Old KM, et al. Non-conspecificity of Cylindrocladium quinqueseptatumand Calonectria quinqueseptata based on a β-tubulin gene phylogeny and morphology[J].Canadian Journal of Botany,2001,79:1241-1247.
    [83] McNeill J, Stuessy TF, Turland NJ, et al. XVII International Botanical Congress: preliminarymail vote and report of Congress action on nomenclature proposals[J]. Taxon,2005,54:1057-1064.
    [84] Crous PW, Phillips AJL, Wingfield MJ. Effects of cultural conditions on vesicle and conidiummorphology in species of Cylindrocladium and Cylindrocladiella[J]. Mycologia,1992,84:497-504.
    [85] Boesewinkel HJ. Heterogeneity within Cylindrocladium and its teleomorphs[J]. Transactionsof the British Mycological Society,1982,78:553-556.
    [86] Crous PW, Peerally A. Gliocladiopsis irregular sp. nov. and notes on Cylindrocladium spathiphylli[J].Mycotaxon,1996,58:119-128.
    [87] Crous PW, Alfenas AC, Junghans TG. Variability within Calonectria ovata and its anamorphCylindrocladium ovatum from Brazil[J]. Sydowia,1998,50:1-13.
    [88] Kang JC, Crous PW, Schoch CL. Species concepts in the Cylindrocladium floridanum and Cy.pathiphylli complexes (Hypocreaceae) based on multi-allelic sequence data, sexual compatibilityand morphology[J]. Systematic andApplied Microbiology,2001,24:206-217.
    [89] Stevens C, Palmer MA, McRoberts RE. Use of aminopeptidase substrate specificities to identifyspecies of Cylindrocladium inWisconsin nurseries[J]. Mycologia,1990,82:436-443.
    [90] Hunter BB, Barnett HL.Growth and sporulation of species and isolates of Cylindrocladium inculture[J]. Mycologia,1978,70:614-635.
    [91] Ahrazem O, Prieto A, Leal JA, et al. Structural elucidation of acidic fungal polysaccharidesisolated from the cell-wall of genera Cylindrocladium and Calonectria[J]. CarbohydrateResearch,1997,303:67-72.
    [92] Schindel DE, Miller SE. DNA barcoding: a useful tool for taxonomists[J]. Nature,2005,435:17
    [93]陈念,付晓燕,赵树进,等. DNA条形码:物种分类和鉴定技术[J].生物技术通讯,19(4):629-63.
    [94]韦健红,吴文如,喻良文,等. DNA条形码技术在生物分类中的应用[J].广东药学院学报,2010,26(4):430-433.
    [95] Crous PW, Alfenas AC, Wingfeld MJ. Calonectria scoparia and Calonectria morganii sp.nov., and variation among isolates of their Cylindrocladium anamorphs[J]. MycologicalResearch,1993,97:701-708.
    [96] El-Gholl NE, Alfenas AC, Crous PW, et al. Description and pathogenicity of Cylindrocladiumovatum sp. nov[J]. Canadian Journal of Botany,1993,71:466-470.
    [97] El-Gholl NE, Alfenas AC, Junghans, DT, et al. Description of Calonectria rumohrae sp. nov.(anamorph=Cylindrocladium rumohrae sp. nov.)[J], Mycotaxon,1997,64:467-484.
    [98] Risède JM, Simoneau P. Pathogenic and genetic diversity of soilborne isolates ofCylindrocladium from banana cropping systems[J]. European Journal of Plant Pathology,2004,110:139-154.
    [99] Crous PW, Theron L, Zyl WH van. Delineation of Cylindrocladium species with1–3-septateconidia and clavate vesicles based on morphology and rDNA RFLPs[J]. MycologicalResearch,1997,101:210-214.
    [100] Risède JM, Simoneau P. Typing Cylindrocladium species by analysis of ribosomal DNAspacers polymorphism: application to feld isolates from the banana rhizosphere[J].Mycologia,2001,93:494-504.
    [101] Crous PW, Mchau GRA, Zyl Van WH, et al. New species of Calonectria and Cylindrocladiumisolated from soil in the tropics[J]. Mycologia,1997,89:653-660.
    [102] Crous PW, Kang JC, Schoch CL, et al. Phylogenetic relationships of Cylindrocladiumpseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based onmorphology and DNA sequences of internal transcribed spacers and β-tubulin[J]. CanadianJournal of Botany,1999,77:1813-1820.
    [103] Linde CC, Zhan J, McDonald BA. Population structure of Mycosphaerella graminicola:from lesions to continents[J]. Phytopathology,2002,92:946-955.
    [104] Grünwald NJ, Goodwinj SB, Milgroom MG, et al. Analysis of genotypic diversity data forpopulations of microorganisms[J]. Phytopathology,2003,93:738-746.
    [105] Wright LP, Wingfield BD, Crous PW, et al. Isolation and characterization of microsatelliteloci in Cylindrocladium parasiticum[J]. Molecular Ecology Notes,2006,6:110-112.
    [106] Wright LP, Wingfield BD, Crous PW, et al. Isolation and characterization of microsatelliteloci in Cylindrocladium pauciramosum[J]. Molecular Ecology Notes,2007,7:343-345.
    [107] Yoder OC, Turgeon BG. Fungal genomics and pathogenicity[J]. Current Opinion in PlantBiology,2001,4:315-321.
    [108] Foster SJ, Monahan BJ, Bradshaw RE. Genomics of the filamentous fungi-moving from theshadow of the baker’s yeast[J]. Mycologist,2006,20:10-14.
    [109] Gabriel DW, Rolfe BG. Working models of specific recognition in plant-microbe interaction[J].Ann Rev Phytopathology,1990,28:365-391.
    [110] TakkenFLW,TamelingWIL.To nibbleatplant resistanceproteins[J]. Science,2009,324:744-745
    [111] Boiler T, He SY. Innate immunity in plants: an arms race between pattern recognition receptorsin plants and effectors in microbial pathogens[J]. Science,2009,324:742-744
    [112] Dodds PN and Rathjen JP. Plant immunity: towards an integrated view of plant–pathogeninteractions[J]. Nat Rev Genet,2010,11(8):539-548
    [113] Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance [J]. Plant Cell,1996,8:1809-1819.
    [114] Delaney TP, Ukness S, Vernooij B, et al. A central role of salicylic acid in disease resistance[J]. Science,1994,266:1247-1250
    [115]周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展,2007,17(3):305-312.
    [116]徐刚,姚银安.水杨酸、茉莉酸和乙烯介导的防卫信号途径相互作用的研究进展[J].生物学杂志,2009,26(1):48-51.
    [117]邹骁刚.乙烯介导的防卫信号途径研究进展[J].安徽农业科学,2012,40(11):6453-6454
    [118] Wu BJ, Shortt EB, Lawrence EB, et a1. Disease resistance conferred by expression of a geneencoding H2O2-enerating glucose oxidase in transgenicpotato plants [J]. Plant Cell,1995,(7):1357-1368
    [119]张满效,安黎哲,陈拓,等. NO是植物应激反应的信号分子[J].西北植物学报,2004,24(6):1145-1153
    [120] Liu J, Liu X, Dai L, et al. Recent Progress in Elucidating the Structure, Function andEvolution of Disease Resi stance Genes in Plants[J]. Journal of Genetics and Genomics,2007,34(9):765-776.
    [121] Johal GS, Briggs SP. Reductase activity encoded by the HM1disease resistance gene inmaize[J]. Science,1992,258:985-987
    [122]李智强,戴良英,刘维伦,等.植物抗病机制与信号转导研究进展[J].作物研究,2011,25(5):526-530
    [123]何锋,王长春,王锋青,等.植物抗病基因(R)与病原无毒基因(Avr)相互作用机制的研究进展[J].中国细胞生物学报,2011,33(9):1037-1044.
    [124] Chisholm ST, Coaker G, Day B, et al..Host-microbe interactions: Shaping the evolution ofthe plant immune response[J]. Cell,2006,124(4):803-814
    [125] Traut TW. The function and consensus motifs of nine types of peptide segments that formdifferent types of nucleiotide-binding sites[J]. Eur J Biochem,1994,222:9-19.
    [126] Dangl JL, Jones JDG. Plant pathogens and integrated defense responses to infection[J].Nature,2001,411:826-833.
    [127] Saraste M, Sibbald PR, Wittinghofer A. The P-loop—Acommon motif in ATP-and GTP-bindingproteins[J]. Trends Biochem,1990,15:430-434.
    [128] Van der Biezen EA, Jones JDG. Plant disease-resistance proteins and the gene for geneconcept[J]. Trends Biochem Sci,1998,23:454-456.
    [129] Tameling WIL, Elzinga SDJ, Darmin PS, et al. The tomato R gene products I-2and Mi-1arefunctional ATPbinding proteins withATPase activity[J]. Plant Cell,2002,14:2929-2939.
    [130]袁克华,冯仁军,程萍,等.香蕉NBS-LRR类抗病基因同源序列的克隆与分析[J].中国农学通报,2009,25(05):271-274.
    [131] Torii KU. Lucine-rich repeat receptor kinase in plants: structure, function, and signaltransduction pathways[J]. International Review of Cytology,2004,234:1-46.
    [132] Jones DA, Jones JDG. The role of leucine-rich repeat protein in plant defense[J]. Theor ApplGenet,1997,103:406-414.
    [133] Hulbert SH, Webb CA, Smith SM, et al. Resistance genecomplexes: evolutionand utilization[J].Annu Rev Phytopathol,2001,39:285-312.
    [134] Warren RF, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat do-main ofthe Arabidopsis disease resistance gene RPP5partially suppresses multiple bacterial anddowny mil-dew resistance genes[J]. The Plant Cell,1998,10:1439-1452
    [135] Hwang CF, Williamson VM. Leucine-rich repeat-mediated intramolecular interactions innematode recognition and cell death signaling by the tomato resis-tance protein Mi[J].ThePlant Journal,2003,34:585-593
    [136]唐小飞,潘夕春,周红. Toll样受体家族TIR结构域结构与功能的研究进展[J].中国科技博览,2009,28:185-186
    [137] Shirasu K, Schulze-Lefert P. Complex formation, promiscuity and multi-functionality:protein interactions in dis-ease-resistance pathways[J].Trends Plant Sci,2003,8:252-258.
    [138] Mestre P, Baulcombe DC. Elicitor-mediated oligomerization of the tobacco N diseaseresistance protein[J]. Plant Cell,2006,18:491-501.
    [139] Dinesh-Kumar SP, Wai-Hong T, Barbara JB.Structure-function analysis of the tobaccomosaic virus resistance gene N[J]. Proc Natl Acad Sci USA,2000,97:14789-14794.
    [140] Ade J, DeYoung BJ, Golstein C, et al. Indirect activation of a plant nucleiotide bindingsite-leucine-rich repeat protein by a bacterial protease[J]. Proc Natl Acad Sci USA,2007,104:2531-2536.
    [141] Torii KU. Receptor kinase activation and signal transduction in plants: an emergingpicture[J]. Curr Opin Plant Biol,2000,3:361-367.
    [142] Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: diversity, function, andsignaling[J]. Sci Signal Transduction Knowledge Environ,2001,113: RE22.
    [143] Dievart A, Clark SE. LRR-containing receptors regulating plant development and defense[J].Development,2004,131:251-261
    [144] Zhou JM, Loh YT, Bressan RA, et al. The tomato gene Pti1encodes a serine/threoninekinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell,1995,83:925-935.
    [145] Salmero JM, Oldroyd GED, Rommens CMT, et al. Tomato Prf is a member of the leucine-richrepeat class of plant disease resistance genes and lies embedded within the Pto kinase genecluster[J]. Cell,1996,86:123-133.
    [146] Zhou JM, Tang XY, Martin GB. The Pto kinase conferring resistance to tomato bacterialspeck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J].EMBO J,1997,16:3207-3218.
    [147] Sessa GD, Ascenzo M, Martin GB.Thr38and Ser198are Pto autophosphorylation sitesrequired for the AvrPto/Pto-mediated hypersensitive response[J]. EMBO J,2000,19:2257-2269.
    [148] Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the ricedisease resistance gene Xa21[J]. Science,1995,270:1804-1806.
    [149] Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant J,2004,37:517-527.
    [150]刘胜毅.植物与病原菌互作和抗病性的分子机制[J].中国农业科学,1999,32(增刊):94-102
    [151]王爱荣.核盘菌与拟南芥互作的分子机制研究[D].福建农林大学,2006
    [152] Büschges R, Hollricher K, Panstruga R., et al. The Barley Mlo Gene: ANovel Control Elementof Plant Pathogen Resistance. Cell,1997,88:695-705
    [153] Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistanceproteins[J]. Annual Review Plant Biology,2003,54:23-61.
    [154]古瑜,贾占温,孙德岭,等.植物抗病机制的研究进展[J].天津农业科学,2008,14(4):45-48
    [155]崔素萍.小麦受条锈菌侵染后防卫基因的表达特征及克隆[D].西北农林科技大学博士学位论文,2005.
    [156]董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26(4):289-293
    [157] Rosa DD, Furtado EL, Boava LP, et al. Eucalyptus ESTs involved in mechanisms againstplant pathogens and environmental stresses[J]. Summa phytopathol,2010,36(4):282-290
    [158] Junghans DT, Alfenas AC, Brommonschenkel SH, et al. Resistance to rust (Puccinia psidiiWinter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPDmarkers[J]. Theor Appl Genet,2003,108:175-180.
    [159] Mamani EMC, Bueno NW, Faria DA, et al. Positioning of the major locus for Pucciniapsidii rust resistance (Ppr1) on the Eucalyptus reference map and its validation acrossunrelated pedigrees[J]. Tree Genetics&Genomes,2010,6:953-962.
    [160] Lima BM, Teixeira JEC, Gazaffi R, et al. Identification of a novel QTL contributing to rustresistance in Eucalyptus[J]. BMC Proceeding,2011,5(Suppl7): P32.
    [161] Bhoora R, Berger DK, Wingfield MJ, et al. PCR cloning by genome walking of a completepolygalacturonase-inhibiting protein gene from Eucalyptus grandis[J]. South African J Sci,2003,99:410-412.
    [162] Feng LZ, Guo WS, Xie WF, et al. Construction and analysis of a SSH cDNA library ofEucalyptus grandis×Eucalyptus urophylla9224induced by Cylindrocladium quinquese-ptatum[J]. BOTANY,2012,90(12):1277-1283.
    [163] Adriano Barbosa-da-Silva, Ana C. Wanderley-Nogueira, Raphaela R.M. Silva, et al. In silicosurvey of resistance (R) genes in Eucalyptus transcriptome[J]. Genetics and Molecular Biology,2005,28(3):562-574.
    [164] Naidoo R, Myburg A, Berger D, et al. Expression profiling of putative Eucalyptus grandisdefence marker genes in response to treatment with methyl jasmonate and salicylic acid[J].BMC Proceedings,2011,5(Suppl7): P96
    [165] Naidoo S, Naidoo R, Oates C, et al. Investigating Eucalyptus–pathogen and pest interactionsto dissect broad spectrum defense mechanisms[J]. BMC Proceedings,2011,5(Suppl7):P97
    [166] Wang Z, Gerstein M and Snyder M. RNA-Seq: a revolutionary tool for Transcriptomics[J].Nature Reviews Genetics,2009,10:57-63.
    [167] Strau T, van Poecke RMP, Strau A, et al. RNA-seq pinpoints a Xanthomonas TAL-effectoractivated resistance gene in a large-crop genome[J]. Proc Natl Acad Sci USA,2012,109(47):19480-19485.
    [168] Kim KH, Kang YJ, Kim DH, et al. RNA-Seq Analysis of a Soybean Near-Isogenic LineCarrying Bacterial Leaf Pustule-Resistant and-Susceptible Alleles[J]. DNA RESEARCH,2011,18:483-497.
    [169] Xu L, Zhu L, Tu L, et al. Lignin metabolism has a central role in the resistance of cotton tothe wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptionalanalysis and histochemistry[J]. Journal of Experimental Botany,2011,62(15):5607-5621
    [170] Kawahara Y, Oono Y, Kanamori H, et al. Simultaneous RNA-Seq Analysis of a MixedTranscriptome of Rice and Blast Fungus Interaction[J]. PLoS One,2012,7(11): e49423.
    [171] Ward, J.A. and Weber, C.A. Comparative RNA-seq for the investigation of resistance toPhytophthora root in the red Raspberry‘Latham’.ISHSActa Horticulturae,2012,946:67-72.
    [172] Springer PS, McCombie WR, SundaresanV, et al. Gene trap tagging of PROLIFERA, anessential MCM2-3-5-like gene in Arabidopsis[J]. Science,1995,268(5215):877-880.
    [173] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping ofthe Mollicutes: Mycoplasma genitalium [J]. Electrophoresis,1995,16(7):1090-1094.
    [174] Smith JC, Figeys D. Proteomics technology in systems biology[J]. Molecular BioSystems,2006,2(8):364-70.
    [175] O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. Journal ofBiological Chemistry,1975,250(10):4007-4021.
    [176] Ross PL, Huang YN, Marchese JN, et al. Muhiplexed protein quantitation in Saccharomycescerevisiae using amine reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3(12):1154-1169.
    [177] Pichler P, K cher T, Holzmann J, et al. Peptide labeling with isobaric tags yields higheridentification rates using iTRAQ4-plex compared to TMT6-plex and Itraq8-plex on LTQOrbitrap[J]. Analytical Chemistry,2010,82(15):6549-6558.
    [178] Burk JM, Vaudel M, Zahedi RP, et al. iTRAQ protein quantification: A quality controlledworkflow[J]. Proteiomics,2011,11(6):1125-1134.
    [179]谢秀枝,王欣,刘丽华,等. iTRAQ技术及其在蛋白质组学中的应用[J].中国生物化学与分子生物学,2011,27(7):616-621.
    [180] Fan J, Chen C, Yu Q, et al. Comparative iTRAQ proteome and transcriptome analyses ofsweet orange infected by “Candidatus Liberibacter asiaticus”[J]. Physiologia Plantarum,2011,143:235-245.
    [181] Lan P, Li W, Wen TN, et al. iTRAQ Protein Profile Analysis of Arabidopsis Roots RevealsNewAspects Critical for Iron Homeostasis [J]. Plant Physiology,2011,155:821-834.
    [182]钟云. Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究[D].湖南农业大学,2012,6.
    [183] Lippert DN, Ralph SG, Phillips M, et al.Quantitative iTRAQ proteome and comparativetranscriptome analysis of elicitor-induced Norway spruce (Picea abies) cells revealselements of calcium signaling in the early conifer defense response[J]. Proteomics,2009,9(2):350-367.
    [184] Myburg AA, Grattapaglia D, Tuskan GA, et al. Assembly And Annotation Of TheEucalyptus Genome Sequence, Plant&Animal Genomes XIX Conference,2011,15-19.
    [1]刘超洋.荧光假单孢杆菌防治桉树焦枯病的研究[D].长沙:中南林学院,2003:2
    [2]谢耀坚.中国桉树育种研究进展及宏观策略[J].世界林业研究,2011,24(4):50-54.
    [3]祁述雄.中国引种桉树与发展现状[J].广西林业科学,2006,35(4):250-252.
    [4] Zhou XD, Xie YJ, Chen SF, et al. Diseases of eucalypt plantations in China: challenges andopportunities[J]. Fungal Diversity,2008,32:1-7.
    [5] Sharma JK, Mohanan C. Pathogenic variation in Cylindrocladium quinqueseptatum causing leafblight of Eucalyptus[J]. European Journal of Forest Pathology,1991,21(4):210-217.
    [6] Sharma JK, Mohanan C. Relative susceptibility of Eucalyptus provenances to Cylindrocladiumleaf blight in Kerala, India[J]. European Journal of Forest Pathology,1992,22(5):257-265.
    [7] Booth TH, Jovanovic T, Old KM, et al. Climatic mapping to identify high-risk areas forCylindrocladium quinqueseptatum leaf blight on eucalypts in main land South East Asia andaround the world[J]. Environmental Pollution,2000,108(3):365-372.
    [8] Crous PW. Taxonomy and pathology of Cylindrocladium(Calonectria) and allied genera[M].APS Press, St.Paul Minnesota, USA,2002.
    [9] Old KM, Wingfield MJ, Yuan ZQ. A manual of diseases of eucalypts in South-East Asia[M].Bogor Indonesia: Centre for International Forestry Research,2003:14-15.
    [10] Chen SF, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptusleaf blight in Southeast China[J]. Persoonia,2011,26:1-12.
    [11] Rodas CA, Lombard L, Gryzenhout M, et al. Cylindrocladium blight of Eucalyptus grandis inColombia[J].Australasian Plant Pathology,2005,34(2):143-149.
    [12]邓玉森,陈孝,林松煜,等.桉树焦枯病病原菌特性观察[J].广东林业科技,1997,13(1):30-35.
    [13]蒙美琼,黄金义,文凤芝.桉树苗期焦枯病发生的调查与防治意见[J].广西植保,1998,(4):26-28.
    [14]郑美珠.桉树焦枯病发病规律的研究[J].福建林学院学报,2006,26(4):339-343.
    [15]吴孟科,周诗萍,黎丽霞,等.海南省儋州市森林植物检疫对象普查初报[J].热带农业科学,2000,5:30-33.
    [16]朱建华,郭文硕,陈红梅,等.桉树焦枯病对桉树生长量的损失估计研究[J].中国森林病虫,2011,30(5):6-10.
    [13]蒙美琼,黄金义,文凤芝.桉树苗期焦枯病发生的调查与防治意见[J].广西植保,1998,(4):26-28.
    [14]郑美珠.桉树焦枯病发病规律的研究[J].福建林学院学报,2006,26(4):339-343.
    [15]吴孟科,周诗萍,黎丽霞,等.海南省儋州市森林植物检疫对象普查初报[J].热带农业科学,2000,5:30-33.
    [16]朱建华,郭文硕,陈红梅,等.桉树焦枯病对桉树生长量的损失估计研究[J].中国森林病虫,2011,30(5):6-10.
    [17] Boesewinkel HJ. Heterogeneity within Cylindrocladium and its teleomorphs[J]. Transactions ofthe British Mycological Society,1982,78(3):553-556.
    [18] Peerally A. The classification and phytopathology of Cylindrocladium species[J]. Mycotaxon,1991,40:323-366.
    [19] Crous PW, Phillips AJL, Wingfield MJ. Effects of cultural conditions on vesicle and conidiummorphology in species of Cylindrocladium and Cylindrocladiella[J]. Mycologia,1992,84(4):497-504.
    [20] Crous PW,Wingfield MJ. Amonograph ofCylindrocladium, including anamorphs of Calonectria[J].Mycotaxon,1994,51:341-435.
    [21] Crous PW, Groenewald JZ, Hill CF. Cylindrocladium pseudonaviculatum sp. nov. from NewZealand, and new Cylindrocladium records fromVietnam[J]. Sydowia,2002,54(1):23-34.
    [22] Lombard L, Crous PW, Wingfield BD, et al. Species concepts in Calonectria (Cylindrocladium)[J]. Studies in Mycology,2010,66:1-13.
    [23] Lombard L, Crous PW, Wingfield BD, et al. Phylogeny and systematics of the genusCalonectria[J]. Studies in Mycology,2010,66:31-69.
    [24] Lombard L, Zhou XD, Crous PW, et al. Calonectria species associated with cutting rot ofEucalyptus[J]. Persoonia,2010,24:1-11.
    [25]黄绍辉,方炎明.改进的SDS-CTAB法提取濒危植物连香树总DNA[J].武汉植物学研究,2007,25(1):98-101.
    [26] O’Donnell K, Cigelnik E.Two divergent intragenomic rDNA ITS2types within a monophyleticlineage of the fungus Fusarium are nonorthologous[J]. Molecular Phylogenetics and Evolution,1997,7(1):103-116.
    [27] Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplifyconserved genes from filamentous Ascomycetes[J]. Applied and Environment Microbiology,1995,61(4):1323-1330.
    [28] Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentousascomycetes[J]. Mycologia,1999,91(3):553-556.
    [29] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignments through sequence weighting, position-specific gap penaltiesand weight matrix choice[J]. NucleicAcids Res,1994,22(22):4673-4680.
    [30] Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis programfor Windows95/98/NT[J]. NucleicAcids Symposium,1999,(41):95-98.
    [31] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    [32]陈全助.桉树种(系)对焦枯病抗性生理的研究[D].福建农林大学,2007.
    [33] Tsuneo Watanabe, Kazunori Nakamura.Cylindrocladium species and the related fungi isolatedin the Ogasawara (Bonin) Islands and the Ryukyu Islands, Japan[J]. Mycoscience,2004,45:351-356
    [34] Crous PW. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera[M].APS Press, St. Paul, Minnesota, USA.,2002,101
    [35]陈全助.桉树种系对焦枯病抗性的初步测定[J].福建林学院学报,2010,30(4):297-299.
    [1] Zhou, XD, Xie, YJ, Chen, SF, et al. Diseases of eucalypt plantations in China: challenges andopportunities[J]. Fungal Diversity,2008,32:1-7.
    [2] Chen SF, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptusleaf blight in Southeast China[J]. Persoonia,2011,26:1-12.
    [3] Strau T, van Poecke RM, Strau A, et al. RNA-seq pinpoints a Xanthomonas TAL-effectoractivated resistance gene in a large-crop genome[J]. Proc Natl Acad Sci USA,2012,109(47):19480-19485.
    [4] Kim KH, Kang YJ, Kim DH, et al. RNA-Seq Analysis of a Soybean Near-Isogenic LineCarrying Bacterial Leaf Pustule-Resistant and-Susceptible Alleles[J]. DNA RESEARCH,2011,18:483-497.
    [5] Xu L, Zhu L, Tu L, et al. Lignin metabolism has a central role in the resistance of cotton to thewilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysisand histochemistry[J]. Journal of Experimental Botany,2011,62(15):5607-5621
    [6] KawaharaY,OonoY, Kanamori H, et al. SimultaneousRNA-Seq Analysis ofa MixedTranscriptomeof Rice and Blast Fungus Interaction[J]. PLoS One,2012,7(11): e49423.
    [7] Ward, JA and Weber CA. Comparative RNA-seq for the investigation of resistance toPhytophthora root in the red Raspberry ‘Latham’.ISHSActa Horticulturae,2012,946:67-72.
    [8] Li R, Yu C, Li Y, et al. SOAP2: An improved ultrafast tool for short read alignment[J].Bioinformatics,2009,25(15):1966-1967.
    [9] Mortazavi A, Williams BA, Schaeffer L, et al. Mappingandquantifying mammaliantranscriptomesby RNA-Seq[J]. Nature Methods,2008,5(7):621-628.
    [10] Audic, S and Claverie J M. The significance of digital gene expression profiles[J]. GenomeRes,1997,7(10):986-995.
    [11] Benjamini, Y and Yekutieli D.The control of the false discovery rate in multiple testing underdependency[J]. TheAnnals of Statistics,2001,29:1165-1188.
    [12] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the2(T)(-Delta Delta C) method [J]. Methods,2001,25(4):402-408.
    [13] Wang Z, Gerstein M and Snyder M. RNA-Seq: a revolutionary tool for Transcriptomics[J].Nature Reviews Genetics,2009,10:57-63.
    [14] Hoen PA, Ariyurek Y, Thygesen HH, et al..Deep sequencing-based expression analysis showsmajor advances in robustness, resolution and inter-lab portability over five microarrayplatforms[J]. NucleicAcids Res,2008,36(21): e141.
    [15] Oliveros, JC VENNY. An interactive tool for comparing lists with Venn Diagrams.2007.
    [16]魏跃,陈啸寅,李振陆,等.黄瓜6-磷酸葡萄糖酸脱氢酶基因cDNA片段的克隆及表达分析[J].南京农业大学学报,2010,33(1):37-42.
    [17]叶建仁,黄素红,李传道.磷酸葡萄糖脱氢酶和苯丙氨酸解氨酶与抗松针褐斑病的关系[J]..林业科学,1994,30:430-435.
    [18] Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combatdisease[J]. Annu Rev phytopathol,2009,47:177-206
    [19] Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: what does it mean?[J]. Trends inPlant Science,2009,14(2):87-91.
    [20] Mersmann S, Bourdais G, Rietz S, et al. Ethylene signaling regulates accumulation of theFLS2receptor and is required for the oxidative burst contributing to plant immunity[J].Plantphysiology,2010,154:391-400.
    [21] Kazan K, Manners JM. Linking development to defense: auxin in plant-pathogen interactions[J].Trends in Plant Science,2009,14(7):374-382.
    [22] Chou J, Huh SU, Kojima M, et al. The cytokinin-activated transcription factor ARR2promotesplant immunity via TGA3/NPR1-dependent salicylicacid signaling in Arabidopsis[J].DevelopmentalCell,2010,19:284-295.
    [23] Oh MH,Wang XF, Wu X, et al. Autophosphorylation of Tyr-610in the receptor kinase BAK1plays a role in brassinosteroid signaling and basal defense gene expression[J]. PNAS,2010,107:17827-17832.
    [24] Durner J, Shah J, Klessig DF. Salicylic acid and disease resistance in plant[J]. Trends in PlantScience,1997,2(7):266-274.
    [25] Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance Regulate NPRlfunction through redox changes[J]. Cell,2003,113(7):935-944.
    [26] Pieterse C M J, Leon-Reyes A, Van der Ent S, et al. Networking by small-molecule hormonesin plant immunity[J]. Nature Chemical Biology,2009,5:308-316
    [27]刘庆霞,李梦莎,国静.茉莉酸生物合成的调控及其信号通路[J].植物生理学报,2012,48(9):837-844.
    [28] Schilmiller AL, Koo AJK, Howe GA. Functional diversification of acyl-coenzyme a oxidasesin jasmonic acid biosynthesis and action[J]. Plant Physiol,2007,143(2):812-824.
    [29] Ziegler J, Kein nen M, Baldwin IT. Herbivore-induced allene oxide synthase transcripts andjasmonic acid in Nicotiana attenuata[J]. Phytochemistry,2001,58(5):729~738.
    [30] Thatcher LF, Manners JM, Kazan K. Fusarium oxysporum hijacks COI1-mediated jasmonatesignaling to promote disease development in Arabidopsis[J]. Plant J,2009,58(6):927-939.
    [31] Garcia MJ, Lucena C, Romera FJ, Alcantara E, Perez-Vicente R. Ethylene and nitric oxideinvolvement in the up-regulation of key genes related to iron acquisition and homeostasis inArabidopsis[J]. J Exp Bot,2010,61(14):3885-3899.
    [32] Alonso JM, Stepanva AN, Solano R, et al. Five components of the ethylene response pathwayidentified in a screen for weak ethylene insensitive mutants in Arabidopsis[J]. Proc Natl AcadSci USA.,2003,100(5):2992-2997.
    [33] Hua J, Meyerowitz EM.Ethylene responses are negatively regulated by a receptor gene familyinArabidopsis thaliana[J]. Cell,1998,94:261-271.
    [34]卫卓赟,黎家.受体激酶介导的油菜素内酯信号转导途径[J].生命科学,2011,23(11):1106-1113.
    [35] Wang X, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1signaling, from the plasma membrane[J]. Science,2006,313(5790):1118-1122DOI:10.1126/science.1127593.
    [36] Tang W, Kim TW, Oses-Prieto JA, et al. BSKs mediatesignal transduction from the receptorkinase BRI1in Arabidopsis[J]. Science,2008,321(5888):557-60.
    [37] Mora-Garcia S, Vert G, Yin Y, et al. Nuclear protein phosphatases with Kelch-repeat domainsmodulate the response to brassinosteroids in Arabidopsis[J]. Genes Dev,2004,18(4):448-460.
    [38] Li JM, NamKH, Vafeados D et al. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis[J].Plant Physiology,2001,127(1):14-22.
    [39] Choe S, Schmitz RJ, Fujioka S, et al. Arabidopsis brassinosteroid-insensitive dwarf12mutants aresemido-minant and defective in a glycogen synthase kinase3β-like kinase[J]. Plant Physiol,2002,130(3):1506-1515.
    [40] Perez-Perez JM, Ponce MR, Micol JL.The UCU1Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis[J]. Dev Biol,2002,242(2):161-173.
    [41] Fry SC, Smith RC, Renwick KF, et al. Xyloglucan endotransglycosylase, a new wall-looseningenzyme activity from plants[J]. Biochem J,1992,282(Pt3):821-828.
    [42] Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferasethat catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule[J].J Biol Chem,1992,267(29):21058-21064.
    [43] Kamada-Nobusada T, Sakakibara H. Molecular basis for cytokinin biosynthesis[J]. Phytochemestry,2009,70(4):444-449.
    [44] TakeiK, SakakibaraH,Sugiyama T. Identification ofgenesencodingadenylateisopentenyltransferase,a cytokinin biosynthesis enzyme, in Arabidopsis thaliana[J].Journal of Biological Chemistry,2001,276(28):26405-26410.
    [45] Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADPisopentenyltransferases[J]. Plant and Cell Physiology,2001,42(7):677-685.
    [46] Müller B, SheenJ.Arabidopsis cytokinin signaling pathway[J].Science STKE,2007,(407):cm5
    [47] Hare PD, Cress WA, Staden JV, Van SJ.The involvement of cytokinins in plant reponses toenvironmental stress[J]. Plant Growth Regulation,1997,23:79-103.
    [48] SiemensJ, Keller I, SarxJ, et al. Transcriptome analysis of Arabidopsis club roots indicate akey role for cytokinins in disease development[J]. Mol. Plant Microbe Interact,2006,19:480-494.
    [49] Normanly J, Slovin JP, Cohen JD. Auxin biosynthesis and metabolism[J]. Plant Hormones,2010, B:36-62.
    [50] Tan X, Calderon-Villalobos LI, Sharon M, et al. Mechanism of auxin perception by the TIR1ubiquitin ligase[J]. Nature,2007,446:640-645.
    [51] Llorente F, Muskett P, Sánchez-Vallet A, et al. Repression of the auxin response pathwayincrease Arabidopsis susceptibility to necrotrophic fungi[J]. Molecular Plant,2008,1:496-509.
    [52] Cernadas RA, Benedetti CE. Role of ausin and gibberellin in citrus canker development andin the transcriptional control of cell-wall remodeling genes modulated by Xanthomonasaxonopodis pv[J]. Citri.Plant Sci,2009,177:190-195.
    [53] Chen Z, Agnew JL, Cohen JD, et al. Pseudomonas syringae typeⅢ effector AvrRpt2altersArabidopsis thaliana auxin physiology[J]. Proc Natl Acad Sci USA,2007,104(50):20131-20136.
    [54] Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhancephotosynthesis[J]. Plant Physiology,2011,155(1):93-100.
    [55] Herrmann KM. The shikimate pathway: early steps in the biosynthesis of aromatic compounds[J].Plant Cell,1995,7(3):907-919.
    [56] Ritter H, Schulz GE. Structural basis for the entrance into the phenylpropanoid metabolismcatalyzed by phenylalanine ammonia-lyase[J]. The Plant Cell Online,2004,16(12):3426-3436.
    [57] Lange B, Rujan T, Martin W, et al. Isoprenoid biosynthesis: The evolution of two ancient a nddistinct pathways across genomes[J]. Proceedings of the National Academy of Sciences ofUSA,2000,97:13172-13177.
    [58]王秋军,张犇,王剑文.药用植物类异戊二烯代谢途径及其活性产物合成调控研究进展[J].植物学研究,2012,1(2):22-28doi:10.4236/br.2012.12004.
    [59] Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: A novel pathway forthe early steps leadingto isopentenyl diphosphate[J]. Biochemical Journal,1993,295:517-524.
    [60] Banthorpe D, Charlwood B and Francis M. Biosynthesis of monoterpenes[J]. Chemical Reviews,1972,72:115-155.
    [61] Bach TJ. Some new aspects of isoprenoid biosynthesis in plants: A review. Lipids,1995,30(3):191-202.
    [62] Sapir-Mir M, Mett A, Belausov E, et al. Peroxisomal localiza-tion of Arabidopsis isopentenyldiphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway iscompartmentalized to peroxisomes[J]. Plant Physiology,2008,148(3):1219-1228.
    [63] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesisin bacteria, algae and higher plants[J]. Natural Product Reports,1999,16:565-574.
    [64] Schwender J, Gemünden Cand Lichtenthaler H. Chlorophyta exclusively use the1-deoxyxululose5-phosphate/2-C-methyl-erythritol-4-phosphate pathway for the biosynthesis of isoprenoids[J].Planta,2001,212:416-423.
    [65] McGarvey J, Croteau R. Terpenoid metabolism[J]. The Plant Cell,1995,7:1015-1026.
    [66] Lopes A, Baldoqui D, López S, et al. Biosynthetic origins of the isoprene units of gaudichaudianicacid in Piper gaudichaudianum (Piperaceae)[J]. Phytochemistry,2007,68:2053-2058.
    [67] G hre1V, Spallek1T, H weker H, et al. Plant pattern-recognition receptor FLS2is directedfor degradation by the bacterial ubiquitin ligaseAvrPtoB[J]. CurrBiol,2008,23:1824-1832.
    [68] Zipfel C, Robatzek S, Navarro L, et al Bacterial disease resistance in Arabidopsis throughflagellin perception[J]. Nature,2004,428:764-767.
    [69] Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception ofthe bacterial elicitor flagellin in Arabidopsis[J]. Mol Cell,2000,5:1003-1011.
    [70] Ausubel FM. Are innate immune signaling pathways in plants and animals conserved[J]. NatImmunol,2005,6(10):973-979.
    [71] Jones JD, Dangl JL. The plant immune system[J]. Nature,2006,444(7117):323-329.
    [72] Mackey D, Holt BF, Wiig A, Dangl JL. RIN4interacts with Pseudomonas syringae type IIIeffector molecules and is required for RPM1-mediated resistance in Arabidopsis[J]. Cell2002,108(6):743-754.
    [73] Day B, Dahlbeck D, Huang J, et al. Molecular basis for the RIN4negative regulation of RPS2disease resistance[J]. Plant Cell,2005,17(4):1292-1305.
    [74] Yu D, Chen C, Chen Z. Evidence of important role of WRKY DNA binding proteins in theregulation of NPR1gene expression[J]. PlantCel,l2001,13:1527-1539.
    [75] EulgemT, Somssich IE. Networks of WRKY transcription factors in defense signaling[J].Curr Opin Plant Biol,2007,10:366-371.
    [1] Fan J, Chen C, Yu Q, et al. Comparative iTRAQ proteome and transcriptome analyses of sweetorange infected by “Candidatus Liberibacter asiaticus”[J]. Physiologia Plantarum,2011,143:235-245.
    [2] Lan P, Li W, Wen TN, et al. iTRAQ Protein Profile Analysis of Arabidopsis Roots RevealsNewAspects Critical for Iron Homeostasis [J]. Plant Physiology,2011,155:821-834.
    [3]钟云. Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究[D].湖南农业大学,2012,6.
    [4] Lippert DN, Ralph SG, Phillips M, et al. Quantitative iTRAQ proteome and comparative transcriptomeanalysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calciumsignaling in the early conifer defense response[J].Proteomics,2009,9(2):350-367.
    [5] Hack CJ. Intergrated transcriptome and proteome data: the challenges ahead[J]. Briefs inFunctional Genomics and Proteomics,2004,3(3):212-219.
    [6]吴松锋,朱云平,贺福初.转录组与蛋白质组比较研究进展[J].生物化学与生物物理进展,2005,32(2):99-105.
    [7] Desgagné-Penix1I, Khan MF, Schriemer DC, et al. Integration of deep transcriptome andproteome analyses reveals the components of alkaloid metabolism in opium poppy cellcultures[J]. BMC Plant Biology,2010,10:252-268.
    [8] Lackner DH, Schmidt MW, Wu S, et al. Regulation of transcriptome, translation, and proteomein response to environmental stress in fission yeast[J]. Genome Biology,2012,13:R25/doi:10.1186/gb-2012-13-4-r2.
    [9] Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of asystematically perturbed metabolic network[J]. Science,2001,292(5518):929-934.
    [10] Tian Q, Stepaniants SB, Mao M, et al. Integrated genomic and proteomic analyses of geneexpression in mammalian cells. Mol Cell Proteomics,2004,3(10):960-969.
    [11] Volker F. Wendisch, Polen T. Transcriptome/Proteome Analysis ofCorynebacterium glutamicum[J].Microbiology Monographs,2013,23:173-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700