用户名: 密码: 验证码:
三种瓜类枯萎病菌(Fusarium oxysporum Schl.)生理分化及其致病基因FochsV表达差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖孢镰孢菌(Fusarium oxysporum Schl.)是一种世界性分布的土传病原真菌,给我国及世界各国的农业生产造成了巨大的经济损失。近年来,由于瓜类栽培面积扩大,致使瓜类枯萎病发生严重。目前,对于瓜类枯萎病的防治主要采用化学防治,而培育抗病品种效果不稳定,原因之一是瓜类枯萎病种内分类复杂,许多种群之间还存在交叉侵染现象。因此,探索瓜类枯萎病菌主要专化型分化因素对明确其致病机理具有重要意义。
     本文以分离自黄瓜、甜瓜和西瓜枯萎病株的36株尖孢镰孢菌株为材料,采用致病性分化和遗传多样性分析相结合的方法,明确黄瓜、甜瓜和西瓜尖孢镰孢菌三种专化型菌株之间的生理分化特征;在构建真核表达载体pBC-hygro-GFP基础上,采用PEG-CaCl2介导的方法成功标记了黄瓜枯萎病菌菌株FSY0957,利用标记菌株观察尖孢镰孢菌在黄瓜、甜瓜、西瓜植株根部的侵染特性;并从FSY0957菌株基因组中克隆了几丁质合成酶V类基因FochsV的cDNA全长,对其进行生物信息学分析,应用Real-Time QPCR技术,初步揭示了Fochs V基因在三种寄主植株根表的相对表达量差异特征,主要研究内容如下:
     1.三种瓜类尖孢镰孢菌生理分化特性研究
     从辽宁省沈阳、鞍山、抚顺、新民等瓜类生产基地的黄瓜、甜瓜、西瓜上采集分离的尖孢镰孢菌中选出36株具有代表性菌株,利用传统致病性测定方法,检测尖孢镰孢菌的致病性分化。应用EF-1α和β-tubulin DNA序列分析和UP-PCR分子标记技术,探究三种瓜类枯萎菌株的遗传分化关系。结果表明:供试菌株共分为3个专化型:尖孢镰孢菌黄瓜专化型(F.oxysporum f.sp.cucumerium)、甜瓜专化型(F.oxysporum f.sp.melon)和西瓜专化型(F.oxysporum f.sp.niveum)。序列分析和UP-PCR分析将供试36个菌株划分为3个基因型,只有菌株FSY951和FSY0950在UP-PCR系统发育树中同其他菌株分开,而在DNA序列分析中被聚在类群2中。此外,基因型与菌株的致病型没有显著的关系,这表明尖孢镰孢菌的毒力组与亲缘组无相关性。
     2.尖孢镰孢菌绿色荧光蛋白标记研究
     构建尖孢镰孢菌绿色蛋白标记菌株。首先将gfp基因成功整合到带有真核表达启动子的骨架载体pBC-hygro上。成功构建真核表达载体pBC-hygro-GFP,并采用PEG-CaCl2介导的方法将GFP载体成功标记黄瓜枯萎病菌株FSY0957,观察该菌株在接种黄瓜、甜瓜、西瓜幼苗时的侵染特征,发现该菌株对黄瓜植株的定殖能力明显高于对甜瓜和西瓜寄主的定殖。本试验建立的遗传转化体系,为下一步探究枯萎病菌侵染机制,定殖植物根际研究奠定基础。
     3.枯萎病菌致病基因Fochs V cDN A全长的克隆及序列分析
     以黄瓜枯萎病尖孢镰孢菌FSY0957为材料,提取总RNA。利用RT-PCR (?)口基因调取的方法,获得FochsV基因cDNA全长。此cDNA全长序列为5589bp,包括5588bp的完整ORF,编码一个含1862个氨基酸的蛋白,该蛋白含有6个跨膜结构,无信号肽,属于膜结合蛋白。与其他真菌几丁质合成酶基因同源性比对结果表明,与尖孢镰孢菌Fochs V基因的同源性最高的是赤霉菌和木霉菌。该cDNA序列已经登录GenBank并获得登录号为KC840941。
     4. GYBR Green I实时荧光定量PCR检测黄瓜枯萎病菌致病基因Fochs V在不同侵染阶段的表达差异
     本文运用SYBR GreenⅠ实时荧光定量PCR技术,分析前人已证明的尖孢镰孢菌致病基因Fochs V在接种黄瓜、甜瓜和西瓜幼苗6、12、18、24、36、48、72、96、120和144h时的相对表达水平。明确Fochs V基因在侵染三种寄主不同时期的差异表达。结果表明:该基因在三种寄主上都呈间歇状上调或下调表达,侵染黄瓜幼苗时的各个侵染点表达量均很高,在侵染甜瓜和西瓜幼苗时只有的2-3个时间点的表达量高于对照。该结果除再次证明了Fochs V基因参与了尖孢镰孢菌对三种瓜类寄主的侵染,同时也揭示了该基因在不同侵染时期的表达量的变化。本研究建立的实时荧光检测方法为病菌的防治研究奠定了理论基础。
Fusarium oxysporum Schl is a worldwide soil-borne plant pathogenic fungus,which caused enormous loss on economy in China and other countries. In recent years, Fusarium wilt has become a severe disease on cucurbitaceous crops as the enlargement of the cultivated area. At present, the Fusarium wilt was controlled mainly by chemical methods and breeding resisitant cultivars. However, Fusarium wilt important pathogenic factors of Fusarium wilt are investigated.
     In the thesis,36strains of Fusarium oxysporum Schl. isolated from cucumber, melon and watermelon wilt at melon were studied as materials. Studies on physiological differentiation of their characteristics by combining the methods of pathogenic differentiation and genetic diversity analysis of research. And construct the eukaryotic expression vector of pBC-hygro-GFP, by using the method of PEG-CaCl2mediated successfully marked F. oxysporum strain FSY0957, and observed characteristics of F. oxysporum infection in cucumber, melon, watermelon plant roots use marked strain. The full-length cDNA of FochsV was obtained using from the genome of F.oxysporum f.sp.cucumerium strains FSY0957. And make its bioinformatics analysis. The expression levels of Fochs V on the three host plant root surface was investigated by Real-Time QPCR technology, Main researchs were as follows:
     1. The research progress of Fusarium wilt forma specialis and pathogenic factor
     A total of36F.oxysporum isolates were obtained from cucumber, muskmelon, and watermelon at Liaoning province, were selected to make the classification into formae speciales.The genetic relationship of36F.oxysporum isolates was determined using EF-1α, β-tubulin DNA sequence and UP-PCR analyses. The results show that all36isolates were divided into three formae speciales:F.oxysporum f.sp.cucumerium, F.oxysporum f.sp.melon and F.oxysporum f.sp.niveum.On basis of the combined sequence and UP-PCR data, the36isolates were classified into three major groups, but FSY951and FSY0950isolates were divided with other isolates in UP-PCR data, however they were divided in lineage2in DNA sequence data.In addition, there was not opposite ralationship between pathotype and genetype. This study confirmed that phylogenetic groups have little connection with virulence groups.
     2. The research of Fusarium oxysporum green fluorescent protein as a marker
     In the thesis, for the study on colonization of F. oxysporum in plant root, the gf p fragment as a reporter gene had integrated into the form plasmid vector pBC-hygro which containing a expressive promoter of the fungus to facilitate transformation of F. oxysporum. The results show that the gfp fragment integrated into pBC-hygro success fully. Eukaryotic expr-ession recombinant vector pBC-hygro-GFP was constructed corre ctly. The pBC-hygro-GFP was transformed into F.oxysporum by using PEG-CaCl2med iated transformation technique. The infection characteristics of the strain in the cucumb er, melon, watermelon seedling was observed at48h after inoculated. The colonization ability of tagged strain on cucumber plants was obviously higher than that on the m elon and watermelon host. Genetic transformation system established in this experiment provided a basis for the exploration on F.oxysporum pathogen infection mechanism a nd the colonization on plant rhizosphere.
     3. cDNA clone and sequence analyses of Fusarium oxysporum Fochs V gene
     The RNA of F. oxysporum. f.sp. cucumerium isolate FSY0957was extracted. The full-length cDNA of FochsV was obtained using RT-PCR and gene clone methods. It consisted of5589bp nucleotides, include a complete ORF5588bp. and encoded5588amino acids. The protein contains6transmembrane domain and no signal peptide sequence, which belongs to the membrane binding protein. And the results of gene homology comparising with other fungal chitin synthase show that the Gibberella moniliformis and Trichoderma have highest homology with F. oxysporum FochsV gene. The cDNA has been registered to the GenBank and No.KC840941.
     5Expression analysis of the FochsV gene in F.oxysporum Schl. f.sp. cucumerinum by real-time PCR
     In this paper, in order to prove that the differentially expression of Fochs V gene in different periods after infected three host, expression level analysis of the previous proven Fusarium oxysporum pathogenic gene FochsV at6-144h that inoculated on cucumber, melon and watermelon seedlings using SYBR Green I real-time PCR technology. The results show that:the gene were tested in the three host intermittent movement up or down-regulated, infection of cucumber seedlings infection expression levels are high, only infect melon and watermelon seedlings2-3the expression amount higher than that of the control point. The results unless proved once again that of Fochs V genes involved on the F. oxysporum infection on the three melons host, also reveal the changes in gene expression amount of the different infection period.The real-time fluorescence detection method established in this study has laid a theoretical foundation for the rapid prediction of the bacteria and prevent..
引文
1 Zhou C J(周村建).2001.真菌形态转变及致病性相关的信号传导.Foreign Med Sci Epidemiol Lemol(国外医学.流行病学传染病学分册),28(5):223-226.
    2 曹宜,刘波,林营志等.2004.枯萎病尖孢镰孢菌的RAPD-PCR多态性分析.厦门大学学报(自然科学版),43(sup):75-79.
    3 陈鸿逵,王拱辰.1991.浙江镰孢菌志.杭州:浙江科学技术出版社,1-72.
    4 陈勇辉,郭桢,曾永三.2006.广州地区节瓜枯萎病菌专化型研究初报.广东农业科学,8:60-61.
    5 崔兴国.2009.绿色荧光蛋白在现代生物学研究中的应用应用科技,73-74.
    6 戴惠学.1997.瓜类枯萎病及其防治技术.上海蔬菜,4:33
    7 段会军,姬惜珠,张彩英等.2005.几种瓜类枯萎病菌专化型的AFLP分析.河北农业大学学报,28(5):71-74.
    8 段会军,张彩英,李喜焕等.2008.基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价.菌物学报,27(2):267-76.
    9 方丽,宋凤鸣.2006.农杆菌介导的黄瓜炭疽菌遗传转化.浙江大学学报,32(4):44-54.
    10方中达.1998.植病研究法.3版.北京:中国农业出版社.
    11 高军,高增贵,赵世波等.2006.瓜类枯萎病及其防治研究进展.长江蔬菜,1:35-38.
    12谷祖敏,庄敬华,高增贵等.2003.黄瓜枯萎病菌无毒突变株的稳定性.植物保护,30(3):331-332.
    13顾卫红.1994.上海地区西瓜枯萎病病原菌生理小种初探.上海农业学报,10(3):63-67.
    14韩金星,洪日新,周林.2009.西瓜、黄瓜、甜瓜等瓜类枯萎病研究进展.中国瓜菜,(2):32-35.
    15韩正敏,尹作明,黄敏仁等.1998.用RAPD研究我国杨生褐盘二孢菌的群体分化.植物病理学报,28(4):347-352.
    16郝敏,邢达,谢波等.2002.含有绿色荧光蛋白基因的质粒载体的构建及其在水稻白叶枯细菌中的表达.激光生物学报,11(6):427-430.
    17纪莉景.2007.中国不同生态地区禾谷镰刀菌种群分化及遗传多样性分析.河北农业大学博士论文,1-118.
    18焦锋,楼程富.2000RAPD技术应用中的一些问题和对策.西北农业学报,9(4):98-102.
    19金扬秀,谢关林,孙祥良等.2003.大蒜轮作与瓜类枯萎病发病的关系.上海交通大学学报(农业科学版),21(1):9-12.
    20金扬秀,谢关林.2002.瓜类枯萎病防治研究进展.植物保护,28(6):43-45.
    21 荆玉祥,匡延百,李德保.1995.植物分子生物学-成就与前景.北京:科学出版社.
    22兰海燕,王长海,宋荣.2000.棉花内生细菌及其研究进展.棉花学报,12(2):105-108.
    23蓝江林,刘波,肖荣凤等.2004.温度对几种作物尖孢镰刀菌菌株生长的影响.厦门大学学报(自然科学版),(43):67-70.
    24李敏,王维华,刘润进等.2003.西瓜枯萎病抗病性研究进展.莱阳农学院学报,20(3):165-167.
    25李寿东,齐义鹏,胡建红等.1997.用绿色荧光蛋白基因作为筛选标记的新型克隆载体的构建.生物工程学报,(3):323-324.
    26李秀峰,庄佩君,唐振华.2000.真菌中的几丁质合成酶.世界农药,22(5):33-38.
    27林春华,刘先宝,蔡吉苗.2009.橡胶树尖孢炭疽菌绿色荧光蛋白(GFP)标记转化株的获得.热带作物学报,30(10):1495-1500.
    28刘路宁.2008.绿木霉TY009菌株胶霉毒素分离纯化及绿色荧光蛋白标记研究.浙江大学博士学位论文.
    29刘学敏,惠东威,张明厚,陈受宜.1997.大豆灰斑病菌生理小种的RAPD标记.菌物系统,16(2):128-133.
    30陆惠萍,孙树汉.1997.绿色荧光蛋白及其在分子寄生虫学研究中的应用中国寄生虫学与寄生虫病杂志,15(1):51-53.
    31吕碧文.2000.绿色荧光蛋白及其在生物技术上的应用.丽水师范专科学校学报,22(5):42-43.
    32马国斌,林德佩,王叶药等.2000.西瓜枯萎病菌镰刀菌酸对西瓜苗作用机制的初步探讨.植物病理学报,30(4):373-374.
    33马金石.2009.绿色荧光蛋白.化学通报,3:243-250.
    34戚佩坤.1966.吉林省栽培植物真菌病害志.北京:科学出版社,1-479.
    35戚佩坤.1995.瓜类枯萎病菌专化型研究简介.华南农业大学学报,16(4):110-114.
    36邱芳,伏健民,金德敏等.1998.遗传多样性的分子检测.生物多样性,6(2):143-150.
    37沈卫锋,翁宏飚,牛宝龙等.2008.根癌农杆菌介导的灰葡萄孢菌遗传转化研究.遗传,(4):515-520.
    38孙祥良,谢关林,金扬秀等.2003.轮作与甜瓜枯萎病发病的关系.浙江大学学报(农业与生命科学版),29(1):65-66.
    39孙玉宝,张国桥,杜念华等.2000.甜瓜抗枯萎病的遗传与育种.长江蔬菜,2(2):1-3.
    40汪恒英,周守标,常志州等.2004.绿色荧光蛋白(GFP)研究进展.生物技术,14(3):71-73.
    41王纯利,王冬梅,黄炜等.2000.西瓜枯萎病菌致病力与镰刀菌酸和β-1,4葡萄糖苷酶活性的关系研究.新疆农业大学学报,23(1):1-6.
    42王晓利.2008.农杆菌介导的瑞氏木霉转化及绿色荧光蛋白的表达研究.山东大学硕士学位论文,1-62.
    43翁祖信,徐新波,冯东昕等.1989.黄瓜枯萎病菌生理小种研究初报.中国蔬菜,(1):19-21.
    44吴蔼民等.2001.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报,31:289-294.
    45吴营昌,王守正,李洪连等.1996.瓜类枯萎病菌尖镰孢专化型研究初报.河南农业大学学报,30(1):89-93.
    46吴营昌,王守正.1991.利用弱致病菌株诱导黄瓜抗枯萎病研究.河南农业大学学报,25(4):433-437.
    47肖荣凤,朱育菁,李燕丹等.2009.西瓜尖孢镰刀菌FOV-135的绿色荧光蛋白基因转化.福建农业学报,24(6):521-524.
    48 肖荣凤.2007.瓜类尖孢镰刀菌生理分化特性研究福建农林大学,1-64.
    49谢大森,何晓明,彭庆务等.2006.瓜类枯萎病发生机理研究进展.仲恺农业技术学院学报,19(3):65-70.
    50徐建华,王建波,利容千等.1997.黄瓜感染枯萎病后的病理组织学的研究.植物病理学报,27(4):349-352.
    51许飞虎,龚兴国.2002.绿色荧光蛋白应用研究进展.细胞生物学杂志,24(6):332-333.
    52许勇,朱其杰,陈晓莉等.1993.镰刀菌酸对黄瓜不同品种的致萎力与枯萎病菌致病力的相关性.中国蔬菜(1):19-20.
    53许勇,朱其杰等.1997.镰刀菌酸对黄瓜不同品种的致萎力与枯萎病菌致病力的相关性.中国蔬菜(1):19-20
    54许煜泉,唐玮宁,郑有丽等.1999.筛选假单胞菌株M18防治大棚黄瓜枯萎病害.上海交通大学学报,33(2):210-213.
    55 闫敏,李平,李凤梅等.2004.黄瓜根际镰刀菌的分离及初步鉴定.西南农业学报,17(3):345-347.
    56杨雷.2006.利用绿色荧光蛋白基因标记核盘菌菌丝哈尔滨工业大学理学硕士学位论文,1-59.
    57叶旭红,林先贵,王一明.2011.尖孢镰刀菌致病相关因子及其分子生物学研究进展应用与环境生物学报,2011,17(5):759-762.
    58勇辉,郭桢,曾永三.2006.广州地区节瓜枯萎病菌专化型研究初报.广东农业科学,8:60-61.
    59张小飞,高增贵,庄敬华等.2009.应用UP-PCF进行玉米丝黑穗病菌遗传多样性研究.植物保护,35(2):95-98.
    60张欣.2007.香蕉枯萎病菌遗传多态性及绿色荧光蛋白基因转化的研究华南农业大学博士学位论文,1-110
    61张艳菊,陈霞,刘东等.2011.黄瓜枯萎病菌遗传多样性的AFLP分析.植物病理学报,41(3):301-304.
    62张阳德,廖允军.2001.绿色荧光蛋白及其在细胞生物学中的应用.中国现代医学杂志,11(5):34-37
    63赵柏霞,高增贵,庄敬华等.2009.应用UP-PCF进行瓜类保护地土壤镰孢菌多样性分析.中国蔬菜,(10):46-50.
    64赵国其,林福呈,陈卫良等.1998.绿色木霉对西瓜枯萎病苗期的控制作用.浙江农业学报,10(4):206-209.
    65郑雪芳,葛慈斌等.2006.瓜类作物枯萎病生防菌BS-2000和JK-2的分子鉴定.福建农业学报,21(2):154-157.
    66钟耀华.2007.农杆菌介导的瑞氏木霉T-DNA插入突变及生长代谢突变子分析.山东大学博士学位论文.
    67周兆华,郭吐珍,潘家驹等.1999.我国棉花黄萎病菌群体的遗传变异分析.中国农业科学,326:60-65.
    68祝玲强,兰照军.2007.瓜类枯萎病的发生及无公害综合治理技术.现代园艺,8:33-34.
    69庄敬华,高增贵,杨长城等.2005.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性 的影响.植物病理学报,35(2):179-183.
    70邹文欣,谭仁祥.2001.植物内生菌研究新进展.植物学报,43(9):881-892.
    71 Appel D J, Gordon T R.1994. Local and regional variation in population of Fusarium oxysporum from agricultural field soils. Phytopathology,84(8):786-791.
    72 Assigbetse K B.1994. Differentiation of Fusarium oxporum f.sp.vasinfectun Races on cotton by Random Amplified Polymorphic DNA(RAPD)Analysis. Phytopathology,84:622-626.
    73 Baayen R P, O'Donnell K, Bonants P J M, Cigelnik E.2000. Gene genealogies and AFLP analysis in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology,90:891-900.
    74 Bae Y S, Knudsen G R.2000. Cotransformation of Trichoderma harzianum with b-glucuronidase and green fluorescent proteingenes provides a useful tool for monitoring fungal growth andactivity in natural soils. Appl. Environ. Microbiol,66:810-815.
    75 Bartnicki-Garcia S.1968. Cell wall, chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology,22:87-108.
    76 Bates J A, Taylor E J A, Kenyon D M, Thomas J E.2001. The application of real-time PCR to the identification, detection and quantification of Pyrenophora species in barley seed. Molecular Plant Pathology,2:49-57.
    77 Bentley S, Pegg K G, Moore N Y, et al..1998. Genetic variation among Fusarium oxysporum f.sp. cubense analyzed by DNA fingerprinting. Phytopathology,88:1283-1293.
    78 Bohm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehlmann R, Obszwald W.1999. Real-time Quantitative PCR:DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol,147:409-416.
    79 Boonham N, Smith P, Walsh K, Tame J, Morris J, Spence N, Bennison J, Barker I.2002. The detection of tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR(TaqMan). Journal of Virological Methods,101:37-48.
    80 Booth C.1971. The Genus Fusarium. CMI, Kew, England,1-237.
    81 Bouizgarne B, Brault M, Pennarun A M, et al..2004. Electrophysiological responses to fusaric acid of root hairs from seedlings of date palm susceptible and resistant to Fusarium oxysporum f. sp. Albedinis. Journalof Phytopathology,152:321-324.
    82 Bowen A R, Chen-wu J L, Momany M, Youngp R, Szaniszlo P J, Robbins A W.1992. Classification of fungal chitin synthases. Proceedings of the National Academy of Sciences,89:519-523.
    83 Broeker K, Fehser S, Moerschbacher BM.2006. Survey and expression analysis of five new chitin synthase genes in the biotrophic rust fungus Puccinia graminis. Curr Genet,50(5):295-305.
    84 Bulat S A, Lubeck M, Mironenko N V.1998. UP-PCR analysis and ITS1 ribotyping of Trichoderma and Gliocladium fungi. Mycol Res,102:933-943.
    85 Bustin S A.2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology,25:169-193.
    86 Bustin S A.2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems. Journal of Molecular Endocrinology,29:23-39.
    87 Chalfie M., Tu Y., Euskirchen G, Ward, W.W., Prashar, D.C.,1994. Green fluorescent protein as a marker for gene expression.Science,263:802-805.
    88 Chen N, Hsiang T, Goodwin P H.2003. Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. Journal of Microbiological Methods,53:113-122.
    89 Choquer M, Boccara M, Goncalves IR, et al.2004. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem,271(11): 2153-2164.
    90 Ciancio A, Leonetti P, Finetti Sialer M M.2000. Detection of nematode antagonistic bacteria by fluorogenic molecular probes. European and Mediterranean Plant Protection,30:563-570.
    91 Cooper R M, Wood R K S.1975. Regulation of synthesis of cell wall degrading enzymes by Verticillum albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiological Plant Pathology,5(2):135-156.
    92 David G.Ginzinger.2002. Gene quantification using real-time quantitative PCR:An emerging technology hits the mainstream. Experimental hematology,30:503-512.
    93 David J, Adams.2004. Fungal cell wall chitinases and glucanases. Microbiology,150:2029-2035.
    94 Di-Pietro A, Roncero M I.1998. Cloning, expression, and role in pathogenicity of pgl encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. MPMI, 11(2):9-98.
    95 Elad Y, Chet I & Hens Y,1983. Parasitism of Trichoderma spp. on Rhizoc-tonialani and Sclerotium rolfsii scanning electron microscopy and fluorescence microscopy. Phytopathology,73:85-88.
    96 Farid E A.2002. Detection of genetically modified organisms in foods. Trends in Biotechnology,20: 215-223.
    97 Fujiwara M, Ichinomiya M, Motoyama T, et al.2000. Evidence That the Aspergillus nidulans Class I and Class II Chitin Synthase Genes, chsC and chsA, Share Critical Roles in Hyphal Wall Integrity and Conidiophore Development. J Biochem,127(3):359-366.
    98 Fumio N, Toshiki S, Tsuruo K&Takashi T,1994. Characterization of the Formae Speciales of Fusarium oxysporum Causing Wilts of Cucurbits by DNA Fingerprinting with Nuclear Repetitive DNA Sequence. Applied environmental microbiology,2684-2691.
    99 Gage D J, Bobo T,Long S R.1996.Use of green fluorescent proteint ovisualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol,178:7159-7166.
    100 Garcera-Teruel A, Xoconostle-Cazares B, Rosas-Quijano R, et al.2004.Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res Microbiol,155(2):87-97.
    101 Garcia-Rodriguez L J, Trilla J A, Castro C, et al..2000.Characterization of the chitin biosynthesis process as a compensatory mechanism in the fksl mutant of Saccharomyces cerevisiae. FEBS Letters, 478(12):84-88.
    102 Gomez-Gomez E, Roncero MIG, Di Pietro A, Hera C.2001. Molecular characterization of a novel endo-beta-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet,40: 268-275.
    103 Goodwin P H.1991. Rapid identification of genetic variation and pathotypes of Leptosphaeria maculans random amplified polymorphic DNA assay. Appl Environ Microbiol,57:2482.
    104 Growhurst R N, Hawthorne B T, Rikkerink E H A, Templeton M D.1991. Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Current Genetics, 20:391-396.
    105 Gupta M, Chyi Y S, Romero-severson J.1994. Amplification of DNA markers from evolrtionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics, 89(7/8):998-1006.
    106 Guthrie P A I, Magill C W, Frederiksen R A, et al.1992. Random amplified polymorphic DNA marker:a system for indentifying and differentiating isolates of Colletotrichum graminicola. Phytopathology,82:832-835.
    107 Hammer S R, Metraux J P, VanLoon LC.2001. Inducing resistance:a summary of papers presented at the first international symposium on induced resistance to plant diseases. Eur J Plant Pathol,107:1-6.
    108 Horowitz D S, Lee E J, Mabon S A, Misteli T.2002. Acyclophil infunction sinpre-mRNA splicing. EMBOJ,21:470-480.
    109 Huang J C, Sun M.2000. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvlaceae) as revealed by ISSR and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics,100:1050-1060.
    110 Imazaki I, Kurahashi M, Iida Y, Tsuge T.2007. Fow2, a Zn(Ⅱ)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Molecular Microbiology, 63(3):737-753.
    111 Inoue 1, Namiki F, Tsuge T.2002. Plant colonization of the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrialprotein.PlantCel,14:1869-1883.
    112 James K M, Craig G.1994. Genetic analysis of DNA finger printing and virulence in Erysiphe graminis f.sp. hordei. Current Genetics,26:172-178.
    113 Jams K M.1994. Genetic analysis of DNA finger printing and virulence in Erysiphe graminis f.sp. hordei. Current Genetics,26:172-178.
    114 Joan M Henson, Roy French.1993. The Polymerase Chain Reaction and Plant Disease Diagnosis. Phytopathology,31:81-109.
    115 Kamel A E, Mohmed K, Abdelhady A, Abdelmongy A.2002. Genetic diversity among Fusarium oxysporum f.sp. vasinfectum isolates revealed by UP-PCR and AFLP markers. Phytopathol,41: 252-258.
    116 Kenneth J L, Thomas D S.2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-AACT Method. Methods,25:4402-408.
    117 Kim D H, Martyn R D, Magill C W.1993. Mitochondrial DNA (mtDNA)-relatedness among formae speciales of Fusarium oxysporum in the Cucurbitaceae. Phytopathology,83:91-97.
    118 Kohmer J A,1995. Virulence and molecular polymorphism in Puccinia recondita f.sp. tritici in Canada. Phytopatholology,85:276-285.
    119 Korimbocus J, Coates D, Barker I, Boonham N.2002. Improved detection of Sugarcane yellow leaf virus using a real-time fluorescent (TaqMan) RT-PCR assay. Journal of Virological Methods,103: 109-120.
    120 Lagopodi A L, Ram A F, Lamers G E, et al..2002. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f.sp.radicis-lycopersici revealed by confocallaser scanning microscopic analysis using the green flrorescent ptotein as amarker.Mol Plant Microbe Interact,15(2): 172-179.
    121 Lee J I, Choi J H, Park B C, et al. Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genetics and Biology,2004,41(6):635-646.
    122 Leslie J F, Zeller K A, Summerell B A.2001. Iceberg and species in populations of Fusarium. Physiological and Molecular Plant Pathology,59:107-117.
    123 Levy M, Romao J, Marchetti M A, Hamer J E.1991. DNA fingerprinting with a dispersedrepeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell,3:95-102.
    124 Liu D, Coloe S, Baird R, Pedersen J.2000. Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology,38:47.
    125 Lorang J M, Tuori R P, Martinez J P, Sawyer T L, et al..2001.Green fluorescent protein is lighting up fungal biology. Appl.Environ. Microbiol,67:1987-1994.
    126 Liibeck M, Poulsen H.2001. UP-PCR cross blot hybridization as a tool for identification of anastomosis groups in the Rhizoctonia solani complex. FEMS Microbiology Letters,201:83-89.
    127 Lyon W J.2001. TaqMan PCR for Detection of Vibrio cholerae O1,0139, Non-O1, and Non-0139 in Pure Cultures, Raw Oysters, and Synthetic Seawater. Applied and Environmental Microbiology,67(10): 4685-4693.
    128 Ma Yan-ling, Wu Feng-zhi, Liu Shou-wei.2008. Pathologic structures of cucumber cultivars with different resistance to Fusarium oxysporum. Plant. Plant Protection,34(1):81-84.
    129 Madrid M P, Di Pietro A, Roncero M 1.2003. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology,47(1):257-266.
    130 Marlatt M L, Correll T C, Kaufamann P, Cooper P E.1996. Two genetically distinct populations of Fusarium oxysporum f.sp. lycopersici race in United States. Plant Disease,80:1336-1342.
    131 Marre M T, Vergani P, Albergoni F G.1993. Relationship between fusaric acid uptake and its binding to cell structures in leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiological and Molecular Plant Pathology,42:141-157.
    132 Martin-Udiroz M, Madrid MP, Roncero MI.2004. Role of chitin synthase genes in Fusarium oxysporum. Microbiology,150(10):3175-3187.
    133 Maurhofer M, Keel C, Haas D, et al.1995. Influence of plant species on disease suppression by Pseudomonas fluorencens CHA0 with enhanced antibiotic production. Plant Pathology,44(1):40-50.
    134 Mccartney H A, Foster S J, Fraaije B A, Ward E.2003. Molecular diagnostics for fungal plant pathogens. Pest Manag Sci,59:129-142.
    135 McMillan R T.1986. Cross pathogenicity studies with isolates of Fusarium oxysporum from either cucumber or watermelon pathogenic to both crop species. Ann. Appl. Biol,109:101-105.
    136 Mellado E, Aufauvre-Brown A, Gow NAR, et al.1996. The Aspergillus fumigatus chsC and chsG genes encode Class Ⅲ chitin synthases with different functions. Mol Microbiol,20(3):667-679.
    137 Mellado E, Dubreucq G, Mol P, et al.2003.Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genetics and Biology,38(1):98-109.
    138 Mesfin B, Brenda D W.2006. Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Diversity,23:51-66.
    139 Muller C, Hjort C M, Hansen K, et al.2002. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae. Microbiology,148(12): 4025-4033.
    140 Mumford R A, Walsh K, Barker I, Boonham N.2000. Detection of potato mop top virus and tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology,90:448-453.
    141 Munro C A, Gow N A R.2001. Chitin synthesis in human pathogenic fungi. Medical Mycology,39: 41-53.
    142 Munro CA, Winter K, Buchan A, et al.2001. Chsl of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol,39(5):1414-1426.
    143 Namiki F, Matsunaga M, Okuda M, et al.2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarum oxsporwn f.sp. melonis. Molecular Plant-Microbe Interactions,14: 580-584.
    144 Namiki F, Shiomi T, Nishi K, et al.1998. Pathogenic and genetic variation in the Japanese strains of Fusarium oxysporum f.sp. melonis. Phytopathology,88(8):804-810.
    145 Norman W S, Reid D.2002. Fredericka Real-time PCR and its application for rapid plant disease diagnostics.Canadian Journal of Plant Pathology,24:250-258.
    146 Norman W S, Frederick R D, Joe S, William L. S, Robert H, Michael D P, Douglas G L. Advances in molecular-based diagnostcs in meeting crop biosecurity and phytosanitary issuse. Annual Review of Phytopathology,41:305-324.
    147 Odonnell K, Corby K H, Cigelnik E, et al.1998. Mutiple evolutionary orgins of the fungus causing panama disease of banana:concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA,95:2044-2049.
    148 O'Donnell K, Kistler HC, Cigelnik E & Ploetz RC,1998. Multiple evolutionary origins of the fungus causing Panama disease of banana:Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences,95:2044-2049.
    149 O'Donnell K, Kistler H C, Tacke B K, Casper H H,2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences,97:7905-7910
    150 Oren L, Ezrati S, Cohen D, et al.2003. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenicisolate. Applied and Environmental Microbiology,69(5):1695-1701.
    151 Orlean P.1997. Biogenesis of yeast wall and surface components.In:Pringle JR, Broach JR, Jones EW (eds) Cell cycle and cell biology. (The molecular and cellular biology of the yeast Saccharomyces, vol 3) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 229-362.
    152 Ouellet T, and Seifert K.1993. Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology,83(9):1003-1007.
    153 Prayitno, J., Stefaniak, J., Mclver, J., et al..1999. Interaction of rice seedlings with bacteria isolated from rice roots. Aust. J. Plant.Physiol,26:521-535.
    154 Ramsay, J. R., Multani, D. S.& Lyon, B. R.1996. RAPD-PCR identification of Verticillium dahliae isolates with differential pathogenicity on cotton. Australian Journal of Agricultural Research,47: 682-693.
    155 Richard, C., Amey, A., Claire, B., Peter, R., Andy, B.,2002. PEG-mediated and Agrobacterium-mediated transformation in themyco pathogen Verticillium fungicola. Mycol. Res, 106(1):4-11.
    156 Robert P, Baayen, Kerry O'Donnell, et al.2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Ecology and Population Biology,90(8):891-900.
    157 Robert P, Larkin, Donald L, et al.1996. Suppression of Fusarium wilt of watermelon by onpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology,86 (2):812-819.
    158 Roncero C. The genetic complexity of chitin synthesis in fungi. Curr Genet,2002,41(6):367-378.
    159 Rosales RCP, Di Pietro A.2008. Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot. Cell,7:162-171.
    160 Roselinde G E, Duyvesteijn, Ringo V W, et al.2005. Frpl is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular Microbiology,57(4):1051-1063.
    161 Schaad N W, Frederick R D, Shaw J, Schneider W L, Hickson R, Petrillo M D, Luster D G.2003. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol,41:305-324.
    162 Schena L, Nigro F, Ippolito A, Gallitelli D.2004. Real-time quantitative PCR:a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol,110:893-908.
    163 Schmidt M.2004.Survival and cytokinesis of Saccharomyces cerevisiae in the absence of chitin. Microbiology,150(10):3253-3260.
    164 Shimomura, O., Johnson, F. H.& Saiga, Y. (1962) J. Cell. Comp. Physiol,59:223-240
    165 Skadsen, R W, Hohn, T M.2004. Use of Fusarium graminearumtrans formed with gfp to follow infection patterns in barley and Arabidopsis. Physiol. Mol. Plant. Pathol,64:45-53.
    166 Skovgaard K, Rosendahl S.1998. Comparison of infra-and extracellular isozyme binding patterns of Fusarium oxysporum.Mycological Research,102(9):1077-1084.
    167 Snyder W.C., Hansen H.N.1940. The species concept in Fusarium. Amer. J. Bot,27:64-67.
    168 Soulie M C, Perino C, Piffeteau A.2006. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class Ⅲ gene (Bcchs3a). Cellular Microbiology,8(8):1310-1321.
    169 Szabo L J.1996. Mapping avirulence genes in the rust fungi, Puccinia graminis. Proc 9th European and Mediterranean Cereal Rusts and Powdery Mildews Conference,52-54.
    170 Takeshita N, Yamashita S, Ohta A, et al.2006. Aspergillusnidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Molecular Microbiology,59(5):1380-1394.
    171 Taylor D L, Woo ES, Giuliano K A.2001. Real-time molecular and cellular analysis:the new frontier of drug discovery. Current Opinion in Biotechnology,12:75-81.
    172 Tsumura Y, Ohba K, Strauss S H.1996. Diversity and inheritance of intersimple sequence polymorphisms in Douglas-fir(Pseudotauga menziesii) and Sugi(Cryptomeria japonica). Theoretical and Applied Genetics,92:40-45.
    173 Vandemark G J, Barker B M.2003. Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with a real-time fluorescent PCR assay. J Phytopathol,151:577-583.
    174 Weber I, Assmann D, Thines E, et al.2006. Polar Localizing Class Ⅴ Myosin Chitin Synthases Are Essential during Early Plant Infection in the Plant Pathogenic Fungus Ustilago maydis. The Plant Cell, 18(1):225-242.
    175 Weller S A, Elphinstone J G, Smith N C, Boonham N, Stead D E.2000. DetectionofRalstonia solanacearumstrainswitha quantitative, multiplex, real-time, fluorogenic PCR (Taq-Man) assay. Applied and Environmental Microbiology,66:2853-2858.
    176 Winton L M, Manter D K, Stone J K, Hansen E M.2003. Comparison of biochemical, molecular, and visual methods to quantify Phaeocryptopus gaeumannii in Douglas-Fir foliage. Phytopathology,93: 121-126.
    177 Yamada E, Ichinomiya M, Ohta A, et al.2005. The class V chitin synthase gene csmA is crucial for the growth of the chsA chsC double mutant in Aspergillus nidulans. Biosci Biotechnol Biochem,69(1): 87-97.
    178 Yaohua Z, Haina Y, Xiaoli W, Yi L.2011. Towards a novelefficient T-DNA-based mutagenesis and screening system usinggreen fluorescent protein as a vital reporter in the industrially importan tfungus Trichoderma reesei.Mol.Biol.Rep,6:4145-4151.
    179 Ye S F, Yu J Q, Peng Y H. et al.2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in rootexudates.Plant and Soil,263(2):43-150.
    180 Yli-Mattila T, Mach R L, et al.2004. Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and Fusarium sporotrichioides as inferred by IGS, ITS, β-tubulin sequences and UP-PCR hybridization analysis. International Journal of Food Microbiology,95:267-285.
    181 Zietkiewicz E, Rafalski A, Labuda D.1994. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics,20(2):176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700