用户名: 密码: 验证码:
玉米秆活性氧蒸煮过程中半纤维素的结构变化及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个农业大国,每年会产生大量的农业秸秆,但是大部分都被直接回填到田中或者在田间烧掉,只有少部分被用做饲料喂养牲畜和作为造纸原料。而随着化石能源储量的逐步减少以及人们对化石能源燃烧后产生的有害气体对环境造成的危害的认识,同时为了找到一种替代化石能源的清洁、可再生的能源,很多的研究将注意力集中到了可再生的生物质上。木质纤维素生物质的利用可以分为直接转化和间接转化。在直接转化的过程中木质纤维生物质不经过分离、全组分转化为工业产品,比如通过热解,气化、液化将生物质转化为燃料,生物油等。如果想从生物质中得到高附加值的化学品就有必要在转化之前对其进行预处理,将其分离成为纤维素、半纤维素和木素。预处理使得生物质的利用率大大提高,而且更利于后期的分离和纯化。因此生物质的高效、清洁预处理成为生物质炼制的第一个要解决的难题。对此我们提出了一个新型的生物质预处理工艺——活性氧蒸煮工艺。本文用玉米秆作为原料,用活性氧(氧气和过氧化氢)作为化学品对玉米秆进行处理,探讨了这个过程中半纤维素结构的变化和活性氧在蒸煮过程中作用的机理。
     首先在最优的蒸煮条件下(温度:165°C;氧气压力:1.0MPa;过氧化氢用量:3%(基于绝干原料);液比:1:6;MgO用量:15%(基于绝干原料))对玉米秆进行蒸煮,通过分离原料、浆和黄液中的半纤维素,用各种分析手段表征了半纤维素的结构变化,发现玉米秆的半纤维素结构是聚阿拉伯糖木糖,此外还有一些乙酰基和葡萄糖醛酸。半纤维素的糖苷键在蒸煮过程中被严重破坏,乙酰基也在蒸煮过程中发生了水解。
     为了更好了理解半纤维素在蒸煮黄液中的分布情况,用1,2,3,5和7体积的乙醇分级沉淀了黄液中的半纤维素。通过分析发现用1体积乙醇沉淀出的占总量5.3%的半纤维素分子量是24824g/mol,两体积乙醇沉淀出来的占总量15.63%半纤维素的分子量仅为4574g/mol,剩下的半纤维素的分子量都在2500g/mol左右。而且随着乙醇浓度的增加,分离出来的半纤维素组分所含的杂质越来越多。在最终的残液中还有29.61%的固形物,主要是一些木素的降解产物。
     在研究活性氧蒸煮工艺中各个主要的化学品对于蒸煮过程中的影响中,我们设计了不同的活性氧蒸煮工艺。通过比较发现足量的MgO能够防止碳水化合物的降解,此外Mg(OH)_2能够起到与MgO相同的作用,可以取代MgO,而用NaOH替代MgO,虽然能取得比较好的蒸煮效果,但是纤维素发生了严重降解。从蒸煮效果上来看,在活性氧蒸煮过程中,氧气是主要脱木素和半纤维素的试剂,过氧化氢对于木素的脱除能起到一定的作用,但是过氧化氢与氧气同时添加时,过氧化氢的脱木素效果可以被忽略。在蒸煮过程中将支链比较多的半纤维素溶出,而将支链比较少的半纤维素留在浆中。
     在研究半纤维素在不同保温时间下的脱除效果中发现蒸煮过程中半纤维素和木素的溶出主要在蒸煮的升温阶段和蒸煮保温半小时的这个时间段中,其溶出率分别达到67.87%和75.6%,而在剩下的保温时间中,半纤维素和木素的脱除很少,这个过程主要是纤维发生纤维化的过程。半纤维的分子量随着蒸煮时间的延长从保温时的19643g/mol下降到了蒸煮结束时的5471g/mol,半纤维素被溶解在黄液中之后糖苷键被严重破坏。此外蒸煮过程中也会有己烯糖醛酸的产生。
     通过前面的分析对活性氧蒸煮过程中半纤维素的溶出和结构的变化提出一些可能的机理。MgO在蒸煮液中的碱性和Mg~(2+)的保护作用是分子氧能够用作蒸煮的首要条件。蒸煮过程中热水抽提和MgO的碱性对半纤维素的水解是半纤维素溶出的主要途径,氧气对木素的溶出也能加速半纤维素的溶出,此外半纤维素的主链还会发生碱性降解使半纤维素的分子量降低而且还会生成一些低分子物质。
China is an agricultural country and lots of agricultural straws are produced per year.Most of them are backfilled to the field and burnt in the field, while small part is used for thefeed and raw material of pulp. With the decrease of fossil energy reserve and enhancement ofenvironmental protection consciousness, many research focus on the renewable biomass tofind an alternative energy resources for the fossil energy. Generally speaking, there are twoways to utilize the lignocellulosic biomass: direct conversion and indirect conversion. Thelignocellulosic biomass can be converted into fuels, bio-oil by pyrolysis, gasification, andliquidation in the direct conversion process. If want to get the high-value-added chemicalsfrom the biomass, it is necessary to pretreat the biomass into hemicelluloses, cellulose, andlignin before carry through the conversion. Pretreatment can increase the percent conversionof reactant, and is in favor of the isolation and purification of products. Therefore, it is a keyquestion to find an efficient and clean pretreatment process for the biorefinery. And our groupdeveloped a novel biomass pretreatment process, active oxygen cooking process. In thepresent study, corn stalk is treated by the active oxygen, and the structural changes and themechanism of corn stalk hemicelluloses during the active oxygen cooking process are studied.
     The active oxygen cooking process of corn stalk was performed on the optimumconditions, temperature165°C, initial oxygen pressure1.0MPa, peroxide dosage3%(basedon the oven dry raw material), ratio of solid to liquid1:6, MgO dosage15%(based on theoven dry raw material). Isolation and characterization the hemicelluloses from the rawmaterial, pulp, and yellow liquor showed that the structure of corn hemicelluloses wereL-arabino-D-xylan, and the4-O-methyl-glucuronic acids and acetyl groups also attached tothe backbone of hemicellulose and the glycosidic bonds were broken during cooking process,and the acetyl groups were also hydrolyzed.
     For further understand the hemicelluloses in the yellow liquor, the hemicelluloses weresequentially precipitated with one, two, three, five, and seven volume of ethanol. The resultsshowed that the weight-average molecular weight (MW) of hemicelluloses precipitated by onevolume of ethanol was24824g/mol, but it accounted for5.31%of total hemicelluloses. Andthe MWof hemicelluloses precipitated with two volume ethanol was only4574g/mol, the rest of hemicelluloses fractions presented low-molecular-weight (c.a.2500g/mol). With increaseof the volume of ethanol, the impurities in the hemicelluloses fractions increased. In the finalresidue, there was29.61%solid content, which mainly composed of degradation products oflignin.
     To study the effects of chemicals added in the cooking process, several cookingprocesses were designed. After cooking, it found that enough dosage MgO can preventcarbonizing of raw material during the active oxygen cooking process, and Mg(OH)_2showedthe some protective effect to the raw material and can replace MgO. However, the cellulosewas seriously degraded when MgO was replaced by NaOH in the active oxygen cookingprocess, even show good cooking effect. In this study, we also found that the oxygen played aleading role in the cooking process to remove the lignin and hemicelluloses, the effect ofperoxide can be ignored when both oxygen and peroxide were added. The structure ofhemicelluloses obtained from cooking liquor indicated that the hemicelluloses removedduring the cooking process possessed more side chains than that in the pulp.
     In the study of effect of incubation time on the cooking effect, it found that67.86%hemicelluloses and75.60%lignin were removed from the raw material after get the desiredtemperature half an hour. In the rest of incubation time, the removal ratio of lignin andhemicelluloses was very low. The MWof hemicelluloses decreased from19643g/mol to5471g/mol due to the break of glycosidic bonds during the cooking process. And the HexA alsowas detected in pulp.
     Based on the analysis of structural changes of hemicelluloses, some mechanisms abouthemicellulosic remove and structural changes were presented. The alkalinity of MgO in thecooking liquor and protective function of Mg~(2+)were first condition of active oxygen appliedin the cooking process. Hot-water extraction and basic hydrolysis were the primarily route ofremoving hemicelluloses, and the remove of lignin also can accelerated the remove ofhemicelluloses. Moreover, alkaline degradation of hemicelluloses backbone also caused theglycosidic bounds break and produced some low molecular substances.
引文
[1]隋小玉.固体酸催化葡萄糖转化乙酰丙酸的研究[D].广州:华南理工大学,2010
    [2] Foley P.M.; Beach E.S.; Zimmerman J.B. Algae as a source of renewable chemicals:opportunities and challenges [J]. Green Chemistry,2011,13(6):1399-1405
    [3]王香爱.生物质能的转化和利用研究[J].化工科技,2009,17(1):51-55
    [4]王正.国外生物质能转化技术研究概况[J].世界林业研究,1993,(1):54-61
    [5] Arvizu D. New science strengthens the promise of renewable fuels [J]. Energy&Environmental Science,2010,3(10):1378-1381
    [6] Cherubini F. The biorefinery concept: Using biomass instead of oil for producingenergy and chemicals [J]. Energy Conversion and Management,2010,51(7):1412-1421
    [7] Melero J.A.; Iglesias J.; Garcia A. Biomass as renewable feedstock in standardrefinery units. Feasibility, opportunities and challenges [J]. Energy&EnvironmentalScience,2012,5(6):7393-7420
    [8]彭锋.农林生物质半纤维素分离纯化、结构表征及化学改性的研究[D].广州:华南理工大学,2010
    [9]郭海霞;左月明;张虎.生物质能利用技术的研究进展[J].农机化研究,2011,33(6):178-185
    [10]高荫榆;雷占兰;郭磊,等.生物质能转化利用技术及其研究进展[J].江西科学,2006,24(6):529-533+544
    [11] Djomo S.N.; Ceulemans R. A comparative analysis of the carbon intensity of biofuelscaused by land use changes [J]. Global Change Biology Bioenergy,2012,4(4):392-407
    [12]米泉龄;王瑞婷;张雪静.生物质能的开发与利用[J].林产工业,2010,37(4):51-53
    [13] Tadesse H.; Luque R. Advances on biomass pretreatment using ionic liquids: Anoverview [J]. Energy&Environmental Science,2011,4(10):3913-3929
    [14] Wang H.; Gurau G.; Rogers R.D. Ionic liquid processing of cellulose [J]. ChemicalSociety Reviews,2012,41(4):1519-1537
    [15] Sun X.-F.; Sun R.-C.; Su Y., et al. Comparative Study of Crude and Purified Cellulosefrom Wheat Straw [J]. Journal of Agricultural and Food Chemistry,2004,52(4):839-847
    [16] Yang Y.; Sharma-Shivappa R.; Burns J.C., et al. Dilute Acid Pretreatment ofOven-dried Switchgrass Germplasms for Bioethanol Production [J]. Energy&Fuels,2009,23(7):3759-3766
    [17] Requejo A.; Peleteiro S.; Rodríguez A., et al. Second-Generation Bioethanol fromResidual Woody Biomass [J]. Energy&Fuels,2011,25(10):4803-4810
    [18] Hu S.; Zhang Z.; Song J., et al. Efficient conversion of glucose into5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4in an ionic liquid[J]. Green Chemistry,2009,11(11):1746-1749
    [19] Runge T.; Zhang C. Two-Stage Acid-Catalyzed Conversion of Carbohydrates intoLevulinic Acid [J]. Industrial&Engineering Chemistry Research,2012,51(8):3265-3270
    [20] Wettstein S.G.; Alonso D.M.; Chong Y., et al. Production of levulinic acid andgamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasicsystems [J]. Energy&Environmental Science,2012,5(8):8199-8203
    [21] Lin H.; Strull J.; Liu Y., et al. High-yield production of levulinic acid by catalyticpartial oxidation of cellulose in aqueous media [J]. Energy&Environmental Science,2012,5(12):9773-9777
    [22] Li C.; Zhang Z.; Zhao Z.K. Direct conversion of glucose and cellulose to5-hydroxymethylfurfural in ionic liquid under microwave irradiation [J]. TetrahedronLetters,2009,50(38):5403-5405
    [23] Holm M.S.; Saravanamurugan S.; Taarning E. Conversion of Sugars to Lactic AcidDerivatives Using Heterogeneous Zeotype Catalysts [J]. Science,2010,328(5978):602-605
    [24] Wu X.; Fu J.; Lu X. One-pot preparation of methyl levulinate from catalyticalcoholysis of cellulose in near-critical methanol [J]. Carbohydrate Research,2012,358:37-39
    [25] Zhao Q.; Dixon R.A. Transcriptional networks for lignin biosynthesis: more complexthan we thought?[J]. Trends in Plant Science,2011,16(4):227-233
    [26] Zoia L.; Orlandi M.; Argyropoulos D.S. Microwave-Assisted Lignin Isolation Usingthe Enzymatic Mild Acidolysis (EMAL) Protocol [J]. Journal of Agricultural and FoodChemistry,2008,56(21):10115-10122
    [27] Yuan T.-Q.; He J.; Xu F., et al. Fractionation and physico-chemical analysis ofdegraded lignins from the black liquor of Eucalyptus pellita KP-AQ pulping [J].Polymer Degradation and Stability,2009,94(7):1142-1150
    [28] Bhat R.; Khalil H.P.S.A.; Karim A.A. Exploring the antioxidant potential of ligninisolated from black liquor of oil palm waste [J]. Comptes Rendus Biologies,2009,332(9):827-831
    [29] Zhang X.; Yang W.; Blasiak W. Modeling Study of Woody Biomass: Interactions ofCellulose, Hemicellulose, and Lignin [J]. Energy&Fuels,2011,25(10):4786-4795
    [30]詹怀宇;李志强;蔡再生.纤维化学与物理[M].北京:科学出版社,2005,172-173
    [31]李永刚.棉秆纤维素、半纤维素和木质素的分离、鉴定以及纤维素的应用研究[D].北京:中国农业大学,2007
    [32] Sun X.F.; Sun R.C.; Tomkinson J., et al. Preparation of sugarcane bagassehemicellulosic succinates using NBS as a catalyst [J]. Carbohydrate Polymers,2003,53(4):483-495
    [33] Ebringerova A. Structural diversity and application potential of hemicelluloses [J].Macromolecular Symposia,2006,232:1-12
    [34] Ebringerova A.; Heinze T. Xylan and xylan derivatives-biopolymers with valuableproperties,1-Naturally occurring xylans structures, procedures and properties [J].Macromolecular Rapid Communications,2000,21(9):542-556
    [35] Prozil S.O.; Evtuguin D.V.; Lopes L.P.C. Chemical composition of grape stalks ofVitis vinifera L. from red grape pomaces [J]. Industrial Crops and Products,2012,35(1):178-184
    [36] Sun R.C.; Tomkinson J.; Ma P.L., et al. Comparative study of hemicelluloses from ricestraw by alkali and hydrogen peroxide treatments [J]. Carbohydrate Polymers,2000,42(2):111-122
    [37] Sun X.-F.; Fowler P.; Rajaratnam M., et al. Extraction and Characterisation ofHemicelluloses from Maize Stem [J]. Phytochemical Analysis,2010,21(5):406-415
    [38] Jin A.X.; Ren J.L.; Peng F., et al. Comparative characterization of degraded andnon-degradative hemicelluloses from barley straw and maize stems: Composition,structure, and thermal properties [J]. Carbohydrate Polymers,2009,78(3):609-619
    [39] Sun R.C.; Fang J.M.; Rowlands P., et al. Physicochemical and thermal characterizationof wheat straw hemicelluloses and cellulose [J]. Journal of agricultural and foodchemistry,1998,46(7):2804-2809
    [40] Sun X.-F.; SunSun; Sun J.-X. Acetylation of Rice Straw with or without Catalysts andIts Characterization as a Natural Sorbent in Oil Spill Cleanup [J]. Journal ofAgricultural and Food Chemistry,2002,50(22):6428-6433
    [41] Peng F.; Ren J.L.; Xu F., et al. Comparative Study of Hemicelluloses Obtained byGraded Ethanol Precipitation from Sugarcane Bagasse [J]. Journal of Agricultural andFood Chemistry,2009,57(14):6305-6317
    [42]崔红艳;刘玉;杨桂花,等.速生杨半纤维素的分级分离、物化特性以及均相酯化[J].造纸化学品,2011,23(6):12-19
    [43]余家鸾.造纸纤维原料及纸浆中的木素—碳水化合物复合体[J].广东造纸,1998,(4):4-8
    [44] Allerdings E.; Ralph J.; Steinhart H., et al. Isolation and structural identification ofcomplex feruloylated heteroxylan side-chains from maize bran [J]. Phytochemistry,2006,67(12):1276-1286
    [45] Grabber J.H.; Hatfield R.D.; Ralph J., et al. Ferulate cross-linking in cell walls isolatedfrom maize cell suspensions [J]. Phytochemistry,1995,40(4):1077-1082
    [46]许凤;孙润仓;詹怀宇.非木材半纤维素研究的新进展[J].中国造纸学报,2003,18(1):7
    [47] Yuan T.-Q.; Sun S.-N.; Xu F., et al. Characterization of Lignin Structures andLignin–Carbohydrate Complex (LCC) Linkages by Quantitative13C and2D HSQCNMR Spectroscopy [J]. Journal of agricultural and food chemistry,2011,59(19):10604-10614
    [48]陈洪雷;黄峰;杨桂花,等.植物纤维原料及纸浆中的木素―碳水化合物复合体[J].纤维素科学与技术,2008,16(1):58-64+70
    [49]邹进芳.木素—碳水化合物复合体的生物形成机理及结构研究[D].武汉:湖北工业大学,2012
    [50] Zhou C.-H.; Xia X.; Lin C.-X., et al. Catalytic conversion of lignocellulosic biomassto fine chemicals and fuels [J]. Chemical Society Reviews,2011,40(11):5588-5617
    [51] Yang W.; Li P.; Bo D., et al. The optimization of formic acid hydrolysis of xylose infurfural production [J]. Carbohydrate Research,2012,357(0):53-61
    [52] MontanéD.; Salvadó J.; Torras C., et al. High-temperature dilute-acid hydrolysis ofolive stones for furfural production [J]. Biomass and Bioenergy,2002,22(4):295-304
    [53] Vázquez M.J.; Alonso J.L.; Dom nguez H., et al. Xylooligosaccharides: manufactureand applications [J]. Trends in Food Science&Technology,2000,11(11):387-393
    [54] Carvalheiro F.; Esteves M.P.; Parajo J.C., et al. Production of oligosaccharides byautohydrolysis of brewery's spent grain [J]. Bioresource Technology,2004,91(1):93-100
    [55] Xu Q.; Chao Y.; Wan Q. Health benefit application of functional oligosaccharides [J].Carbohydrate Polymers,2009,77(3):435-441
    [56]胡秋龙;熊兴耀;谭琳,等.木质纤维素生物质预处理技术的研究进展[J].中国农学通报,2011,27(10):1-7
    [57]王堃.木质生物质预处理、组分分离及酶解糖化研究[D].北京:北京林业大学,2011
    [58]张春红;陈秋玲;孙可伟.植物纤维微波辐射预处理的研究进展[J].高分子通报,2008,(12):4-7
    [59]岳建芝;徐桂转;李刚,等.微波辐射预处理高粱秸秆对酶水解的影响[J].河南农业大学学报,2010,44(5):549-552
    [60]王同华;檀素霞;潘艳秋,等.微波辐射生物质制造活性炭的方法[P].中国:CN1876566,2006-12-13
    [61] El-Zawawy W.K.; Ibrahim M.M.; Abdel-Fattah Y.R., et al. Acid and enzymehydrolysis to convert pretreated lignocellulosic materials into glucose for ethanolproduction [J]. Carbohydrate Polymers,2011,84(3):865-871
    [62]付欣;唐爱民;张宏伟,等.纤维素纤维的可及度及多孔性能表征研究[J].造纸科学与技术,2005,24(6):49-53
    [63]孙勇慧.超声波用于竹子制浆[J].中华纸业,2010,31(18):89
    [64]侯玉林;万金泉;马邕文,等.超声波对再生植物纤维结构及其水解反应影响的研究[J].中华纸业,2012,33(4):40-45
    [65] Hromadkova Z.; Ebringerova A. Ultrasonic extraction of plant materials-investigationof hemicellulose release from buckwheat hulls [J]. Ultrasonics Sonochemistry,2003,10:127-133
    [66] Sun J.-X.; Sun R.-C.; Sun X.-F., et al. Fractional and physico-chemicalcharacterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse [J].Carbohydrate Research,2004,339:291-300
    [67] Garcia J.C.; Maria Zamudio M.A.; Perez A., et al. Paulownia as a raw material for theproduction of pulp by soda-anthraquinone cooking with or without previousautohydrolysis [J]. Journal of Chemical Technology and Biotechnology,2011,86(4):608-615
    [68] Hedjazi S.; Kordsachia O.; Patt R., et al. Alkaline sulfite–anthraquinone (AS/AQ)pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps [J].Industrial Crops and Products,2009,29(1):27-36
    [69] Huang G.-L.; Shi J.X.; Langrish T.A.G. Environmentally friendly bagasse pulpingwith NH4OH-KOH-AQ [J]. Journal of Cleaner Production,2008,16(12):1287-1293
    [70] Huang F.; Ragauskas A. Extraction of Hemicellulose from Loblolly Pine Woodchipsand Subsequent Kraft Pulping [J]. Industrial&Engineering Chemistry Research,2013,52(4):1743-1749
    [71]周生飞;李静;詹怀宇.半纤维素热水预提取及其沉积对竹浆性能的影响[J].造纸科学与技术,2009,28(4):28-31+47
    [72] Yoon S.-H.; Cullinan H.T.; Krishnagopalan G.A. Reductive Modification of AlkalinePulping of Southern Pine, Integrated with Hydrothermal Pre-extraction ofHemicelluloses [J]. Industrial&Engineering Chemistry Research,2010,49(13):5969-5976
    [73] Huang H.-J.; Ramaswamy S.; Al-Dajani W.W., et al. Process modeling and analysis ofpulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanolproduction: A comparative study [J]. Bioresource Technology,2010,101(2):624-631
    [74]晏群山.蔗渣预处理酶解糖化的研究[D].广州:华南理工大学,2012
    [75]张蓓笑;孙勇;林鹿.竹浆纤维甲酸水解特性研究[J].现代化工,2010,30(4):47-49
    [76] Balat M.; Balat H.; Oz C. Progress in bioethanol processing [J]. Progress in Energyand Combustion Science,2008,34(5):551-573
    [77] Marcotullio G.; Krisanti E.; Giuntoli J., et al. Selective production ofhemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl(3)solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solidresidues [J]. Bioresource Technology,2011,102(10):5917-5923
    [78] Yang Y.; Sharma-Shivappa R.R.; Burns J.C., et al. Saccharification and Fermentationof Dilute-Acid-Pretreated Freeze-Dried Switchgrass [J]. Energy&Fuels,2009,23(11):5626-5635
    [79]王永伟;王异静;张五九.生物质原料稀酸预处理水解液中发酵抑制物研究进展[J].酿酒科技,2009,(10):91-94
    [80]张桂锋.碱和离子液体预处理对麦草秸秆及其水解糖化的影响[J].造纸科学与技术,2012,31(5):35-39
    [81] Zhu S.D.; Wu Y.X.; Yu Z.N., et al. Production of ethanol from microwave-assistedalkali pretreated wheat straw [J]. Process Biochemistry,2006,41(4):869-873
    [82] Wen J.-L.; Sun Y.-C.; Xu F., et al. Fractional Isolation and Chemical Structure ofHemicellulosic Polymers Obtained from Bambusa rigida Species [J]. Journal ofagricultural and food chemistry,2010,58(21):11372-11383
    [83] Wen J.-L.; Xiao L.-P.; Sun Y.-C., et al. Comparative study of alkali-solublehemicelluloses isolated from bamboo (Bambusa rigida)[J]. Carbohydrate Research,2011,346(1):111-120
    [84] Peng F.; Ren J.-L.; Xu F., et al. Fractional Study of Alkali-Soluble HemicellulosesObtained by Graded Ethanol Precipitation from Sugar Cane Bagasse [J]. Journal ofagricultural and food chemistry,2010,58(3):1768-1776
    [85] Jia N.; Li S.-M.; Zhu J.-F., et al. Microwave-assisted synthesis and characterization ofcellulose-carbonated hydroxyapatite nanocomposites in NaOH-urea aqueous solution[J]. Materials Letters,2010,64(20):2223-2225
    [86] Zhou J.; Li Q.; Song Y., et al. A facile method for the homogeneous synthesis ofcyanoethyl cellulose in NaOH/urea aqueous solutions [J]. Polymer Chemistry,2010,1(10):1662-1668
    [87] Bian J.; Peng F.; Peng X.-P., et al. Isolation of hemicelluloses from sugarcane bagasseat different temperatures: Structure and properties [J]. Carbohydrate Polymers,2012,88(2):638-645
    [88]余强;庄新姝;袁振宏,等.木质纤维素类生物质制取燃料及化学品的研究进展[J].化工进展,2012,31(4):784-791
    [89] Bjorkman A. Lignin and Lignin-Carbohydrate Complexes [J]. Industrial&Engineering Chemistry,1957,49(9):1395-1398
    [90] Yang Q.; Shi J.; Lin L. Characterization of Structural Changes of Lignin in the Processof Cooking of Bagasse with Solid Alkali and Active Oxygen as a Pretreatment forLignin Conversion [J]. Energy&Fuels,2012,26(11):6999-7004
    [91] Yang Q.; Shi J.; Lin L., et al. Characterization of changes of lignin structure in theprocesses of cooking with solid alkali and different active oxygen [J]. BioresourceTechnology,2012,123:49-54
    [92] Zhang A.-P.; Liu C.-F.; Sun R.-C. Fractional isolation and characterization of ligninand hemicelluloses from Triploid of Populus tomentosa Carr [J]. Industrial Crops andProducts,2010,31(2):357-362
    [93] Zhang A.; Lu F.; Liu C., et al. Isolation and Characterization of Lignins fromEucalyptus tereticornis (12ABL)[J]. Journal of agricultural and food chemistry,2010,58(21):11287-11293
    [94] Peng F.; Bian J.; Peng P., et al. Separation and Characterization of Acetyl andNon-Acetyl Hemicelluloses of Arundo donax by Ammonium Sulfate Precipitation [J].Journal of Agricultural and Food Chemistry,2012,60(16):4039-4047
    [95]李维英.蔗渣及其纤维素在离子液体中的溶解、改性及分离的研究[D].广州:华南理工大学,2011
    [96] Zhang Q.; Zhang S.; Deng Y. Recent advances in ionic liquid catalysis [J]. GreenChemistry,2011,13(10):2619-2637
    [97]蓝武.木质纤维在离子液体中的溶解以及组分分离[D].广州:华南理工大学,2012
    [98]陈迪;彭新文;刘传富.蔗渣纤维在离子液体中丁二酰化的研究[J].中华纸业,2012,33(18):6-9
    [99]陈迪.离子液体中木质纤维全组分改性的研究[D].广州:华南理工大学,2012
    [100] Wang H.-T.; Yuan T.-Q.; Meng L.-J., et al. Structural and thermal characterization oflauroylated hemicelluloses synthesized in an ionic liquid [J]. Polymer Degradation andStability,2012,97(11):2323-2330
    [101] Sun S.-N.; Li M.-F.; Yuan T.-Q., et al. Effect of Ionic Liquid Pretreatment on theStructure of Hemicelluloses from Corncob [J]. Journal of Agricultural and FoodChemistry,2012,60(44):11120-11127
    [102] Sun S.N.; Li M.F.; Yuan T.Q., et al. Effect of ionic liquid/organic solvent pretreatmenton the enzymatic hydrolysis of corncob for bioethanol production. Part1: Structuralcharacterization of the lignins [J]. Industrial Crops and Products,2013,43:570-577
    [103] Swatloski R.P.; Spear S.K.; Holbrey J.D., et al. Dissolution of cellose with ionicliquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [104] Sun Z.; Cheng M.; Li H., et al. One-pot depolymerization of cellulose into glucose andlevulinic acid by heteropolyacid ionic liquid catalysis [J]. RSC Advances,2012,2(24):9058-9065
    [105] Conceicao L.J.A.; Bogel-Lukasik E.; Bogel-Lukasik R. A new outlook on solubility ofcarbohydrates and sugar alcohols in ionic liquids [J]. RSC Advances,2012,2(5):1846-1855
    [106] Chidambaram M.; Bell A.T. A two-step approach for the catalytic conversion ofglucose to2,5-dimethylfuran in ionic liquids [J]. Green Chemistry,2010,12(7):1253-1262
    [107] Yu H.; Hu J.; Fan J., et al. One-Pot Conversion of Sugars and Lignin in Ionic Liquidand Recycling of Ionic Liquid [J]. Industrial&Engineering Chemistry Research,2012,51(8):3452-3457
    [108]赵志刚;程可可;张建安,等.木质纤维素可再生生物质资源预处理技术的研究进展[J].现代化工,2006,26(增刊(2)):39-42+44
    [109] Sun X.F.; Xu F.; Sun R.C., et al. Characteristics of degraded hemicellulosic polymersobtained from steam exploded wheat straw [J]. Carbohydrate Polymers,2005,60(1):15-26
    [110] Emmel A.; Mathias A.L.; Wypych F., et al. Fractionation of Eucalyptus grandis chipsby dilute acid-catalysed steam explosion [J]. Bioresource Technology,2003,86(2):105-115
    [111] Teng C.; Yan Q.; Jiang Z., et al. Production of xylooligosaccharides from the steamexplosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostablexylanase [J]. Bioresource Technology,2010,101(19):7679-7682
    [112] Wang K.; Jiang J.-X.; Xu F., et al. Influence of steaming explosion time on thephysic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya)[J]. Bioresource Technology,2009,100(21):5288-5294
    [113] Wang K.; Jiang J.-X.; Xu F., et al. Effects of Incubation Time on the Fractionation andCharacterization of Lignin During Steam Explosion Pretreatment [J]. Industrial&Engineering Chemistry Research,2012,51(6):2704-2713
    [114]杨健;张健;钟霞,等.液氨爆破对稻草秸秆稀硫酸降解工艺影响[J].粮食与油脂,2011,(12):9-11
    [115]易锦琼;熊兴耀.木质纤维素预处理技术[J].农产品加工(学刊),2010,(6):4-7+20
    [116]高扬;王双飞;陈嘉翔.木素的生物降解及酶的作用[J].纸和造纸,1996,(2):51-52
    [117]林云琴;周少奇.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003,(4):29-33
    [118]王双飞;韦小英;杨征月,等.膨化/生物法预处理对纤维素酶酶解蔗渣的影响[J].纤维素科学与技术,1998,6(1):29-36
    [119]潘亚杰;张雷;郭军, et al.农作物秸秆生物法降解的研究[J].可再生能源,2005,(3):33-35
    [120]曹石林.竹子清洁制浆漂白及氧脱木素过程中含氧自由基的作用机理研究[D].广州:华南理工大学,2006
    [121] Lucia L.A.; Smereck R.S. Effect of lignin content and magnesium-tomanganese ratioon the selectivity of oxygen delignification in softwood kraft pulp [J]. Pure andApplied Chemistry,2001,73(12):2059-2065
    [122]屈琴琴.马尾松预水解硫酸盐法制浆及氧脱木素研究[D].长沙:长沙理工大学,2012
    [123] Hausman M.C. A mechanistic study of the degradation of lignin model compoundswith oxygen species [D]. Maine: University of Maine,1999
    [124]周学飞;陈嘉翔.硫酸盐浆氧脱木素中木素、碳水化合物特性研究[J].中国造纸学报,1998,13:5-9
    [125]詹瑶.尾叶桉脱木素工艺的整体优化及其黑液中酚醛类小分子的分离与分析[D].广州:华南理工大学,2010
    [126]郭三川;詹怀宇;张成峰,等.助剂强化的桉木硫酸盐浆氧脱木素的研究[J].造纸科学与技术,2008,27(1):1-4
    [127]马邕文;陈昌华;陈中豪,等.马尾松硫酸盐浆单段氧脱木素最佳工艺条件的研究[J].广东造纸,2000,(2):12-16
    [128]周学飞;陈嘉翔.硫酸盐浆氧脱木素工艺参数的影响及其优化的研究[J].中国造纸学报,1998,13:10-15
    [129]闫德勇;刘明友.麦草AS—AQ法蒸煮及后续氧脱木素的研究[J].上海造纸,2008,39(2):12-17
    [130]赵建;李雪芝;石淑兰,等.桉木常规KP浆和RDH浆的氧脱木素研究(Ⅰ)—常规KP浆和RDH浆的氧脱木素效果[J].中国造纸学报,2003,18(1):36-40
    [131]赵建;李雪芝;石淑兰,等.桉木常规KP浆和RDH浆的氧脱木素研究(Ⅳ)—过氧酸预处理对常规KP浆氧脱木素的改善效果[J].中国造纸学报,2004,19(1):45-48
    [132]赵建;李雪芝;石淑兰,等.预处理和强化对桉木常规KP浆氧脱木素的改善效果
    [C].2004中国科协学术年会第十一分会.中国海南2004:213-222.
    [133]赵建;李雪芝;石淑兰,等.桉木常规KP浆和RDH浆的氧脱木素研究(Ⅱ)—预处理和强化对常规KP浆氧脱木素的改善效果[J].中国造纸学报,2003,18(2):39-42
    [134]李雪芝;赵建;石淑兰,等.桉木常规KP浆和RDH浆的氧脱木素研究(Ⅵ)—预处理和强化对RDH浆氧脱木素的改善效果[J].中国造纸学报,2006,21(2):18-21
    [135]李雪芝;赵建;石淑兰.桉木常规KP浆和RDH浆的氧脱木素研究(Ⅴ)—ClO2预处理对RDH浆氧脱木素的改善效果[J].中国造纸学报,2006,21(1):10-12
    [136]李雪芝;张士印.改善氧脱木素效果的方法[J].天津造纸,2005,(3):6-13
    [137] Argyropoulos D.S.; Suchy M.; Akim L. Nitrogen-Centered Activators ofPeroxide-Reinforced Oxygen Delignification [J]. Industrial&Engineering ChemistryResearch,2004,43(5):1200-1205
    [138]郭延柱;孔凡功;秦梦华,等.多金属氧酸盐为催化剂的麦草NaOH-AQ浆氧脱木素的研究[J].中华纸业,2008,(22):31-34
    [139] Gamelas J.A.F.; Gaspar A.R.; Evtuguin D.V., et al. Transition metal substitutedpolyoxotungstates for the oxygen delignification of kraft pulp [J]. Applied Catalysis A:General,2005,295(2):134-141
    [140] Gumuskaya E.; Pesman E.; Kirci H., et al. Influence of plum gum and sodiumperborate addition on spruce kraft pulp properties during oxygen delignification [J].Wood Science and Technology,2011,45(3):573-582
    [141]关庆芳.硫酸盐硬杂木浆助剂强化氧脱木素的研究[D].广州:华南理工大学,2011
    [142] Chai X.S.; Samp J.; Song H.N., et al. Novel headspace gas chromatographic methodfor determination of oxalate in oxygen delignification liquor [J]. Journal ofChromatography A,2006,1122(1–2):209-214
    [143] Dogan I.; Guruz G. Dimensionless parameter approach for oxygen delignificationkinetics [J]. Industrial&Engineering Chemistry Research,2008,47(16):5871-5878
    [144] Fargues C.; Mathias á.; Rodrigues A. Kinetics of Vanillin Production from KraftLignin Oxidation [J]. Industrial&Engineering Chemistry Research,1996,35(1):28-36
    [145] Ruuttunen K.; Vuorinen T. Developing Catalytic Oxygen Delignification for KraftPulp: Kinetic Study of Lignin Oxidation with Polyoxometalate Anions [J]. Industrial&Engineering Chemistry Research,2005,44(12):4284-4291
    [146]逄锦江;刘忠;惠岚峰,等.过氧化氢漂白技术的新进展[J].纸和造纸,2013,32(1):28-32
    [147]郭三川;李建军;詹怀宇,等. Cu2+对草类烧碱-AQ浆过氧化氢漂白的影响[J].造纸科学与技术,2002,21(4):8-11
    [148]赵雨萌.过渡金属离子对过氧化氢漂白的影响[D].天津:天津科技大学,2002
    [149] Zhao Q.; Pu J.W.; Mao S.L., et al. PROCESS OPTIMIZATION OF TETRA ACETYLETHYLENE DIAMINE ACTIVATED HYDROGEN PEROXIDE BLEACHING OFPOPULUS NIGRA CTMP [J]. Bioresources,2010,5(1):276-290
    [150] Abrantes S.; Amaral E.; Costa A.P., et al. Hydrogen peroxide bleaching of Arundodonax L. kraft-anthraquinone pulp-Effect of a chelating stage [J]. Industrial Crops andProducts,2007,25(3):288-293
    [151]王乐;姚春丽;宋晓磊,等.过硼酸钠在欧美杨AS-AQ浆过氧化氢漂白中的应用[J].纸和造纸,2011,30(7):15-18
    [152] Guo S.; Liu Z.; Hui L.F., et al. APPLICATION OF POLYOXOMETALATE INHYDROGEN PEROXIDE BLEACHING UNDER ACIDIC CONDITIONS [J].Bioresources,2011,6(2):1251-1261
    [153] Lim S.H.; Gursoy N.C.; Hauser P., et al. Performance of a new cationic bleachactivator on a hydrogen peroxide bleaching system [J]. Coloration Technology,2004,120(3):114-118
    [154] M. Paradis P. Hydrogen Peroxide Bleaching of Amaranth Catalysed by Nickel(II)Nitrilotriacetic Acid [J]. Journal of Chemical Research, Synopses,1999,(5):340-341
    [155]迟聪聪;张曾;黄干强.用镁碱代替钠碱的高得率浆过氧化氢漂白[J].中国造纸,2006,25(10):47-50
    [156] Behrooz R.; Ghasemi S.; Atoii G.A., et al. Mg(OH)2-BASED HYDROGENPEROXIDE BLEACHING OF CMP PULPS AT HIGH CONSISTENCY [J].Bioresources,2012,7(1):161-172
    [157] Zeinaly F.; Shakhes J.; Firozabadi M.D., et al. HYDROGEN PEROXIDEBLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE [J].Bioresources,2009,4(4):1409-1416
    [158] Ghasemi S.; Eshkiki R.B.; Fatehi P., et al. IMPACT OF ACID WASHING ANDCHELATION ON Mg(OH)(2)-BASED HYDROGEN PEROXIDE BLEACHING OFMIXED HARDWOODS CMP AT A HIGH CONSISTENCY [J]. Bioresources,2010,5(4):2258-2267
    [159]于敏敏;王守娟;魏琳,等. Mg(OH)2部分替代NaOH在麦草浆OQP漂白中的应用[J].中华纸业,2011,32(10):10-13
    [160]迟聪聪;张曾. Mg(OH)2对松木CTMP H2O2漂白的影响[J].中国造纸,2007,26(8):10-12
    [161]白亮亮;侯庆喜;张红杰,等. MgO替代NaOH的杨木PRC-APMP过氧化氢漂白[J].纤维素科学与技术,2009,17(1):46-51
    [162]雷阿莉,冯拉俊.亚硫酸盐纸浆漂白的一个好方法:用镁盐基进行氧脱木素[J].西北轻工业学院学报,1994,12(2):117-120+116
    [163] Mohan D.; Pittman C.U.; Steele P.H. Pyrolysis of Wood/Biomass for Bio-oil: ACritical Review [J]. Energy&Fuels,2006,20(3):848-889
    [164] Elliott D.C. Historical developments in hydroprocessing bio-oils [J]. Energy&Fuels,2007,21(3):1792-1815
    [165] Pittman C.U.; Mohan D.; Eseyin A., et al. Characterization of Bio-oils Produced fromFast Pyrolysis of Corn Stalks in an Auger Reactor [J]. Energy&Fuels,2012,26(6):3816-3825
    [166] Li X.S.; Lu B.S.; Li H.L., et al. Production of Microbial Oils fermented by Two-stepFermentation with Corn stalk. in2011International Conference of EnvironmentalScience and Engineering, Vol12, Pt A, Ma M., Editor.2012. p.432-438
    [167] Peng F.; Ren J.-L.; Xu F., et al. Comparative studies on the physico-chemicalproperties of hemicelluloses obtained by DEAE-cellulose-52chromatography fromsugarcane bagasse [J]. Food Research International,2010,43(3):683-693
    [168] Pang C.-S.; Xie T.-J.; Lin L., et al. Changes of the surface structure of corn stalk in thecooking process with active oxygen and MgO-based solid alkali as a pretreatment ofits biomass conversion [J]. Bioresource Technology,2012,103(1):432-439
    [169] Liu H.-M.; Feng B.; Sun R.-C. Acid–Chlorite Pretreatment and Liquefaction ofCornstalk in Hot-Compressed Water for Bio-oil Production [J]. Journal of Agriculturaland Food Chemistry,2011,59(19):10524-10531
    [170] Shi J.-B.; Yang Q.-L.; Lin L., et al. The structural changes of the bagassehemicelluloses during the cooking process involving active oxygen and solid alkali [J].Carbohydrate Research,2012,359:65-69
    [171] Shi J.-B.; Yang Q.-L.; Lin L., et al. The structural characterization of corn stalkshemicelluloses during active oxygen cooking as a pretreatment for biomass conversion[J]. BioResources,2012,7(4):5236-6246
    [172]庞春生.玉米秸秆的固体碱活性氧蒸煮机制及其浆料表面特性的研究[D].广州:华南理工大学,2012
    [173]石淑兰;何福望.纸浆造纸分析与检测[M].北京:中国轻工业出版社,2002,24-51
    [174] Peng F.; Peng P.; Xu F., et al. Fractional purification and bioconversion ofhemicelluloses [J]. Biotechnology Advances,2012,30(4):879-903
    [175] Zhang X.-M.; Meng L.-Y.; Xu F., et al. Pretreatment of partially delignified hybridpoplar for biofuels production: Characterization of organosolv hemicelluloses [J].Industrial Crops and Products,2011,33(2):310-316
    [176] Bian J.; Peng F.; Xu F., et al. Fractional isolation and structural characterization ofhemicelluloses from Caragana korshinskii [J]. Carbohydrate Polymers,2010,80(3):753-760
    [177] Sun R.C.; Wang X.Y.; Sun X.F., et al. Physicochemical and thermal characterisation ofresidual hemicelluloses isolated by TAED activated peroxide from ultrasonicirradiated and alkali organosolv pre-treated wheat straw [J]. Polymer Degradation andStability,2002,78(2):295-303
    [178] Peng P.; Peng F.; Bian J., et al. Isolation and structural characterization ofhemicelluloses from the bamboo species Phyllostachys incarnata Wen [J].Carbohydrate Polymers,2011,86(2):883-890
    [179] Sun R.C.; Tomkinson J.; Wang Y.X., et al. Physico-chemical and structuralcharacterization of hemicelluloses from wheat straw by alkaline peroxide extraction[J]. Polymer,2000,41(7):2647-2656
    [180] Peng H.; Wang N.; Hu Z., et al. Physicochemical characterization of hemicellulosesfrom bamboo (Phyllostachys pubescens Mazel) stem [J]. Industrial Crops andProducts,2012,37(1):41-50
    [181] Yuan T.-Q.; Xu F.; He J., et al. Structural and physico-chemical characterization ofhemicelluloses from ultrasound-assisted extractions of partially delignifiedfast-growing poplar wood through organic solvent and alkaline solutions [J].Biotechnology Advances,2010,28(5):583-593
    [182] Sun R.-C.; Lawther J.M.; W.B.Banks. Fractional and structural characterizationof wheat straw hemicelluloses [J]. Carbohydrate Polymers,1996,29:325-331
    [183]张元晶;魏刚;张小冬,等.木质纤维素生物质预处理技术研究现状[J].中国农学通报,2012,28(11):272-277
    [184] Li C.; Wang Q.; Zhao Z.K. Acid in ionic liquid: An efficient system for hydrolysis oflignocellulose [J]. Green Chemistry,2008,10(2):177-182
    [185] Shi J.-B.; Yang Q.-L.; Lin L., et al. Fractionation and characterization ofphysicochemical and structural features of corn stalk hemicelluloses from yellowliquor of active oxygen cooking [J]. Industrial Crops and Products,2013,44:542-548
    [186] Shi J.-B.; Yang Q.-L.; Lin L. Structural features and thermal characterization ofbagasse hemicelluloses obtained from the yellow liquor of active oxygen cookingprocess [J]. Polymer Degradation and Stability,2013,98(2):550-556
    [187] Yang H.-Y.; Song X.-L.; Yuan T.-Q., et al. Fractional Characterization ofHemicellulosic Polymers Isolated from Caragana korshinskii Kom [J]. Industrial&Engineering Chemistry Research,2011,50(11):6877-6885
    [188] Sun S.-N.; Li M.-F.; Yuan T.-Q., et al. Sequential extractions and structuralcharacterization of lignin with ethanol and alkali from bamboo (Neosinocalamusaffinis)[J]. Industrial Crops and Products,2012,37(1):51-60
    [189] Xiao B.; Sun X.F.; Sun R.C. Chemical, structural, and thermal characterizations ofalkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw,and rice straw [J]. Polymer Degradation and Stability,2001,74(2):307-319
    [190] Xu F.; Liu C.F.; Geng Z.C., et al. Characterisation of degraded organoslvhemicelluloses from wheat straw [J]. Polymer Degradation and Stability,2006,91(8):1880-1886
    [191] Fang J.M.; Sun R.C.; Tomkinson J., et al. Acetylation of wheat straw hemicellulose Bin a new non-aqueous swelling system [J]. Carbohydrate Polymers,2000,41:379-387
    [192] Sun X.F.; Sun R.C.; Fowler P., et al. Extraction and characterization of original ligninand hemicelluloses from wheat straw [J]. Journal of Agricultural and Food Chemistry,2005,53(4):860-870
    [193] Ma M.-G.; Jia N.; Zhu J.-F., et al. Isolation and characterization of hemicellulosesextracted by hydrothermal pretreatment [J]. Bioresource Technology,2012,114:677-683
    [194] Peng P.; Peng F.; Bian J., et al. Studies on the Starch and Hemicelluloses Fractionatedby Graded Ethanol Precipitation from Bamboo Phyllostachys bambusoides f. shouzhuYi [J]. Journal of Agricultural and Food Chemistry,2011,59(6):2680-2688
    [195] Teleman A.; Tenkanen M.; Jacobs A., et al. Characterization ofO-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech [J]. CarbohydrateResearch,2002,337(4):373-377
    [196] Villaverde J.J.; Li J.; Ek M., et al. Native Lignin Structure of Miscanthus x giganteusand Its Changes during Acetic and Formic Acid Fractionation [J]. Journal ofAgricultural and Food Chemistry,2009,57(14):6262-6270
    [197] Xu F.; Geng Z.C.; Sun J.X., et al. Fractional and structural characterization ofhemicelluloses from perennial ryegrass (Lolium perenne) and cocksfoot grass(Dactylis glomerata)[J]. Carbohydrate Research,2006,341(12):2073-2082
    [198] Sun R.C.; Sun X.F.; Ma X.H. Effect of ultrasound on the structural andphysiochemical properties of organosolv soluble hemicelluloses from wheat straw [J].Ultrasonics Sonochemistry,2002,9(2):95-101
    [199] Prozil S.O.; Costa E.V.; Evtuguin D.V., et al. Structural characterization ofpolysaccharides isolated from grape stalks of Vitis vinifera L [J]. CarbohydrateResearch,2012,356(0):252-259
    [200] Xue B.-L.; Wen J.-L.; Xu F., et al. Structural characterization of hemicellulosesfractionated by graded ethanol precipitation from Pinus yunnanensis [J]. CarbohydrateResearch,2012,352(0):159-165
    [201] Sun Y.-C.; Wen J.-L.; Xu F., et al. Structural and thermal characterization ofhemicelluloses isolated by organic solvents and alkaline solutions from Tamarixaustromongolica [J]. Bioresource Technology,2011,102(10):5947-5951
    [202] Yang H.; Yan R.; Chen H., et al. Characteristics of hemicellulose, cellulose and ligninpyrolysis [J]. Fuel,2007,86(12–13):1781-1788
    [203] Tong X.; Ma Y.; Li Y. Biomass into chemicals: Conversion of sugars to furanderivatives by catalytic processes [J]. Applied Catalysis A-General,2010,385(1-2):1-13
    [204] Kaparaju P.; Serrano M.; Thomsen A.B., et al. Bioethanol, biohydrogen and biogasproduction from wheat straw in a biorefinery concept [J]. Bioresource Technology,2009,100(9):2562-2568
    [205] Zhu J.Y.; Zhuang X.S. Conceptual net energy output for biofuel production fromlignocellulosic biomass through biorefining [J]. Progress in Energy and CombustionScience,2012,38(4):583-598
    [206] Velmurugan R.; Muthukumar K. Utilization of sugarcane bagasse for bioethanolproduction: Sono-assisted acid hydrolysis approach [J]. Bioresource Technology,2011,102(14):7119-7123
    [207] Shenghua M.; Hui W.; Yu W., et al. Bio-hydrogen production from cornstalk wastes byorthogonal design method [J]. Renewable Energy,2011,36(2)
    [208] Rosatella A.A.; Simeonov S.P.; Frade R.F.M., et al.5-Hydroxymethylfurfural (HMF)as a building block platform: Biological properties, synthesis and syntheticapplications [J]. Green Chemistry,2011,13(4):754-793
    [209] Tuomela M.; Vikman M.; Hatakka A., et al. Biodegradation of lignin in a compostenvironment: a review [J]. Bioresource Technology,2000,72(2):169-183
    [210] Liu H.-M.; Feng B.; Sun R.-C. Enhanced Bio-oil Yield from Liquefaction of Cornstalkin Sub-and Supercritical Ethanol by Acid–Chlorite Pretreatment [J]. Industrial&Engineering Chemistry Research,2011,50(19):10928-10935
    [211] Qi W.Y.; Hu C.W.; Li G.Y., et al. Catalytic pyrolysis of several kinds of bamboos overzeolite NaY [J]. Green Chemistry,2006,8(2):183-190
    [212] Ramsay J.A.; Aly Hassan M.C.; Ramsay B.A. Biological conversion of hemicelluloseto propionic acid [J]. Enzyme and Microbial Technology,1998,22(4):292-295
    [213] Alonso D.M.; Bond J.Q.; Dumesic J.A. Catalytic conversion of biomass to biofuels [J].Green Chemistry,2010,12(9):1493-1513
    [214] Yang Y.; Hu C.-W.; Abu-Omar M.M. Conversion of carbohydrates and lignocellulosicbiomass into5-hydroxymethylfurfural using AlCl3.6H2O catalyst in a biphasicsolvent system [J]. Green Chemistry,2012,14(2):509-513
    [215] Dhepe P.L.; Sahu R. A solid-acid-based process for the conversion of hemicellulose [J].Green Chemistry,2010,12(12):2153-2156
    [216] Xing R.; Qi W.; Huber G.W. Production of furfural and carboxylic acids from wasteaqueous hemicellulose solutions from the pulp and paper and cellulosic ethanolindustries [J]. Energy&Environmental Science,2011,4(6):2193-2205
    [217] Brienzo M.; Siqueira A.F.; Milagres A.M.F. Search for optimum conditions ofsugarcane bagasse hemicellulose extraction [J]. Biochemical Engineering Journal,2009,46(2):199-204
    [218] Sun Y.-C.; Wen J.-L.; Xu F., et al. Organosolv-and alkali-soluble hemicellulosesdegraded from Tamarix austromongolica: Characterization of physicochemical,structural features and thermal stability [J]. Polymer Degradation and Stability,2011,96(8):1478-1488
    [219]林妲;彭红;阮榕生,等.离子液体1-烯丙基-3-甲基咪唑分离毛竹半纤维素研究[J].现代化工,2012,32(2):41-43+55
    [220] Rodríguez H.; Padmanabhan S.; Poon G., et al. Addition of ammonia and/or oxygen toan ionic liquid for delignification of miscanthus [J]. Bioresource Technology,2011,102(17):7946-7952
    [221] Yu H.; Hu J.; Chang J. Selective Separation of Wood Components Based on Hansen’sTheory of Solubility [J]. Industrial&Engineering Chemistry Research,2011,50(12):7513-7519
    [222] Yang D.; Zhong L.-X.; Yuan T.-Q., et al. Studies on the structural characterization oflignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkalineextraction from bamboo [J]. Industrial Crops and Products,2013,43:141-149
    [223] Alaejos J.; Lopez F.; Eugenio M.E., et al. Soda-anthraquinone, kraft and organosolvpulping of holm oak trimmings [J]. Bioresource Technology,2006,97(16):2110-2116
    [224] Loacutepez F.; Peacuterez A.; Garciacutea J.C., et al. Cellulosic pulp from Leucaenadiversifolia by soda-ethanol pulping process [J]. Chemical Engineering Journal,2011,166(1):22-29
    [225]田超;李群;郑晓辉. Mg(OH)2部分取代NaOH以减少机械浆过氧化氢漂白中的草酸钙结垢[J].造纸化学品,2006,18(6):41-43
    [226]刘明友;胥娟;王俊文,等.竹浆氧脱木素工艺[J].纸和造纸,2010,29(8):1-3
    [227] Barroca M.; Marques P.J.T.; Seco I.M., et al. Selectivity studies of oxygen andchlorine dioxide in the pre-delignification stages of a hardwood pulp bleaching plant[J]. Industrial&Engineering Chemistry Research,2001,40(24):5680-5685
    [228] Salmela M.; Alén R.; Vu M.T.H. Description of kraft cooking and oxygen–alkalidelignification of bamboo by pulp and dissolving material analysis [J]. IndustrialCrops and Products,2008,28(1):47-55
    [229] Fu S.; Lucia L.A. Investigation of the Chemical Basis for Inefficient Lignin Removalin Softwood Kraft Pulp during Oxygen Delignification [J]. Industrial&EngineeringChemistry Research,2003,42(19):4269-4276
    [230] Fu S.; Chai X.; Hou Q., et al. Chemical Basis for a Selectivity Threshold to theOxygen Delignification of Kraft Softwood Fiber As Supported by the Use of ChemicalSelectivity Agents [J]. Industrial&Engineering Chemistry Research,2004,43(10):2291-2295
    [231]谢土均;林鹿;庞春生,等.甘蔗渣活性氧脱木素及其对纤维素酶解的影响[J].现代食品科技,2011,27(9):1069-1073
    [232] Sun J.X.; Sun R.C.; Sun X.F., et al. Fractional and physico-chemical characterisationof hemicelluloses from ultrasonic irradiated sugarcane bagasse [J]. CarbohydrateResearch,2004,339(2):291-300
    [233] Li M.-F.; Fan Y.-M.; xu F., et al. Structure and Thermal Stability of PolysaccharideFractions Extracted from the Ultrasonic Irradiated and Cold Alkali Pretreated Bamboo[J]. Journal of Applied Polymer Science,2010,121:176-185
    [234] Sun R.C.; Tomkinson J. Characterization of hemicelluloses isolated withtetraacetylethylenediamine activated peroxide from ultrasound irradiated and alkalipre-treated wheat straw [J]. European Polymer Journal,2003,39(4):751-759
    [235] Xu F.; Liu C.F.; Geng Z.C., et al. Characterisation of degraded organosolvhemicelluloses from wheat straw [J]. Polymer Degradation and Stability,2006,91(8):1880-1886
    [236] Bian J.; Peng F.; Peng P., et al. Isolation and fractionation of hemicelluloses by gradedethanol precipitation from Caragana korshinskii [J]. Carbohydrate Research,2010,345(6):802-809
    [237] Sun S.-L.; Wen J.-L.; Ma M.-G., et al. Successive alkali extraction and structuralcharacterization of hemicelluloses from sweet sorghum stem [J]. CarbohydratePolymers,2013,92(2):2224-2231
    [238] Sun R.C.; Fang J.M.; Tomkinson J. Characterization and esterification ofhemicelluloses from rye straw [J]. Journal of Agricultural and Food Chemistry,2000,48(4):1247-1252
    [239] Robert P.; Marquis M.; Barron C., et al. FT-IR investigation of cell wallpolysaccharides from cereal grains. Arabinoxylan infrared assignment [J]. Journal ofAgricultural and Food Chemistry,2005,53(18):7014-7018
    [240] Samuel R.; Foston M.; Jaing N., et al. HSQC (heteronuclear single quantum coherence)C-13-H-1correlation spectra of whole biomass in perdeuterated pyridiniumchloride-DMSO system: An effective tool for evaluating pretreatment [J]. Fuel,2011,90(9):2836-2842
    [241] Peng F.; Ren J.-L.; Xu F., et al. Fractionation of Alkali-Solubilized Hemicellulosesfrom Delignified Populus gansuensis: Structure and Properties [J]. Journal ofAgricultural and Food Chemistry,2010,58(9):5743-5750
    [242] Luo Q.; Peng H.; Zhou M., et al. Alkali extration and physicochemicalcharacterization of hemicellulses from young bamboo (phyllostachys pubescens mazel)[J]. BioResources,2012,7(4):5817-5828
    [243] Vignon M.R.; Gey C. Isolation,1H and13C NMR studies of(4-O-methyl-d-glucurono)-d-xylans from luffa fruit fibres, jute bast fibres andmucilage of quince tree seeds [J]. Carbohydrate Research,1998,307:107-111
    [244] Koenig A.B.; Sleighter R.L.; Salmon E., et al. NMR Structural Characterization ofQuercus alba (White Oak) Degraded by the Brown Rot Fungus, Laetiporus sulphureus[J]. Journal of Wood Chemistry and Technology,2010,30(1):61-85
    [245] Zakrzewska M.E.; Bogel-ukasik E.; Bogel-ukasik R. Ionic Liquid-MediatedFormation of5-Hydroxymethylfurfural—A Promising Biomass-Derived BuildingBlock [J]. Chemical Reviews,2010,111(2):397-417
    [246] Yan Z.-p.; Lin L.; Liu S. Synthesis of γ-Valerolactone by Hydrogenation ofBiomass-derived Levulinic Acid over Ru/C Catalyst [J]. Energy&Fuels,2009,23(8):3853-3858
    [247] Goksu E.I.; Karamanlioglu M.; Bakir U., et al. Production and Characterization ofFilms from Cotton Stalk Xylan [J]. Journal of Agricultural and Food Chemistry,2007,55(26):10685-10691
    [248] Bouquillon S. D-Xylose and L-Arabinose-based surfactants: Synthesis, reactivity andphysico-chemical properties [J]. Comptes Rendus Chimie,2011,14(7–8):716-725
    [249] Parajó J.C.; Garrote G.; Cruz J.M., et al. Production of xylooligosaccharides byautohydrolysis of lignocellulosic materials [J]. Trends in Food Science&Technology,2004,15(3–4):115-120
    [250] Lisboa S.A.; Evtuguin D.V.; Neto C.P., et al. Isolation and structural characterizationof polysaccharides dissolved in Eucalyptus globulus kraft black liquors [J].Carbohydrate Polymers,2005,60(1):77-85
    [251]谢来苏;詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2006,50-51
    [252]郭三川;詹怀宇;付时雨.蒸煮条件对桉木硫酸盐浆中己烯糖醛酸含量的影响[J].中国造纸学报,2007,22(4):61-64
    [253]李海龙;陈嘉川;詹怀宇,等.木聚糖酶处理对纸浆中己烯糖醛酸含量的影响[J].华南理工大学学报(自然科学版),2008,36(7):42-46
    [254]詹怀宇;叶红;蒲云桥,等. KP木浆中己烯糖醛酸对卡伯值和ECF漂白的影响[J].中国造纸,2000,(4):37-41
    [255]李佩燚;张美云;夏新兴,等.慈竹置换蒸煮对己烯糖醛酸含量的影响[J].中华纸业,2012,33(10):65-70
    [256]李强;孙军;许利.纸浆中己烯糖醛酸的产生及其影响与消除方法[J].黑龙江造纸,2010,(1):25-28
    [257] Peng F.; Bian J.; Ren J.-L., et al. Fractionation and characterization of alkali-extractedhemicelluloses from peashrub [J]. Biomass and Bioenergy,2012,39(0):20-30
    [258] Peng H.; Zhang J.; Liu Y., et al. Structural Characterization of HemicellulosicPolysaccharides Isolated from Bamboo (Phyllostachys pubescens Mazel)[J]. CurrentOrganic Chemistry,2012,16:1855-1862
    [259] Fang J.M.; Sun R.C.; Tomkinson J. Isolation and characterization of hemicellulosesand cellulose from rye straw by alkaline peroxide extraction [J]. Cellulose,2000,7(1):87-107
    [260] Revanappa S.B.; Nandini C.D.; Salimath P.V. Structural characterisation of pentosansfrom hemicellulose B of wheat varieties with varying chapati-making quality [J]. FoodChemistry,2010,119(1):27-33
    [261] Nagy M.; Kosa M.; Theliander H., et al. Characterization of CO2precipitated Kraftlignin to promote its utilization [J]. Green Chemistry,2010,12(1):31-34
    [262] López F.; Eugenio M.E.; Díaz M.J., et al. Bleaching of Olive Tree Residues Pulp withPeracetic Acid and Comparative Study with Hydrogen Peroxide [J]. Industrial&Engineering Chemistry Research,2001,41(15):3518-3525
    [263] Yokoyama T.; Matsumoto Y.; Meshitsuka G. Detailed Examination of the Degradationof Phenol Derivatives under Oxygen Delignification Conditions [J]. Journal ofagricultural and food chemistry,2007,55(4):1301-1307
    [264] Cao S.; Zhan H.; Fu S., et al. Regulation of Superoxide Anion Radical During theOxygen Delignification Process [J]. Chinese Journal of Chemical Engineering,2007,15(1):132-137
    [265]周学飞;朱正良;贾艳迪,等.竹浆氧脱木素的研究Ⅰ.不同碱对氧脱木素的影响[J].纤维素科学与技术,2007,15(2):22-25+29
    [266]郭三川;詹怀宇;罗小林,等.速生桉木硫酸盐浆氧脱木素工艺的优化[J].造纸科学与技术,2007,26(5):7-10
    [267] Wong D.F.; Schmidt J.A.; Heitner C. Magnesium-based alkalis for hydrogen peroxidebleaching of mechanical pulps [C]. Proceedings of the91st Paptac Annual Meeting.2005:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700