用户名: 密码: 验证码:
木质素水热转化及其产物基础应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素类生物质具有分布广泛、资源丰富、可再生等特点,近年来以木质纤维素类生物质制备高价值化学品和燃料引起了广泛的关注。水热转化是一种很有前景的环境友好热处理技术,在水热条件下可以解聚生物质以获得生物质基平台化学品。目前大部分研究集中在生物质水热气化和液化的工艺研究上,而对水热碳化过程以及水热转化产物(液态产物、水热焦)的基础应用研究尚未引起足够的重视。本文以木质素为原料进行水热液化,率先证实木质素液化产物具有抗氧化性能,并进一步设计出有机溶剂-碱溶液复合萃取法对液化产物进行分类分离。首次提出以甲醛为添加剂对木质素进行水热碳化制备高产率水热焦,并对这些水热焦作为固体燃料和吸附材料进行探索。对包括木质素在内的几种生物质组分水热碳化产物(水热焦)进行了系统的对比分析研究,进一步拓展了生物质水热焦的高价值应用方向--合成水热焦磺化催化剂。然后依据所得水热焦磺化催化剂,设计出“一步法”取代常规两步法降解菊糖制备5-羟基糠醛的工艺思路,以及提出了利用水热焦磺化催化剂代替均相催化剂进行催化水解木质素模型化合物的研究。
     采用黑液碱木质素、木质素磺酸盐等原料在水热条件(280-350℃)下液化,检测出液态产物中主要组分是酚类化合物。发现黑液碱木质素液化产物总酚含量与1,1-二苯基-2-三硝基苯肼(DPPH)清除率有一定的线性关系。相对于原料木质素,木质素液化产物中的单位总酚含量、DPPH清除率、铁还原抗氧化能力都有极大的提高,且黑液碱木质素液化产物抗氧化性能效果高于木质素磺酸盐液化产物的效果。综合考虑液化产物产率、单位总酚含量、DPPH清除率等因素,黑液碱木质素适合的水热液化条件为300℃、30min或者320℃、15min。桐油的热稳定性实验发现木质素液化产物在较低的温度下(如130℃)有优良的抗热氧化性能。因此以木质素水热转化制备具有抗氧化性的液化产物是一个很有希望、把低价值原料转化为高值化产物的新技术。
     在270-330℃水热条件下对碱木质素进行液化,当反应温度为300℃时,总油(液态产物)可以达到28.3%,且发现其中一半以上的产物为酚类化合物。设计出碱溶液-有机溶剂复合萃取法成功的把液化产物分类分离为四大类:苯二酚类化合物、单酚类化合物、弱极性化合物(主要为烷基苯等)、以及水溶性产物(低分子有机酸、醇、酯等)。此萃取法工艺简单、成本低、分离效率高,是一种有希望应用于分离生物油获取各类化学品的方法。进一步提出了木质素水热转化机理分为三步反应:醚键断裂、去甲氧基以及苯环烷基化反应等,且发现去甲氧基化和苯环烷基化反应随着温度的提高而增强。
     在225-265℃条件下对木质素、纤维素、D-木糖(半纤维素模型化合物)、木粉等进行了水热碳化对比研究,并对各种水热焦进行了系统的表征分析。这些水热焦的产率处于45%到60%之间,且各种生物质原料的水热焦产率顺序为木质素>木粉>纤维素>D-木糖。这些水热焦的碳含量、碳回收率、能量回收率、碳氧比、碳氢比分别处于63-75%、80-87%、78-89%、2.3-4.1、12-15之间。水热焦的热值处于24-30MJ/kg之间,与原料相比,提高了45-91%。以上结果说明水热碳化是一种很有前景的把生物质转化为富碳含量且高能量密度产物的技术。另外,推断出木质素水热焦生成机理:木质素水热焦由两部分组分,一部分是木质素聚合结构热解缩合而成,另一部分是由木质素水热降解产物酚类化合物聚合而成。
     首次报道了甲醛有利于促进黑液固形物的水热碳化。与没有添加甲醛生成的水热焦相比,添加甲醛所得水热焦的产率、高热值、碳回收效率、总能量回收效率分别提高为1.27-2.13、1.02-1.36、1.20-2.31、1.20-2.44倍,而硫含量和灰分含量分别降低为0.51-0.64和0.48-0.89倍。这些添加甲醛所生成的水热焦的热值处于2.2104到3.0104kJ/kg之间,与原料相比,在285℃下所得水热焦的热值提高了1.90倍。甲醛也用来作为添加剂在320℃下水热碳化木质素磺酸盐,添加甲醛后产率和比表面积分别提高了33.8%和46.4%。添加甲醛生成的木质素磺酸盐水热焦对铜离子和甲基橙的Langmuir饱和吸附容量分别为19.6mg/g和16.3mg/g;没有添加甲醛生成的木质素磺酸盐水热焦甲基橙的Langmuir饱和吸附容量分别为18.9mg/g。
     拓展了木质素等生物质水热焦的高价值应用方向--合成高性能磺化催化剂。这些催化剂产率处在36-56%之间,对于不同原料所得的水热焦产率顺序为:木质素>木粉>纤维素>D-木糖,且所有这些催化剂在245℃时得到最大的产率。发现水热焦磺化催化剂都拥有羟基、羧基和磺酸根,其中磺酸根的含量处于0.56-0.87mmol/g,总的氢离子交换容量处于1.11-1.44mmol/g。设计了在离子液体中利用水热焦磺化催化剂等非均相催化剂“一步法”催化降解菊糖制备5-羟甲基糠醛的新思路,部分这些催化剂表现出比传统固体酸催化剂(如HZSM-5、732强酸性阳离子交换树脂、amberlyst-15阳离子交换树脂、超强酸硫酸化氧化锆等)更好的催化活性。在反应条件为100℃、60min的不同催化体系中,5-羟甲基糠醛的产率可以达到47-65%之间。且水热焦磺化催化剂/离子液体反应体系在重复使用5次后,5-羟甲基糠醛的产率仍然可以达到61%。
     与常规的无机酸碱均相催化水解木质素模型化合物的研究不同,本研究选择以木质素水热焦磺化催化剂、Amberlyst-15阳离子交换树脂等非均相固体酸催化剂对木质素模型化合物酚基甘油-β-愈创木基醚和4-苄氧基苯酚进行水解。在所有这些固体酸催化剂的作用下,4-苄氧基苯酚水解产物对苯二酚的收率和产率分别处于5.6-47.7%和57.1-92.0%之间。酚基甘油-β-愈创木基醚的主要产物为邻甲氧基苯酚,其收率和产率分别处于22.2-38.0%和63.0-100%。与均相催化剂硫酸相比,这两种木质素模型化合物在水热焦磺化催化剂的作用下转化率略低,但对主要酚类产物的选择性明显增强。这些水热焦磺化催化剂在催化降解、水解反应中表现出相当高的催化活性和选择性,考虑到生物质资源的可再生性、丰富性和廉价性,开发水热焦磺化催化剂是生物质水热转化潜在的工业化方向之一。
Recently, studies on high-value chemicals and fuels from biomass have become aresearch hot spot, as biomass is widely existed, abundant and renewable. Hydrothermalconversion is a promising and environmentally friendly technology, with which the biomasscan be depolymerized and platform chemicals can be obtained. However, most of theresearchers have focused on the process studies of hydrothermal gasification and liquefactionof biomass. The biomass hydrothermal carbonization technologies as well as the applicationstudies of hydrothermal conversion products (liquefied products, hydrochar, etc.) are lacking.In this work, hydrothermal conversion of lignin was conducted, and the antioxidant abilitiesof the liquefied products were explored, and the liquefied products were successfullyclassified separated. The lignin derived hydrochars were tested as solid fuel and carbon-basedadsorption materials, respectively. Moreover, various biomass constituents (lignin, cellulose,etc.) were hydrothermally carbonized, and all of these biomass derived hydrochars werecharacterized and compared. These hydrochars were further newly applied for carbon basedsulfonated catalyst preparation.
     Black liquor alkaline lignin and lignosulfonate were liquefied from280-350℃. Theantioxidant abilities of liquefaction products were tested and compared with the raw materials.Results showed that after hydrothermal liquefaction, both the total phenol content and unitantioxidant power of the two lignin liquefaction products were improved, and alkaline ligninliquefaction products had a larger increase than lignosulfonate liquefaction products. Theinfluences of reaction time and temperature on oil yield, total phenol content and antioxidantpower of alkaline lignin liquefaction products were discussed. The total phenol content wasfound to have certain relationships with the antioxidant abilities. The suitable conditions foralkaline lignin hydrothermal liquefaction were at300℃,30min or320℃,15min. Moreover,thermal oxidation stability tests of tung oil showed that the addition of lignin liquefactionproducts obviously increased the oxidation stability time of tung oil at a relative lowtemperature (130℃), however, the antioxidant activity of lignin liquefaction products at150℃was somewhat low. So, it can be inferred that lignin hydrothermal liquefaction productshave the potential to become the valueable antioxidant.
     Alkaline lignin was liquefed under hydrothermal conditions at270-330℃, and the totaloil yield reached28.3wt%at a reaction temperature of300℃. The liquefed products wereeffectively separated into four main types of substances: benzenediols, monophenolichydroxyl products, weak-polar products, and water-soluble products (low-molecular-weightorganic acids, alcohols, etc.). The production process and yield of each classifed productswere discussed. More than half of the oil products were phenolics. A mechanism for phenolicproducts production from lignin liquefaction was proposed. The results indicated that thedecomposition of lignin under hydrothermal conditions occured mainly by three steps:hydrolysis and cleavage of the ether bond and the C-C bond, demethoxylation, and alkylation.Moreover, we found that higher temperature would favour the demethoxylation and alkylationreactions.
     Hydrothermal carbonization of cellulose, lignin, D-xylose (substitute for hemicelluloses),and wood meal (WM) was experimentally conducted between225and265℃, and thechemical and structure properties of the hydrochars were investigated. The hydrochar yieldwas between45and60%, and the yield trend of the feedstock was lignin> WM> cellulose>D-xylose. The hydrochars seemed stable before300℃, and aromatic structure was formed inall of these hydrochars. The C content, C recovery, energy recovery, ratios of C/O and C/H inall of these hydrochars were among63-75%,80-87%,78-89%,2.3-4.1, and12-15,respectively. The higher heating value (HHV) of the hydrochars was among24-30MJ/kg,with an increase of45-91%compared with the corresponding feedstock. Temperature wasvery important in the hydrothermal carbonization process. Higher temperatures generallyaccelerated the hydrothermal carbonization of biomass, resulting in hydrochars with loweryield, lower volatile matter content, lower ion exchange capacity, lower O-containingfunctional groups, but higher C content. The lignin hydrothermal carbonization mechanismwas that lignin hydrothermal carbonization products were made of polyaromatic hydrocharsand phenolic hydrochars.
     Formaldehyde was originally used as a polymerization agent to perform hydrothermalcarbonization of black liquor for solid fuel production from220to285℃. Compared tohydrochar prepared without formaldehyde, hydrochar produced in the presence of a2.8wt%formaldehyde solution (hydrochar-F) had0.27~1.13times higher yield,0.021~0.36times higher heating value (HHV),0.20~1.31times higher C recovery efficiency,0.20~1.44timeshigher total energy recovery efficiency,0.36~0.49times lower sulfur content, and0.11~0.52times lower ash content. The HHV of hydrochar-Fs were ranged from2.2×104to3.0×104kJ/kg, while the HHV of hydrochar-F produced at285℃was1.90times greater than that ofthe raw material (black liquor solid). Hydrothermal conversion of lignosulfonate with orwithout formaldehyde as polymerization agent was conducted at320℃. Compared with thehydrochar produced without formaldehyde addition (WF-hydrochar), the yield and surfacearea of the hydrochar produced with formaldehyde addition (F-hydrochar) increased33.8%and46.4%respectively. The Langmuir saturated adsorption capacity of Cu2+, methyl orange(MO) for F-hydrochar was19.6,16.3mg·g-1respectively. The Langmuir saturated adsorptioncapacity of MO for WF-hydrochar was18.9mg·g-1.
     Amorphous hydrochar sulfonated catalysts were generated from four kinds of biomass(lignin, cellulose, wood meal and D-xylose) by hydrothermal carbonization at varioustemperatures (225,245and265℃) followed by sulfonation, with a yield of36-56%. All ofthese catalysts owned aromatic structure, hydroxyl and carboxyl groups, and with a density ofSO3H groups between0.56and0.87mmol/g.5-Hydroxymethylfurfural (HMF) was directlyproduced from inulin in ionic liquids (ILs) through one step with the addition of hydrocharsulfonated catalysts, with a factual yield of47-65%at100℃,60min. Moderate extension ofreaction time (from30to90min) and increase of temperature (from80to120℃) promotedHMF production. The hydrochar sulfonated catalysts showed high reusability (the factualyield retained61%even after being used five times), as well as good catalytic activitycompared with traditional solid acid catalysts.
     Hydrolysis of two kinds of lignin model compounds was originally conducted with sixdifferent solid acid catalysts (732cation resin, HZSM-5, sulfated zirconia, Amberlyst-15cation resin, C225-SO3H and L225-SO3H). Monobenzone was used as the-O-4bond type oflignin model compound, and hydroquinone was the main product with a yield andproductivity of among5.6-47.7%,57.1-92.0%, respectively. Guaiacylglycerol--guaiacylether (GG) was employed as the-O-4bond type of lignin model compound, while guaiacolwas found the main product with a yield and productivity of among22.2-38.0%and63.0-100%, respectively. Compared with the homogeneous catalyst H2SO4, Amberlyst-15 cation resin, C-SO3H and L-SO3H showed comparable efficiency of conversion ratio butmuch higher selectivity of the phenolic products. These hydrochar sulfonated catalystsshowed unique advantages in the catalytic degradation and hydrolysis reactions, consideringthe renewable, aboundant, and low-cost properties of biomass, application of hydrocharsulfonated catalysts should be one of the potential industrialization way for biomasshydrothermal conversion.
引文
[1]马隆龙.生物质能利用技术的研究及发展[J].化学工业,2007,25(8):9-14
    [2]李娜,马晓茜,赵增立,等.生物质气化与废弃物焚烧联合发电技术环境效益分析[J].农业机械学报,2007,38(6):121-124
    [3]谭天伟,王芳,邓立,等.生物柴油的生产和应用[J].现代化工,2002,22(2):4-6
    [4] Burkhard K., Werner H., Friedhelm B. Catalytic hydroliquifaction of biomass [J]. Fuel,1990,69(4):448-455
    [5] Regalbuto, J. R. Cellulosic biofuels-got gasoline?[J] Science2009,325,822–824
    [6] Davis J. R, Sello J. K. Regulation of genes in Streptomyces bacteria required forcatabolism of lignin-derived aromatic compounds [J]. Appl. Microbiol. BiotechnoL,2010,86:921-929
    [7] Meyer S., Glaser B., Quicker P. Technical, economical, and climate-related aspects ofbiochar production technologies: a literature review.[J] Environ. Sci. Technol.,2011,45,9473-9483
    [8]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):41-55
    [9]蒋挺大.木质素[M].北京:化学工业出版社,2008
    [10]中野准三(日)编,高洁、鲍禾、李忠正译.木质素的化学--基础与应用[M].北京:轻工业出版社.1988年03月第1版.
    [11]陈嘉翔.制浆原理与工程[M].北京:中国轻工业出版社.1990
    [12] Adler E. Lignin chemistry-past, present and future [J]. Wood Sci. Technol.,1977,11:169-218
    [13] Pandey M. P., Kim C. S. Lignin depolymerization and conversion: a review ofthermochemical methods [J]. Chem. Eng. Technol.,2011,34:29-41
    [14] Chakar F. S., Ragauskas A. J. Review of current and future softwood kraft ligninprocess chemistry [J]. Ind. Crops Prod.,2004,20:131-141
    [15] Pinto P. G. R., Silva E. A. B. D., Rodrigues A. E. Insights into oxidative conversion oflignin tohigh-added-value phenolic aldehydes [J]. Ind. Eng. Chem. Res.,2011,50:741-748
    [16] Shen D. K., Gu S., Luo K. H., et al. The pyrolytic degradation of wood-derived ligninfrom pulping process [J]. Bioresour. Technol.,2010,101:6136-6146
    [17] Masaru, W., Takaftlmi, S., Hiroshi1. Chemical reactions of C l compounds innear-critieal and supereritieal water [J]. Chemical Review,2004,104:5803-5821
    [18] Lavric, E. D., Weyten, H., Ruyck, D. J. Deloealized organie Pollutant destruetionthrough a self-sustaining supereritieal water oxidation Proeess [J]. Energy Conversionand Management,2005,46:1345-1364
    [19]孔令照,李光明,张波,等.纤维素废弃物水热处理制H2的研究进展[J].环境污染治理技术与设备,2006,7:7-12
    [20] Philip E. S. Organic chemical reactions in the supercritieal water [J]. Chemical Review,1999,99:603-621
    [21] Kruse A., Dinjus E. Hot compressed water as reaction medium and reactant propertiesand synthesis reactions [J]. Journal of Supercritical Fluids,2007,39:362-380
    [22] Br ll D., Kaul C., Kr mer A., et al. Chemistry in supercritical water [J]. AngewandteChemie International Edition,1999,38:2998-3014
    [23] Krammer P., Vogel H. Hydrolysis of esters in subcritical and supercritical water [J].Journal of Supercritical Fluids,2000,16:189-206
    [24] Luck F. A review of industrial catalytic wet air oxidation processes [J]. Catal. Today,1996,27:195-202
    [25] Mishra,V. S., Mahajani, V. V., Joshi J. B. Wet air oxidation [J]. Ind. Eng. Chem. Res.,1995,34:2-48
    [26] Kindsigo M., Kallas J. Degradation of lignins by wet oxidation: Model watersolutions [J]. Proc. Estonian Acad. Sci. Chem.,2006,55:132-144
    [27] Kindsigo M., Hautaniemi M., Kallas J. Wet oxidation of recalcitrant lignin watersolutions: Experimental and reaction kinetics [J]. Environ. Chem. Lett.,2009,7:155-160
    [28] Hasegawa I., Inoue Y., Muranaka Y., et al. Selective production of organic acids anddepolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide[J]. Energy Fuels,2011,25:791-796
    [29] Deng H., Lin L., Sun Y., et al. Activity and stability of perovskite-type oxide LaCoO3catalyst in lignin catalytic wet oxidation to aromatic aldehydes process [J]. EnergyFuels,2009,23:19-24
    [30] Deng, H. Lin L., Liu S. Catalysis of Cu-doped Co-based perovskite-type oxide in wetoxidation of lignin to produce aromatic aldehydes [J]. Energy Fuels,2010,24:4797-4802
    [31] Deng H., Lin L., Sun Y., et al. Activity and stability of perovskite-type oxide LaFeO3catalyst in lignin catalytic wet oxidation to aromatic aldehydes [J]. Chinese J. Catal.,2008,29:753-757
    [32] Deng H., Lin L., Sun Y.,et al. Perovskite-type oxide LaMnO3: An efficient andrecyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromaticaldehydes [J]. Catal. Lett.,2008,126:106-111
    [33] Zhang J., Deng H., Lin L. Wet aerobic oxidation of lignin into aromatic aldehydescatalysed by a perovskite-type oxide: LaFe1-xCuxO3(x=0,0.1,0.2)[J]. Molecules,2009,14:2747-2757
    [34] Sales F. G., Maranh o L. C. A., Filho N. M. L., et al. Experimental evaluation andcontinuous catalytic process for fne aldehyde production from lignin [J]. Chem. Eng.Sci.,2007,62:5386-5391
    [35] Sales F. G., Abreu C. A. M., J. Pereira A. F. R., et al. Catalytic wet-air oxidation oflignin in a three-phase reactor with aromatic aldehyde production [J]. Brazilian J.Chem. Eng.,2004,21:211-218
    [36] Pinto P. C. R., Silva E. A. B., Rodrigues A. E. Comparative study of solid-phaseextraction and liquid-liquid extraction for the reliable quantification of high valueadded compounds from oxidation processes of wood-derived lignin [J]. Ind. Eng.Chem. Res.,2010,49:12311-12318
    [37] Voitl T., Rohr P. R. von. Demonstration of a process for the conversion of kraft lignininto vanillin and methyl vanillate by acidic oxidation in aqueous methanol [J]. Ind.Eng. Chem. Res.,2010,49:520-525
    [38] Xiang Q., Lee Y. Y. Production of oxychemicals from precipitated hardwood lignin [J].Appl. Biochem. Biotechnol.,2001,91/93:1-9/71-80
    [39] Santos S. G., Marques A. P., D. Lima L.D., et al. Kinetics of eucalypt lignosulfonateoxidation to aromatic aldehydes by oxygen in alkaline medium [J]. Ind. Eng. Chem.Res.,2011,50:291-298
    [40] Fargues C., Mathias á., Rodrigues A. Kinetics of vanillin production from kraft ligninoxidation [J]. Ind. Eng. Chem. Res.,1996,35:28-36
    [41] Araújo J. D. P., Grande C. A., Rodrigues A. E. Vanillin production from ligninoxidation in a batch reactor [J]. Chem. Eng. Res. Des.,2010,88:1024-1032
    [42] Silva E. A. B. da, Zabkova M., Araújo J. D., et al. An integrated process to producevanillin and lignin-based polyurethanes from Kraft lignin [J]. Chem. Eng. Res. Des.,2009,87:1276-1292
    [43] Sricharoenchaikul V., Assessment of black liquor gasification in supercritical water [J].Bioresour. Technol.,2009,100:638-643
    [44] Naqvi M., Yan J., Dahlquist E. Black liquor gasification integrated in pulp and papermills: A critical review [J]. Bioresour. Technol.,2010,101:8001-8015
    [45] R nnlund I., Myréen L., Lundqvist K., et al. Waste to energy by industrially integratedsupercritical water gasification-effects of alkali salts in residual by-products from thepulp and paper industry [J]. Energy,2011,36:2151-2163
    [46] Matsumura Y., Minowa T., Potic B., et al. Biomass gasifcation in near-andsuper-critical water: Status and prospects [J]. Biomass Bioenergy,2005,29:269-292
    [47] Osada M., Sato T., Watanabe M., et al. Low-temperature catalytic gasification of ligninand cellulose with a ruthenium catalyst in supercritical water [J]. Energy Fuels,2004,18:327-333
    [48] Jin H., Lu Y., Guo L.,et al. Hydrogen production by partial oxidative gasification ofbiomass and its model compounds in supercritical water [J]. Int. J. Hydrogen Energy,2010,35:3001-3010
    [49] Yoshida T., Oshima Y. Partial oxidative and catalytic biomass gasification insupercritical water: A promising flow reactor system [J]. Ind. Eng. Chem. Res.,2004,43:4097-4104
    [50] He W., Li G., Kong L., et al. Application of hydrothermal reaction in resource recoveryof organic wastes [J]. Resour. Conserv. Recy.,2008,52:691-699
    [51] Tymchyshyn M., Xu C., Liquefaction of bio-mass in hot-compressed water for theproduction of phenolic compounds [J].Bioresour. Technol.,2010,101:2483-2490
    [52] Kang S., Li X., Fan J., et al. Classified separation of lignin hydrothermal liquefiedproducts [J]. Ind. Eng. Chem. Res.2011,50:11288-11296
    [53] Wahyudiono, Sasaki M., Goto M. Recovery of phenolic compounds through thedecomposition of lignin in near and supercritical water [J]. Chem. Eng. Process,2008,47:1609-1619
    [54] Ehara K., Saka S., Kawamoto H. Characterization of the lignin-derived products fromwood as treated in supercritical water [J]. J. Wood Sci.,2002,48:320-325
    [55] Zhang B., Huang H., Ramaswamy S. Reaction kinetics of the hydrothermal treatmentof lignin [J]. Appl. Biochem. Biotechnol.2008,147:119-131
    [56] Alma, M. H. and Basturk, M. A.. Liquefaction of grapevine cane (Vitis vinisera L.)waste and its application to phenol-formaldehyde type adhesive [J]. Industrial Cropsand Products,2006,24:171-176
    [57] Lee S., Teramoto Y., Shiraishi N. Acid-catalyzed liquefaction of waste paper in thepresence of phenol and its application to Novolac-type phenolic resin [J]. Appl. Polym.Sci.,2002,83:1473-1481
    [58] Lee S., Teramoto Y., Shiraishi N. Resol-type phenolic resin form liquefied phenolatedwood and its application to phenolic foam [J]. Appl. Polym. Sci.,2002,84:468-472
    [59] Lin L., Yao Y., Yoshioka M., et al. Preparation and properties of phenolated wood/phenol/formaldehyde cocondensed resin [J]. Appl. Polym. Sci.,1995,58:1297-1304
    [60] Kurimoto Y., Takeda M., Koizumi A., et al. Mechanical properties of polyurethanefilms prepared from liquefied wood with polymeric MDI [J]. Bioresour. Technol.,2002,74:151-157
    [61] Lee S. H., Yoshioka M, and Shiraishi N. Liquefaction of corn bran(CB)in the presenceof alcohols and preparation of polyurethane foam from its liquefied polyol [J]. Appl.Polym. Sci.,2000,78:319-325
    [62] Wei Y., Cheng F., Li H., et al. Properties and microstructure of polyurethane resinsfrom liquefied wood [J]. Appl. Polym. Sci.,2005,95:1175-1180
    [63]李文昭,刘正字,侯家翔.液化相思树木材制备酚甲醛树脂胶合剂[J].林产工业,2004,23:43-53
    [64] Lee S. H. Phenolic resole resin from phenolated corn bran and its characteristics [J].Appl. Polym. Sci.,2003,87:1365-1370
    [65]李文昭.溶解相思树树皮制造木合剂之研究[J].林产工业,1998,17:681-696
    [66]李文昭,刘正字.液化杉木树皮制造酚-甲醛木材胶合剂[J].林产工业,2001,20:217-226
    [67] Lynam J. G., Coronella C. J., Yan W., Reza M. T., Vasquez V. R. Acetic acid andlithium chloride effects on hydrothermal carbonization of lignocellulosic biomass [J].Bioresour. Technol.,2011,102:6192-6199
    [68] Erlach B., Harder B., Tsatsaronis G. Combined hydrothermal carbonization andgasifcation of biomass with carbon capture [J]. Energy,2012,45:329-338
    [69] Berge N. D., Ro K. S., Mao J., et al. Hydrothermal carbonization of municipal wastestreams [J]. Environ. Sci. Technol.,2011,45:5696-5703
    [70] Sevilla M., Macia–Agullo J. A., Fuertes A. B. Hydrothermal carbonization of biomassas a route for the sequestration of CO2: Chemical and structural properties of thecarbonized products [J]. Biomass Bioenergy,2011,35:3152-3159
    [71] Sevilla M., Fuertes A. B. The production of carbon materials by hydrothermalcarbonization of cellulose [J]. Carbon,2009,47:2281-2289
    [72] Heilmann S. M., Davis H. T., Jader L. R., et al. Hydrothermal carbonization ofmicroalgae [J]. Biomass Bioenergy,2010,34:875-882
    [73] Hoekman S. K., Broch A., Robbins C., Hydrothermal carbonization (HTC) oflignocellulosic biomass [J]. Energy Fuels,2011,25:1802-1810
    [74] Heilmann S.M., Davis H. T., Sadowsky M. J. Hydrothermal carbonization of distiller’sgrains [J]. Biomass Bioenergy,2011,35:2526-2533
    [75] Lynam J. G., Reza, M. T., Vasquez V. R., et al. Effect of salt addition on hydrothermalcarbonization of lignocellulosic biomass [J]. Fuel,2012,99:271-273
    [76] Xiao L.P., Shi Z. J., Xu F., et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresour. Technol.,2012,118:619-623
    [77] Dinjus E., Kruse A., Tr ger N. Hydrothermal Carbonization–1. Influence of lignin inlignocelluloses [J]. Chem. Eng. Technol.,2011,34:2037-2043
    [78] Funke A., Ziegler F. Hydrothermal carbonization of biomass: A summary anddiscussion of chemical mechanisms for process engineering [J]. Biofuels, Bioprod.Bioref.,2010,4:160-177
    [79] Barta K., Matson T. D., Fetting M. L., et al. Catalytic disassembly of an organosolvlignin via hydrogen transfer from supercritical methanol [J]. Green Chem.2010,12:1640-1647
    [80] Fang Z., Sato T., Smith Jr. R. L., et al. Reaction chemistry and phase behavior of ligninin high-temperature and supercritical water [J]. Bioresour. Technol.,2008,99:3424-3430
    [81] Okuda K., Umetsu M., Takami S., et al. Disassembly of lignin and chemicalrecovery-rapid depolymerization of lignin without char formation in water–phenolmixtures [J]. Fuel Process. Technol.,2004,85:803-813
    [82] Xu M., Zhang S., Li T., et al. Catalytic liquefaction of hydrolytic lignin in supercriticalethanol solution (Ⅱ): Effect of reaction time, ratio of solvent/HL&atmosphere onreaction [J]. Acta energiae solaris sinica,2007,28:805-809
    [83] Xu M., Zhang S., Li T., et al. Catalytic liquefactiom of hydrolytic lignin in supercriticalethanol solution (Ⅰ):Effect of temperature, total alkali&sulfidity of catalyst onreaction [J]. Acta energiae solaris sinica,2007,28:334-339
    [84] Dinjus E., Kruse A., Tr ger N., Hydrothermal carbonization:1. Influence of lignin inlignocelluloses [J].Chem-Ing-Tech.,2011,83:1734-1741
    [85] Li C., Hirabayashi D., Suzuki K. Development of new nickel based catalyst forbiomass tar steam reforming producing H2-rich syngas [J]. Fuel Process. Technol.,2009,90:790-796
    [86] Li C., Hirabayashi D., Suzuki K. Steam reforming of biomass tar producing H2-richgases over Ni/MgO/CaO catalyst [J]. Bioresour. Technol.,2010,101: S97-S100
    [87] Liu Z., Zhang F. Removal of lead from water using biochars prepared fromhydrothermal liquefaction of biomass [J]. J. Hazard. Mater.,2009,167:933-939
    [88] Liu Z., Zhang F., Wu J. Characterization and application of chars produced frompinewood pyrolysis and hydrothermal treatment [J]. Fuel2010,89:510-514
    [89] Duku M. H., Gu S., Hagan E. B. Biochar production potential in Ghana-A review [J].Renew. Sust. Energy Rev.,2011,15:3539-3551
    [90] Karag z S., Bhaskar T., Muto A., et al. Comparative studies of oil compositionsproduced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J].Fuel,2005,84:875-884
    [91] Kumar S., Gupta R. B. Biocrude production from switchgrass using subcritical water[J]. Energy Fuels,2009,23:5151-5159
    [92] Cheng L., Ye X. P., He R., et al. Investigation of rapid conversion of switchgrass insubcritical water [J]. Fuel Process. Technol.,2009,90:301-311
    [93] Wu M., Zhang Z., Wang X., et al. Effect of lignin content on hydrothermal liquefcationof biomass into oil [C].2011International Conference on Materials for RenewableEnergy&Environment (ICMREE),2011:294-297
    [94] Yoshida T., Matsumura Y. Gasification of cellulose, xylan, and lignin mixtures insupercritical water [J]. Ind. Eng. Chem. Res.,2001,40:5469-5474
    [95] Matsumura Y. Evaluation of supercritical water gasification and biomethanation forwet biomass utilization in Japan [J]. Energy Convers. Manage.,2002,43:1301-1310
    [96] Wang H., Zhao Y., Wang C., et al. Theoretical study on the pyrolysis process of lignindimer model compounds [J]. Acta Chim. Sinica,2009,9:893-900
    [97] Resende F. L. P., Fraley S. A., Berger M. J., et al. Noncatalytic gasification of lignin insupercritical water [J]. Energy Fuels,2008,22:1328-1334
    [98] Osada M., Sato O., Watanabe M., et al. Water density effect on lignin gasification oversupported noble metal catalysts in supercritical water [J]. Energy Fuels,2006,20:930-935
    [99] Yamaguchi A., Hiyoshi N., Sato O., et al. EXAFS study on structural change ofcharcoal-supported ruthenium catalysts during lignin gasification in supercritical water[J]. Catal. Lett.,2008,122:188-195
    [100] Byrd A. J., Kumar S., Kong L., et al. Hydrogen production from catalytic gasificationof switchgrass biocrude in supercritical water [J]. Int. J. Hydrogen Energy,2011,36:3425-3433
    [101] Sato T., Osada M., Watanabe M., et al. Gasification of alkylphenols with supportednoble metal catalysts in supercritical water [J]. Ind. Eng. Chem. Res.,2003,42:4277-4282
    [102] Tarabanko V. E., Petukhov D. V., Selyutin G. E. New mechanism for the catalyticoxidation of lignin to vanillin [J]. Kinet. Catal.,2004,45:569-577
    [103] Xin J., Saka S. Improvement of the oxidation stability of biodiesel as prepared bysupercritical methanol method with lignin [J]. Eur. J. Lipid Sci. Technol.,2009,111:835-842
    [104] Dobele G., Dizhbite T., Urbanovich I., et al. Pyrolytic oil on the basis of wood and theantioxidant properties of its water soluble and-insoluble fraction [J]. J. Anal. Appl.Pyrolysis,2009,85:81-86
    [105] Bhat R., Khalil H. P. S. A., Karim A. A. Exploring the antioxidant potential of ligninisolated from black liquor of oil palm waste [J]. C.R. Biol.,2009,32:827-831
    [106] Ugartondo V., Mitjans M., Vinardell M. P. Comparative antioxidant and cytotoxiceffects of lignins from different sources [J]. Bioresour. Technol.,2008,99:6683-6687
    [107] Pouteau C., Dole P., Cathala B., et al. Antioxidant properties of lignin inpolypropylene [J]. Polymer Degradation and Stability,2003,81:9-18
    [108] Pan X., Kadla J. F., Ehara K., et al. Organosolv ethanol lignin from hybrid poplar as aradical scavenger: Relationship between lignin structure, extraction conditions, andantioxidant activity [J]. J. Agric. Food. Chem.,2006,54:5806-5813
    [109] Iacopini P., Baldi M., Storchi P., et al. Catechin, epicatechin, quercetin, rutin andresveratrol in red grape: content, in vitro antioxidant activity and interactions [J].Journal of Food Composition and Analysis,2008,21:589-598
    [110] Brand-Williams W., Cuvelier M. E., and Berset C. Use of a free radical method toevaluate antioxidant activity [J]. Lebensm.-Wiss. u.-Technol.1995,28:25-30
    [111] Castro E., Conde E., Cara C., et al. Antioxidant activity of liquors from steamexplosion of Olea europea wood [J]. Wood Sci. Technol.2008,42:579-592
    [112] Watanabe M., Inomata H., Osada M., et al. Catalytic effects of NaOH and ZrO2forpartial oxidative gasification of n-hexadecane and lignin in supercritical water [J].Fuel,2003,82:545-552
    [113] Osada M., Sato T., Watanabe, et al. Catalytic gasification of woodbiomass insubcritical and supercritical water [J]. Combust. Sci. Technol.,2006,178:537-552
    [114] Barclay L. R. C., Xi F., Norris J. Q. Antioxidant properties of phenolic lignin modelcompounds [J]. J. Wood Chem. Technol.,1997,17:73-90
    [115] Artajo L., Romero M., Morellóa J., et al. Enrichment of refined olive oil with phenoliccompounds: evaluation of their antioxidant activity and their effect on the bitterindex [J]. J. Agric. Food Chem.,2006,54:6079-6088
    [116] Yoshida T., and Matsumura Y. Gasification of cellulose, xylan, and lignin mixtures insupercritical water [J]. Ind. Eng. Chem. Res.2001,40:5469-5474
    [117] Yoshida T., Oshima Y., and Matsumura Y. Gasification of biomass model compoundsand real biomass in supercritical water [J]. Biomass Bioenerg.,2004,26:71-78
    [118] Izumizaki Y., Park K., Tachibana Y., et al. Organic decomposition in supercriticalwater by an aid of ruthenium(IV) oxides as a catalyst exploitation of biomassresources for hydrogen production [J]. Prog. Nucl. Energ.,2005,47:544-522
    [119] Xu C., Etcheverry T. Hydro-liquefaction of woody biomass in sub-and super-criticalethanol with iron-based catalysts [J]. Fuel,2008,87:335-345
    [120] Amen-Chen C., Pakdel H., Roy C. Seperation of phenolics from eucalyptus wood tar[J]. Biomass Bioenerg.,1997,13:25-37
    [121] Xu J., Jiang J., Lv L. et al. Rice husk bio-oil upgrading by means of phase separationand the production of esters from the water phase, and novolac resins from theinsoluble phase [J]. Biomass Bioenerg.2010,34:1059-1063
    [122] Kang, S.; Li, B.; Chang, J.; Fan, J. Antioxidant abilities comparison of lignins withtheir hydrothermal liquefaction products [J]. Bioresources.2011,6:243-252
    [123] Oledzka E., Narine S. S. Organic acids catalyzed polymerization of e-caprolactone:synthesis and characterization [J]. J. App. Polym. Sci.,2011,119:1873-1882
    [124] Pastore T., Cabrini M., Coppola L. et al. Evaluation of the corrosion inhibition of saltsof organic acids in alkaline solutions and chloride contaminated concrete [J]. Mater.Corros.,2011,62:187-195
    [125] Kim H. S., Kam D. W., Kim W. S. et al. Synthesis of the LiFePO4by a solid-statereaction using organic acids as a reducing agent [J]. Ionics,2011,17:293-297
    [126] Taner F., Eratik A., Ardic I. Identification of the compounds in the aqueous phasesfrom liquefaction of lignocellulosics [J]. Fuel Process.Technol.,2004,86:407-418
    [127] Kabyemela B. M., Adschiri T., Malaluan R. M. et al. Glucose and fructosedecomposition in subcritical and supercritical water: detailed reaction pathway,mechanisms, and kinetics [J]. Ind. Eng. Chem. Res.,1999,38:2888-2895
    [128] Yoshida K., Kusaki J., Ehara K. et al. Characterization of low molecular weightorganic acids from beech wood treated in supercritical water [J]. Appl. Biochem.Biotechnol.,2005,121-124:795-805
    [129] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J].Energ. Convers. Manage.,2000,41:633-646
    [130] Wahyudiono, Kanetake T., Sasaki M. et al. Decomposition of a lignin modelcompound under hydrothermal conditions [J]. Chem. Eng. Technol.,2007,30:1113-1122
    [131] Chandler K., Deng F., Dillow A. K. et al. Alkylation reactions in near-critical water inthe absence of acid catalysts [J]. Ind. Eng. Chem. Res.1997,36:5175-5179
    [132] Ro K. S., Cantrell K. B., Hunt P. G. High-temperature pyrolysis of blended animalmanures for producing renewable energy and value-added biochar [J]. Ind. Eng.Chem. Res.,2010,49:10125-10131
    [133] Kang S., Li X., Fan J., et al. Solid fuel production by hydrothermal carbonization ofblack liquor [J]. Bioresour. Technol.,2012,110:715-718
    [134] Lehmann J. A handful of carbon [J]. Nature,2007,447:143-144
    [135] Vaccari F. P., Baronti S., Lugato E. et al. Biochar as a strategy to sequester carbonand increase yield in durum wheat [J]. Europ. J. Agronomy,2011,34:231-241
    [136] Mumme J., Eckervogt L., Pielert J. et al. Hydrothermal carbonization ofanaerobically digested maize silage [J]. Bioresour. Technol.,2011,102:9255-9260
    [137] Dumroese R. K., Heiskanen J., Englund K. et al. Pelleted biochar: Chemical andphysical properties show potential use as a substrate in container nurseries [J].Biomass Bioenergy,2011,35:2018-2027
    [138] Wang L., Wang X., Zou B. et al.Preparation of carbon black from rice husk byhydrolysis, carbonization and pyrolysis [J]. Bioresour. Technol.,2011,102:8220-8224
    [139] Galinato S. P., Yoder J. K., Granatstein D. The economic value of biochar in cropproduction and carbon sequestration [J]. Energy Policy,2011,39:6344-6350
    [140] Sevilla M., Maciá-AgullóJ. A., Fuertes A. B. Hydrothermal carbonization of biomassas a route for the sequestration of CO2: Chemical and structural properties of thecarbonized products [J]. Biomass Bioenergy,2011,35:3152-3159
    [141] Lynam J. G., Coronella C. J., Yan W. et al. Acetic acid and lithium chloride effects onhydrothermal carbonization of lignocellulosic biomass [J]. Bioresour. Technol.,2011,102:6192-6199
    [142] Abdullah H., Wu H. Biochar as a fuel:1. Properties and grindability of biocharsproduced from the pyrolysis of mallee wood under slow-heating conditions [J].Energy Fuels,2009,23:4174-4181
    [143] Kumar S., Loganathan V. A., Gupta R. B. et al. An Assessment of U (VI) removalfrom groundwater using biochar produced from hydrothermal carbonization [J]. J.Environ. Manage.,2011,92:2504-2512
    [144] Sun K., Ro K., Guo M. et al. Sorption of bisphenol A,17-ethinyl estradiol andphenanthrene on thermally and hydrothermally produced biochars [J]. Bioresour.Technol.,2011,102:5757-5763
    [145] Liu Z., Zhang F. Removal of copper (II) and phenol from aqueous solution usingporous carbons derived from hydrothermal chars [J]. Desalination2011,267:101-106
    [146] Sevilla M., Fuertes A. B., Mokaya R. High density hydrogen storage in superactivatedcarbons from hydrothermally carbonized renewable organic materials [J]. EnergyEnviron. Sci.,2011,4:1400-1410
    [147] Wang L., Guo Y., Zou B. et al. High surface area porous carbons prepared fromhydrochars by phosphoric acid activation [J]. Bioresour. Technol.,2011,102:1947-1950
    [148] Sevilla M., Fuertes A. B. The production of carbon materials by hydrothermalcarbonization of cellulose [J]. Carbon2009,47:2281-2289
    [149] Chen Z., Ma L., Li S. et al. Simple approach to carboxyl-rich materials throughlow-temperature heat treatment of hydrothermal carbon in air [J]. Appl. Surf. Sci.,2011,257:8686
    [150] Fuertes A. B., Arbestain M. C., Sevilla M., et al.Chemical and structural properties ofcarbonaceous products obtained by pyrolysis and hydrothermal carbonisation of cornstover [J]. Aust. J. Soil Res.,2010,48:618-626
    [151] Channiwala S. A., Parikh P. P. A unified correlation for estimating HHV of solid,liquid and gaseous fuels [J]. Fuel,2002,81:1051-1063
    [152] Karagōz S., Bhaskar T., Muto A., et al. Comparative studies of oil compositionsproduced from sawdust,rice husk, lignin and cellulose by hydrothermal treatment [J].Fuel,2005,84:875-884
    [153] Qu T., Guo W., Shen L., et al. Experimental study of biomass pyrolysis based on threemajor components: hemicellulose, cellulose, and lignin [J]. Ind. Eng. Chem. Res.,2011,50:10424-10433
    [154] Berge N. D., Ro K. S., Mao J., et al. Hydrothermal carbonization of municipal wastestreams [J]. Environ. Sci. Technol.,2011,45:5696-5703
    [155] Wu X., Zhu W., Zhang X. et al. Catalytic deposition of nanocarbon onto palygorskiteand its adsorption of phenol [J]. Appl. Clay Sci.,2011,52:400-406
    [156] Xie Z., White R. J., Weber J., et al. Hierarchical porous carbonaceous materials viaionothermal carbonization of carbohydrates [J]. J. Mater. Chem.,2011,21:7434-7442
    [157] Promde C., Matsumura Y. Temperature effect on hydrothermal decomposition ofglucose in sub-and supercritical water [J]. Ind. Eng. Chem. Res.,2011,50:8492-8497
    [158] Hashaikeh R., Fang Z., Butler I. S., et al. Hydrothermal dissolution of willow in hotcompressed water as a model for biomass conversion [J]. Fuel,2007,86:1614-1622
    [159] Lou R., Wu S. Products properties from fast pyrolysis of enzymatic/mild acidolysislignin [J]. Appl. Energy,2011,88:316-322
    [160] Yu Y., Wu H. Characteristics and precipitation of glucose oligomers in the fresh liquidproducts obtained from the hydrolysis of cellulose in hot-compressed water [J]. Ind.Eng. Chem. Res.,2009,48:10682-10690
    [161] Hu B., Wang K., Wu L., et al. Engineering carbon materials from the hydrothermalcarbonization process of biomass [J]. Adv. Mater.,2010,22:813-828
    [162] Li M., Li W., Liu X. Hydrothermal synthesis, characterization, and KOH activation ofcarbon spheres from glucose [J]. Carbohydr. Res.,2011,346:999-1004
    [163] Hashaikeh R., Fang Z., Butler I. S., et al. Hydrothermal dissolution of willow in hotcompressed water as a model for biomass conversion [J]. Fuel,2007,86:1614-1622
    [164] Wessel R. A, Baxter L. L. Comprehensive model of alkali-salt deposition in recoveryboilers [J]. Tappi J.,2003,2:19-24
    [165] Naqvi M., Yan J., Frǒling M. Bio-refinery system of DME or CH4production fromblack liquor gasification in pulp mills [J]. Bioresour. Technol.,2010,101:937-944
    [166] Sánchez J. S., Gonzalo A., Gea G., et al. Straw black liquor steam reforming in afluidized bed reactor. Effect of temperature and bed substitution at pilot scale [J].Energy Fuels,2005,19:2140-2147
    [167] Whitty K., Backman R., Hupa M. Influence of pressure on pyrolysis of black liquor:1.Swelling [J]. Bioresour. Technol.,2008,99:663-670
    [168] Whitty K., Kullberg M., Sorvari V.,et al. Influence of pressure on pyrolysis of blackliquor:2. Char yields and component release [J]. Bioresour. Technol.2008,99:671-679
    [169] Jin Y., Cheng X., Zheng Z. Preparation and characterization of phenol-formaldehydeadhesives modified with enzymatic hydrolysis lignin [J]. Bioresour. Technol.,2010,101:2046-2048
    [170] Hoekman S. K., Broch A., Robbins C. Hydrothermal carbonization (HTC) oflignocellulosic biomass [J]. Energy Fuels,2011,25:1802-1810
    [171] Li W., Guo S. Supercritical desulfurization of high rank coal with alcohol/water andalcohol/KOH [J]. Fuel Process. Technol.,1996,46:143-155
    [172] Yang W., Fan J., Li A., et al. The adsorption of the water-soluble dye X-BR onto threetypes of resin: behaviour and mechanism [J]. Adsorption Science&Technology,2006,24:611-622.
    [173] Wang H., Shen Y., Shen C., Wen Y., Li H. Enhanced adsorption of dye on magneticFe3O4via HCl-assisted sonication pretreatment [J]. Desalination,2012,284:122-127
    [174] Hua M., Zhang S., Pan B., et al. Heavy metal removal from water/wastewater bynanosized metal oxides: A review [J]. Journal of Hazardous Materials,2012,211-212:317-331
    [175] Demirbas A. Heavy metal adsorption onto agro-based waste materials: A review [J].Journal of Hazardous Materials,2008,157:220-229
    [176] Salleh M. A. M. S., Mahmoud D. K., Karim W. A. W., Idris A. Cationic and anionicdye adsorption by agricultural solid wastes: A comprehensive review [J].Desalination2011,280:1-13
    [177] Liu Z., Zhou A., Wang, G., et al. Adsorption behavior of methyl orange onto modifiedultrafine coal powder [J]. Chinese Journal of Chemical Engineering,2009,17:942-948
    [178] Stafej A., Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes [J].Separation and Purifcation Technology,2007,58:49-52
    [179] Xu Y., Arrigo R., Liu X., Su D. Characterization and use of functionalized carbonnanotubes for the adsorption of heavy metal anions [J]. New Carbon Materials,2011,26:57-62
    [180] Choi M., Jang J. Heavy metal ion adsorption onto polypyrrole-impregnated porouscarbon [J]. Journal of Colloid and Interface Science,2008,325:287-289
    [181] Wan Ngah W. S., Hanafah M. A. K. M. Removal of heavy metal ions fromwastewater by chemically modifed plant wastes as adsorbents: A review [J].Bioresource Technology,2008,99:3935-3948
    [182] Demirbas M. K., Senturk E., Ince M. Adsorption of heavy metal ions from aqueoussolutions by activated carbon prepared from apricot stone [J]. BioresourceTechnology,96:1518-1521
    [183] Toda M., Takagaki A., Okamura M., et al. Biodiesel made with sugar catalyst [J].Nature,2005,480:178
    [184] Chen G., Fang B. Preparation of solid acid catalyst from glucose–starch mixture forbiodiesel production [J]. Bioresour. Technol.,2011,102:2635-2640
    [185] Hara M. Biomass conversion by a solid acid catalyst [J]. Energy Environ. Sci.2010,3:601-607
    [186] Suganuma S., Nakajima K., Kitano M., et al. Hydrolysis of cellulose by amorphouscarbon bearing SO3H, COOH, and OH groups [J]. J. Am. Chem. Soc.,2008,130:12787-12793
    [187] Guo H., Qi X., Li L., et al. Hydrolysis of cellulose over functionalizedglucose-derived carbon catalyst in ionic liquid [J]. Bioresour. Technol.,2012,116:355-359
    [188] Zhao W., Yang B., Yi C., et al. Etherifcation of glycerol with isobutylene to produceoxygenate additive using sulfonated peanut shell catalyst [J]. Ind. Eng. Chem. Res.2010,49:12399-12404
    [189] Nakajima K., Hara M. Amorphous carbon with SO3H groups as a solid Br nstedCatalyst [J]. ACS Catal.,2012,2:1296-1304
    [190] Dora S., Bhaskar T., Singh R., et al. Effective catalytic conversion of cellulose intohigh yields of methyl glucosides over sulfonated carbon based catalyst [J]. Bioresour.Technol.,2012,120:318-321
    [191] Guo F., Fang Z., Zhou T. J. Conversion of fructose and glucose into5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst undermicrowave irradiation in dimethyl sulfoxide–ionic liquid mixtures [J]. Bioresour.Technol.,2012.112:313-318
    [192] Fraile J. M., García-BordejéE., Roldán L. Deactivation of sulfonated hydrothermalcarbons in the presence of alcohols: Evidences for sulfonic esters formation [J]. J.Catal.,2012,289:73-79
    [193] Barclay T., Ginic-Markovic M., Johnston M. R. Analysis of the hydrolysis of inulinusing real time1H NMR spectroscopy [J]. Carbohydrate Research,2012,352:117-125
    [194] Bicker M., Hirth J., Vogel H. Dehydration of fructose to5-hydroxymethylfurfural insub-and supercritical acetone [J]. Green Chemistry,2003,5:280-284
    [195] Wang J., Xu W., Ren J., et al. Effcient catalytic conversion of fructose intohydroxymethylfurfural by a novel carbon-based solid acid [J]. Green Chemistry,2011,13:2678-2681
    [196] Hu S., Zhang Z., Song J., et al. Effcient conversion of glucose into5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4in an ionic liquid[J]. Green Chemistry,11:1746-1749
    [197] Santa G. L. M., Bernardino S. M. S. A., Magalh es S., et al. From inulin to fructosesyrups using Sol–Gel immobilized inulinase [J]. Appl. Biochem. Biotechnol.,2011,165:1-12
    [198] Ricca E., Calabro V., Curcio S., et al. Fructose production by chicory inulin enzymatichydrolysis: A kinetic study and reaction mechanism [J]. Process Biochemistry,2009,44:466-470
    [199] Liu F., Barrault J., Viger K. D. O., et al. Dehydration of highly concentrated solutionsof fructose to5-hydroxymethylfurfural in a cheap and sustainable cholinechloride/carbon dioxide system [J]. ChemSusChem,2012,5:1223-1226
    [200] Imai T., Yokoyama T., Matsumoto Y. Revisiting the mechanism of β-O-4bondcleavage during acidolysis of lignin [J]. J. Wood Sci.,2011,57:219-225
    [201] Imai T., Yokoyama T., Matsumoto Y. Acid degradation of lignin. Part VII. Thecleavage of ether bonds [J]. J. Wood Chem. Technol.,2012,32:165–174
    [202] Yokoyama T., Matsumoto Y. Revisiting the mechanism of β-O-4bond cleavageduring acidolysis of lignin: Part5: On the characteristics of acidolysis usinghydrobromic acid [J]. J. Wood Chem. Technol.,2012,32:165-174
    [203] Schultz T. P., Fisher T. H. Alkaline hydrolysis of nonphenolic β-0-4lignin models:substituent effect of the A-Ring on the rate [J]. Holzforschung,2002,56:592-594
    [204] Sarkanen K. V., Hoo L. H. Kinetics of hydrolysis of erythro-guaiacylglycerol β-(2-methoxyphenyl) ether and its veratryl analogue using HC1and aluminum chlorideas catalysts [J]. Journal of Wood Chemistry and Technology,1981,1:11-27
    [205] Obst J. R. Kinetics of alkaline cleavage of-Aryl ether bonds in lignin models:significance to delignification [J]. Holzforschung,1983,37:23-28
    [206] Yee K. F., Lee K. T., Ceccato R., et al. Production of biodiesel from Jatropha curcas L.oil catalyzed by SO42-/ZrO2catalyst: Effect of interaction between process variables[J]. Bioresour. Technol.2011,102:4285-4289
    [207] Qi X., Watanabe M., Aida T. M., et al. Efficient one-pot production of5-hydroxymethylfurfural from inulin in ionic liquids [J]. Green Chem.2010,12:1855-1860
    [208] Hu S., Zhang Z., Zhou Y., et al. Direct conversion of inulin to5-hydroxymethylfurfural in biorenewable ionic liquids [J]. Green Chem.2009,11:873-877
    [209] Xie H., Zhao Z. K., Wang Q. Catalytic conversion of inulin and fructose into5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids [J]. ChemSusChem,2012,5:901-905
    [210] Zakrzewska M. E., Bogel-ukasik E., Bogel-ukasik R. Ionic liquid-mediatedformation of5-hydroxymethylfurfurals--A promising biomass-derived building block[J]. Chem. Rev.2011,111:397-417
    [211] Gong Y., Liu M., Jia S., et al. Production of5-hydroxymethylfurfural from inulincatalyzed by sulfonated amorphous carbon in an ionic liquid [J]. Acta Phys.-Chim.Sin.,2012,28:686-692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700