用户名: 密码: 验证码:
干旱区滴灌均匀系数对土壤水氮及盐分分布和棉花生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴灌均匀系数是系统设计和运行管理的重要技术参数。采用高的均匀系数虽有利于获得均匀的水氮分布,但会增加系统投资和运行费用;较低的均匀系数可能会对作物产量和品质带来负面影响,还会增大水氮淋失的风险。现行滴灌均匀性设计与评价标准由于缺乏关于作物对滴灌均匀系数响应特征和土壤水氮分布及淋失与滴灌均匀系数关系的研究而显得科学依据不足。部分学者针对半湿润地区和半干旱地区的代表性滴灌作物开展了相关试验研究,结果表明滴灌均匀系数对土壤水氮分布和作物生长的影响均不显著。但是,不同气候区降水量的差异可能会导致对灌水不均匀的弥补程度不同,不同作物对水分和养分的敏感程度也不同,因此,以上试验结果还需要在不同气候区针对典型作物的田间试验加以验证。另外,在干旱地区,降雨稀少,蒸发量大,灌溉对农业生产至关重要。当用滴灌替代传统的地面灌溉时,由于灌溉定额大幅降低,随之带来的土壤盐化风险越来越为人们所关注,滴灌均匀系数对土壤盐分分布及动态的影响是一个需要进一步研究的问题。
     本文以西北干旱内陆区棉花(Gossypium hirsutum L.)为对象,于2010年和2011年开展了膜下滴灌试验,建立了土壤水氮及盐分分布与滴灌均匀系数的定量关系,研究了作物生长特性、干物质积累、氮素吸收、产量及品质对滴灌均匀系数和灌水量的响应。试验中滴灌均匀系数(Gu)采用不同流量灌水器沿毛管随机组合形成,设置0.65(低)、0.78(中)和0.94(高)3个水平,灌水量设置充分灌水量的50%、75%和100%3个水平。另外,基于HYDRUS-2D软件建立了棉花膜下滴灌水氮运移模型,利用棉花膜下滴灌试验数据对模型进行了参数率定和验证,利用验证后的数学模型研究了干旱区不同滴灌均匀系数时土壤水氮分布特征。主要结论如下:
     (1)干旱区作物生育期降水量明显小于半湿润地区,降水难以充分弥补灌水不均匀对土壤水分分布造成的负面影响,滴灌均匀系数对作物生育期内根区0-60cm土层含水率均匀系数的影响明显强于半湿润地区,但当滴灌均匀系数在0.65-0.94范围内变化时,棉花生育期内根区0-60cm土层含水率均匀系数仍保持在较高水平(0.80~0.97)。
     (2)对棉花生育期内根区土壤含水率和电导率的连续监测结果表明,滴灌均匀系数对根区底部60cm深度的含水率和电导率有明显影响,高滴灌均匀系数处理的土壤含水率和电导率均匀系数变化较平稳,而低滴灌均匀系数处理的呈明显波动变化。土壤电导率均匀系数明显低于含水率均匀系数,主要受含水率均匀系数和初始电导率均匀系数的影响。
     (3)土壤N03--N含量均匀系数随时间和空间表现出较强的变化特征,在生育期内的变化范围为-0.27-0.92,且低于土壤含水率均匀系数,滴灌均匀系数和灌水量及其交互作用对N03--N含量均匀系数的影响不显著。灌水量的增加显著降低了灌溉季节末期土壤盐分含量,但滴灌均匀系数对土壤盐分含量的影响未达到显著水平(α=0.1)。
     (4)滴灌均匀系数的降低显著降低了棉花株高、叶面积指数、吸氮量和皮棉产量的均匀性。滴灌均匀系数对皮棉产量均值的影响不仅与灌溉水量的亏缺程度有关,还受获得潜在产量的天气条件适宜程度的影响。当天气条件(例如温度)对作物生长不构成限制时,低滴灌均匀系数处理的皮棉产量显著低于中、高滴灌均匀系数处理。
     (5)将灌水器流量沿毛管的变化离散为依次逐段减小,并假设土壤水分在各段之间不存在交换,模拟分析了干旱区不同滴灌均匀系数时土壤水氮分布特征,结果指出,不考虑土壤空间变异条件下土壤含水率均匀系数和N03--N浓度均匀系数的模拟值均高于田间试验实测值,这一结果表明田间试验存在的土壤空间变异在一定程度上增加了土壤水氮的不均匀性。
     (6)干旱区滴灌均匀系数标准的确定应综合考虑安装和运行成本、作物产值及品质以及土壤盐化风险,现行滴灌均匀系数标准(Cu=0.80)适用于干旱地区。
Uniformity is an important parameter in the design and operation of microirrigation systems. A higher level of uniformity leads to a more uniform distribution of water and nutrients in the soil; however, the initial installation costs of systems with greater uniformity values are relatively high. Several design and evaluation standards for drip system uniformity have been developed in different countries. However, the redistribution of water and nutrients nonuniformly applied through microirrigation system in the soil and their effects on crop growth and yield have not been adequately and quantitatively considered in establishing the current standards of microirrigation uniformity. Recent experimental researches in semi-humid and semi-arid regions indicated that the system uniformity had no significant influence on the distributions of soil water content and nutrients as well as crop growth and yield. However, the results are not necessarily applied to the arid regions where there is considerably less precipitation than in semi-humid and semi-arid regions. Moreover, in arid regions, irrigation is of vital importance for agricultural production. The salinization is increasingly concerned because the irrigation amount was reduced greatly when irrigation method was shifted from border to drip and the region is experiencing a dry climate, small amounts of precipitation and shallow groundwater table. Further research on the dynamics of salts under a wide range of drip system uniformities would be beneficial for reducing the risk of salinity.
     The effects of drip system uniformity and irrigation amount on the distributions of water and nitrate and salt in soil and cotton growth were evaluated in arid environments of Xinjiang Uygur Autonomous Region, China, during the growing seasons of cotton in2010and2011to amend the current design and evaluation standards of drip system uniformity. Three Christiansen uniformity coefficients (Cu) of0.65,0.78, and0.94and three irrigation levels of50%,75%, and100%of full irrigation were used. The lower Cu values of0.65and0.78were obtained by assembling the segments of drip tubes with six different nominal discharges randomly along the entire lateral. Moreover, a model simulating the transport of water and nitrate in soil was established and solved numerically by using the HYDRUS-2D package. The model was calibrated and validated by the field experiments conducted in Urumqi, Xinjiang Uygur Autonomous Region, China, during the cotton growing seasons of2010and2011and was applied to simulate the distributions of water and nitrogen in soil as affected by drip system uniformity under arid conditions. The main conclusions of this study are as follows:
     (1) As the considerably less precipitation in arid regions cannot compensate for the negative effects of nonuniformly applied water on the distributions of water in soil, the influence of drip system uniformity on the seasonal mean uniformity coefficient of soil water content within0-60cm depth in this region was greater than in semi-humid regions. However, a high seasonal mean uniformity coefficient of soil water content (0.80-0.97) within0-60cm depth was observed during both seasons when drip system uniformity varied from0.65to0.94.
     (2) The soil water content and bulk electrical conductivity (ECb) was monitored continuously during the growing seasons of cotton. The results indicated that drip system uniformity had a substantial influence on the distribution of the soil water content and ECb at60cm depth. A great fluctuation in Christiansen uniformity coefficient (Cu) of soil water content and ECb at60cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb Cu was substantially lower than the water content Cu and its value was greatly related to the water content Cu and the initial ECb Cu.
     (3) A highly temporal and spatial varied distribution of nitrate in soil was observed. The uniformity coefficient of soil nitrate, which ranged from-0.27to0.92, was substantially lower than that of soil water content. Insignificant influences of drip system uniformity and irrigation amount and their interaction on the uniformity coefficient of soil nitrate were observed. A greater irrigation amount produced a significantly lower electrical conductivity of saturated-soil extract (ECe) at the end of the irrigation season, while the influence of the system uniformity on the ECe was insignificant at a significance level of0.1.
     (4) A lower system uniformity significantly reduced the Cu of plant height, leaf area index, nitrogen uptake, and lint yield. The influence of system uniformity on lint yield was related to the level of irrigation and the favorability of weather conditions for obtaining the potential yield. When weather conditions (e.g., temperature) were favorable for crop growth, the low system uniformity treatment produced a significantly lower lint yield than the medium and high uniformity treatments.
     (5) The emitter discharge rates that were progressively decreasing from the inlet to the distal end along the dripline were discretized as a series of sequential segments each having an equal discharge rate. Assuming no lateral exchange of water in soil between adjacent segments, we used the model to evaluate the effect of drip system uniformity and soil spatial variability on the distributions of water and nitrate in soil under arid conditions. The results indicated that the simulated uniformity coefficient of soil water content and nitrate were greater than the observed data. The soil spatial variability in the experimental field increased the nonuniform distributions of the soil water and nitrate.
     (6) In arid regions, the determination of the target drip system uniformity should balance the installation and operation costs, crop production, product quality, and potential salinity risk of soil. A Cu value of around0.80could be used as the target uniformity of drip irrigation systems.
引文
[1]Ajdary K, Singh D K, Singh A K, et al. Modelling of nitrogen leaching from experimental onion field under drip fertigation[J]. Agricultural Water Management,2007,89(1-2):15-28.
    [2]Allaire-Leung S E, Wu L, Mitchell J P, et al. Nitrate leaching and soil nitrate content as affected by irrigation nonuniformity in a carrot field[J]. Agricultural Water Management,2001,48:37-50.
    [3]Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements[M]. FAO Irrigation and Drainage Paper No.56, United Nations-FAO. Rome, Italy,1998.
    [4]Arbat G P, Lamm F R, Kheira A A A. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity [J]. Applied Engineering in Agriculture,2010,26(3): 391-399.
    [5]ASAE Standards EP405.1. Design and installation of microirrigation systems[S]. St. Joseph, Mich.: ASAE,2003.
    [6]ASAE Standards EP458. Field evaluation of microirrigation systems[S]. St. Joseph, Mich.:ASAE, 1988.
    [7]Ayars J E, Hutmacher R B, Vail S S, et al. Cotton responses to nonuniform and varying depths of irrigation[J]. Agricultural Water Management,1991,19:151-166.
    [8]Bajwa S G, Vories E D. Spatial analysis of cotton (Gossypium hirsutum L.) canopy responses to irrigation in a moderately humid area[J]. Irrigation Science,2007,25:429-441.
    [9]Bear J. Dynamics of Fluids in Porous Media[M]. Elsevier Publications, New York,1972.
    [10]Ben-Asher J, Charach C, Zemel A. Infiltration and water extraction from trickle irrigation source:the effective hemisphere model[J]. Soil Science Society of America Proceedings,1986,50(4):882-887.
    [11]Ben-Asher J, Lomen D O, Warrick A W. Linear and nonlinear models of infiltration from a point source[J]. Soil Science Society of America Proceedings,1978,42:3-6.
    [12]Bordovsky J P, Porter D O. Effect of subsurface drip irrigation system uniformity on cotton production in the Texas high plains[J]. Applied Engineering in Agriculture,2008,24(4):465-472.
    [13]Bracy R P, Parish R L, Rosendale R M. Fertigation uniformity affected by injector type[J]. Horttechnology,2003,13:103-105.
    [14]Bralts V F, Edwards D M. Field evaluation of drip irrigation submain units[J]. Transactions of the ASAE,1986,29(6):1659-1664.
    [15]Bralts V F, Segerlind L J. Finite element analysis of drip irrigation subunits[J]. Transactions of the ASAE,1985,28(3):809-814.
    [16]Bralts V F, Wu I P, Gitlin H M. Manufacturing variation and drip irrigation uniformity[J] Transactions of the ASAE,1981a,24(1):113-119.
    [17]Bralts V F, Wu I P, Gitlin H M. Drip irrigation uniformity considering emitter plugging[J], Transactions of the ASAE,1981b,24(5):1234-1240.
    [18]Brandt A, Bresler E, Diner N, et al. Infiltration from a trickle source:I. mathematical models[J]. Soil Science Society of America Proceedings,1971,35(5):675-682.
    [19]Bresler E. Two-dimensional transport of solutes during nonsteady infiltration from a trickle source[J], Soil Science Society of America Proceedings,1975,39(4):604-613.
    [20]Bristow K, Cote C M, Thorburn P J, et al. Soil wetting and solute transport in trickle irrigation systems[C].6th International Micro-irrigation Technology for Developing Agriculture Conference, Cape Town, South Africa,2000.
    [21]Bufon V B, Lascano R J, Bednarz C, et al. Soil water content on drip irrigated cotton:comparison of measured and simulated values obtained with the Hydrus-2D model[J]. Irrigation Science,2012,30: 259-273.
    [22]Burt C M, Isbell B. Leaching of accumulated soil salinity under drip irrigation[J]. Transactions of the ASAE,2005,48:2115-2121.
    [23]Chen M, Kang Y, Wan S, et al. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)[J]. Agricultural Water Management,2009,96(12):1766-1772.
    [24]Chen W, Hou Z, Wu L, et al. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China[J]. Agricultural Water Management,2010,97:2001-2008.
    [25]Christiansen J E. The uniformity of application of water by sprinkler systems[J]. Agric. Eng.,1941. 22:89-92.
    [26]Christiansen J E. Hydraulics of sprinkling systems for irrigation[J]. Transactions of the ASCE,1942. 107:221-239.
    [27]Clothier B E, Green S R. Roots:the big movers of water and chemical in soil[J]. Soil Science,1997. 162(8):534-543.
    [28]Clothier B E, Sauer T J. Nitrogen transport during drip fertigation with urea[J]. Soil Science Society of America Journal,1988,52:345-349.
    [29]Clothier B E, Sauer T J, Green S R. The movement of ammonium nitrate into unsaturated soil during unsteady absorption[J]. Soil Science Society of America Journal,1988,52(2):340-345.
    [30]Coelho F E, Or D. A parametric model for two-dimensional water uptake intensity by corn roots under drip irrigation[J]. Soil Science Society of America Journal,1996,60(4):1039-1049.
    [31]Cote C M, Bristow K L, Charlesworth P B, et al. Analysis of soil wetting and solute transport in subsurface trickle irrigation[J]. Irrigation Science,2003,22:143-156.
    [32]Dagdelen N, Basal H, Yilmaz E, et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey[J], Agricultural Water Management,2009,96: 111-120.
    [33]David W D, Raymond P C, Peter G M. Development of bayesian monte carlo techniques for water quality model uncertainty [J]. Ecological Modeling,1992,62(3):149-162.
    [34]Elmaloglou S, Diamantopoulos E. Simulation of soil water dynamics under subsurface drip irrigation from line sources[J]. Agricultural Water Management,2009,96(11):1587-1595.
    [35]Erdem Y, Arin L, Erdem T, et al. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)[J]. Agricultural Water Management,2010,98(1): 148-156.
    [36]Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[A]. Simulation monographs:Pudoc, Wageningen, The Netherlands,1978.
    [37]Gardenas A I, Hopmans J W, Hanson B R, et al. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation[J]. Agricultural Water Management,2005,74 (3): 219-242.
    [38]Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science,1958,85(4):228-232.
    [39]Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index. II. Sampling procedure and interpretation[J]. Journal of Production Agriculture,1992,5:466-475.
    [40]Ghali G S. Multi-dimensional analysis of soil moisture dynamics in trickle irrigated fields. Ⅱ:model testing[J]. Water Resources Management,1989,3 (1):35-47.
    [41]Gillespie V A, Phillips A L, Wu I P. Drip irrigation design equations[J]. Journal of the Irrigation and Drainage Division,1979,105(3):247-257.
    [42]Goldberg D, Gornat B, Rimon D. Drip Irrigation-Principles, Design and Agricultural Practices[M]. Drip Irrigation Scientific Publications, Israel,1976.
    [43]Gonzalez-Dugo M P, Moran M S, Mateos L, et al. Canopy temperature variability as an indicator of crop water stress severity[J]. Irrigation Science,2006,24(4):233-240.
    [44]Gurol Y. Determining operating inlet pressure head incorporating uniformity parameters for multioutlet plastic pipelines[J]. Journal of Irrigation and Drainage Engineering, ASCE,2008,134(3): 341-348.
    [45]Hanson B R, Simunek J, Hopmans J W. Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling[J]. Agricultural Water Management,2006,86(1-2):102-113.
    [46]Hathoot H M, Al-Amoud A I, Mohammad F S. Analysis and design of trickle irrigation laterals[J]. Journal of Irrigation and Drainage Engineering, ASCE,1993,119(5):756-767.
    [47]Healy R W, Warrick A W. A generalized solution to infiltration from a surface point source[J]. Soil Science Society of America Journal,1988,52(5):1245-1251.
    [48]Hou Z, Chen W, Li X, et al. Effects of salinity and fertigation practice on cotton yield and 15N recovery[J]. Agricultural Water Management,2009,96:1483-1489.
    [49]Howell T A, Hatfield J L, Yamada H. Evaluation of cotton canopy temperature to detect crop water stress[J]. Transactions of the ASAE,1984,27:84-88.
    [50]Howell T A, Hiler E A. Trickle irrigation lateral design[J]. Transactions of the ASAE,1974a,17(5): 902-908.
    [51]Howell T A, Hiler E A. Design trickle irrigation laterals for uniformity[J]. Journal of the Irrigation and Drainage Division,1974b,100(4):443-454.
    [52]Idso S B, Jackson R D, Pinter Jr P J, et al. Normalizing the stress-degree-day parameter for environmental variability[J]. Agricultural Meteorology,1981,24:45-55.
    [53]Jackson R D, Kustas W P, Choudhury B J. A reexamination of the crop water stress index[J]. Irrigation Science,1988,9:309-317.
    [54]Jensen M C, Fratini A M. Adjusted 'F' factors for sprinkler lateral design[J]. Agricultural Engeering, 1957,38(4):247.
    [55]Kale R V, Singh R P, Mahar P S. Optimal design of pressurized irrigation subunit[J]. Journal of Irrigation and Drainage Engineering, ASCE,2008,134(2):137-146.
    [56]Kang Y, Chen M, Wan S. Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain[J]. Agricultural Water Management,2010,97:1303-1309.
    [57]Kang Y, Nishiyama S. Hydraulic analysis of microirrigation submain units[J]. Transactions of the ASAE,1995,38(5):1377-1384.
    [58]Keller J, Karmeli D. Trickle irrigation design parameters[J]. Transactions of the ASAE,1974,17(4): 678-684.
    [59]Keller J, Bliesner R D. Sprinkle and trickle irrigation[J]. Van Nostrand Reinhold, New York, USA, 1990.
    [60]Kutilek M, Nielsen D R. Soil Hydrology[M]. Margot Rohdenburg, Catena Verlag GmbH, Reiskirchen, Germany,1994.
    [61]Lamm F R, Ayars J E, Nakayama F S. Microirrigation for Crop Production:Design, Operation, and Management[M]. Elsevier Publications, Amsterdam,2007.
    [62]Letey J, Vaux Jr H J, Feinerman E. Optimum crop water application as affected by uniformity of water infiltration[J]. Agronomy Journal,1984,76:435-441.
    [63]Li J, Kawano H. Estimation of spatial soil water distribution and deep percolation under sprinkler irrigation[J]. Journal of Japan Society of Hydrology and water Resources,1995,8(1):49-56.
    [64]Li J, Kawano H. The area distribution of soil moisture under sprinkler irrigation[J]. Agricultural Water Management,1996,32:29-36.
    [65]Li J, Meng Y, Li B. Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters[J]. Irrigation Science,2007,25:117-125.
    [66]Li J, Zhao W, Yin J, et al. The effects of drip irrigation system uniformity on soil water and nitrogen distributions[J]. Transactions of the ASABE,2012,55:415-427.
    [67]Ling G, EI-Kadi A I.A lumped parameter model for nitrogen transformation in the unsaturated zone[J]. Water Resources Research,1998,34(2):203-212.
    [68]Lockington D, Parlange J Y, Surin A. Optimal prediction of saturation and wetting fronts during trickle irrigation[J]. Soil Science Society of America Proceedings,1984,48(3):488-494.
    [69]Ma L, Lindau C W, Hongprayoon C, et al. Modeling urea, ammonium, and nitrate transport and transformations in flooded soil columns[J]. Soil Science,1999,164:123-132.
    [70]Mantovani E C, Villalobos F J, Orgaz F, et al. Modeling the effects of sprinkler irrigation uniformity on crop yield[J]. Agricultural Water Management,1995,27:243-257.
    [71]Mateos L, Mantovani E C, Villalobos F J. Cotton response to non-uniformity of conventional sprinkler irrigation[J]. Irrigation Science,1997,17:47-52.
    [72]Milliken G A, Johnson D E. Vol.2:Nonreplicated Experiments[M]. In Analysis of Messy Data. New York, N. Y:Van Nostrand Reinhold,1989.
    [73]Molz F J. Models of water transport in the soil-plant system:A review[J]. Water Resources Research, 1981,17(5):1245-1260.
    [74]Montazar A, Sadeghi M. Effects of applied water and sprinkler irrigation uniformity on alfalfa growth and hay yield[J]. Agricultural Water Management,2008,95(11):1279-1287.
    [75]Myers L E, Bucks D A. Uniform irrigation with low-pressure trickle systems[J]. Journal of the Irrigation and Drainage Division,1972,98(3):341-346.
    [76]Nakayama F S, Bucks D A, Clemmens A J. Assessing trickle emitter application uniformity [J]. Transactions of the ASAE,1979,22(4):816-821.
    [77]Nightingale H I, Hoffman G J, Rolston D E, et al. Trickle irrigation rates and soil salinity distribution in an almond (Prunus amygdalus) orchard[J]. Agricultural Water Management,1991,19:271-283.
    [78]O'Shaughnessy S A, Evett S R, Colaizzi P D, et al. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton[J]. Agricultural Water Management,2011,98(10): 1523-1535.
    [79]Orta A H, Erdem Y, Erdem T. Crop water stress index for watermelon[J]. Scientia Horticulturae,2003, 98:121-130.
    [80]Pang X P, Letey J, Wu L. Irrigation quantity and uniformity and nitrogen application effects on crop yield and nitrogen leaching[J]. Soil Science Society of America Journal,1997,61:257-261.
    [81]Payero J O, Tarkalson D D, Irmak S. Use of time domain reflectometry for continuous monitoring of nitrate-nitrogen in soil and water[J]. Applied Engineering in Agriculture,2006,22(5):689-700.
    [82]Philip J R. Steady infiltration from buried point sources and spherical cavities[J]. Water Resources Research,1968,4(5):1039-1047.
    [83]Phoades J D, van Schilfgaarde J. An electrical conductivity probe for determining soil salinity[J]. Soil Science Society of America Journal,1976,40(5):647-651.
    [84]Pinter P J, Fry K E, Guinn G, et al. Infrared thermometry:a remote sensing technique for predicting yield in water-stressed cotton[J]. Agricultural Water Management,1983,6:385-395.
    [85]Provenzano G, Pumo D. Experimental analysis of local pressure losses for microirrigation laterals[J]. Journal of Irrigation and Drainage Engineering, ASCE,2004,130(4):318-324.
    [86]Raats P A. Steady infiltration from point sources, cavities and basins[J]. Soil Science Society of America Proceedings,1971,35(5):689-694.
    [87]Rhoades J D. Drainage for salinity control. In:van Schilfgaarde J, ed., Drainage for Agriculture[M]. Agronomy Monograph No.17, American Society Agronomy, Madison,1974.
    [8,8]Richards L A. Diagnosis and Improvement of Saline and Alkali Soils[M]. Agriculture Handbook No. 60, USDA, Washington, USA,1954.
    [89]Salmeron M, Urrego Y F, Isla R, et al. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield[J]. Agricultural Water Management,2012,113:1-9.
    [90]SAS. SAS Proprietary Software. Ver 8.02. Cary, N. C.:SAS Institute, Inc,2001.
    [91]Schaap M G, Leij F J, van Genuchten M T. ROSETTA:a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology,2001, 251(3-4):163-176.
    [92]Seginer I. A note on the economic significance of uniform water application [J]. Irrigation Science, 1978,1:19-25.
    [93]Seginer I. Irrigation uniformity effect on land and water allocation[J]. Transactions of the ASAE, 1983,26:116-122.
    [94]Simunek J, Sejna M, van Genuchten M Th. HYDRUS-2D Simulating Water Flow, Heat, and Solute Transport in Two-Dimensional Variably Saturated Media[M]. California:International Ground Water Modeling Center, Riverside,1999.
    [95]Singh R, Nye P H. Diffusion of urea, ammonium and soil alkalinity from surface applied urea[J]. European Journal of Soil Science,1984,35(4):529-538.
    [96]Skaggs T H, Trout T J, Simunek J, et al. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations[J]. Journal of Irrigation and Drainage Engineering, ASCE,2004, 130(4):304-310.
    [97]Skaggs T H, Trout T J, Rothfuss Y. Drip irrigation water distribution patterns:effects of emitter rate, pulsing, and antecedent water[J]. Soil Science Society of America Journal,2010,74(6):1886-1896.
    [98]Solomon K H. Yield related interpretations of irrigation uniformity and efficiency measures[J]. Irrigation Science,1984,5:161-172.
    [99]Souza C F, Folegatti M V, Or D. Distribution and storage characterization of soil solution for drip irrigation[J]. Irrigation science,2009,27:277-288.
    [100]Stern J, Bresler E. Nonuniform sprinkler irrigation and crop yield[J]. Irrigation science,1983,4: 17-29.
    [101]Taghavi S A, Marino M A, Rolston D E. Infiltration from trickle irrigation source[J]. Journal of Irrigation and Drainage Engineering, ASCE,1984,110(4):331-341.
    [102]Taylor S A, Ashcroft G M. Physical Edaphology[M]. Freeman and Co., San Francisco,1972.
    [103]Thom A S, Oliver H R. On Penman's equation for estimating regional evaporation[J]. Quarterly Journal of the Royal Meteorological Society,1977,103(436):345-357.
    [104]Townsend J D. Fertigation-uniformity of fertilizer application through drip irrigation systems[C]. Proceedings of the 4th International Microirrigation Congress. Australia:Albury-Wodonga,1988.
    [105]van Genuchten M T. A close-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [106]Varlev I. Evaluation of nonuniformity in irrigation and yield[J]. Journal of the Irrigation and Drainage Division,1976,102:149-164.
    [107]Vrugt J A, Van Wijk M T, Hopmans J W, et al. One-, two-, and three-dimensional root water uptake functions for transient modeling[J]. Water Resources Research,2001,37(10):2457-2470.
    [108]Wang R, Kang Y, Wan S, et al. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area[J]. Agricultural Water Management,2011,100:58-69.
    [109]Wanjura D F, Upchurch D R. Canopy temperature characterizations of corn and cotton water status[J]. Transactions of the ASAE,2000,43(4):867-875.
    [110]Warrick A.W. Time-dependent linearized infiltration. Ⅰ. Point sources[J]. Soil Science Society of America Proceedings,1974,38(3):383-386.
    [111]Warrick A W, Gardner W R. Crop yield as affected by spatial variation of soil and irrigation[J]. Water Resources Research,1983,19(1):181-186.
    [112]Warrick A W, Yitayew M. Trickle lateral hydraulics. Ⅰ. Analytical solution[J]. Journal of Irrigation and Drainage Engineering, ASCE,1988,114(2):281-288.
    [113]Wilde C, Johnson J, Bordovsky J P. Economic analysis of subsurface drip irrigation system uniformity[J]. Applied Engineering in Agriculture,2009,25:357-361.
    [114]Wu I P. A uni-plot for drip irrigation lateral and submain design[J]. Transactions of the ASAE,1985, 28(2):522-528.
    [115]Wu I P. Energy gradient line approach for direct hydraulic calculation in drip irrigation design[J]. Irrigation Science,1992a,13:21-29.
    [116]Wu I P. A simple graphic solution for drip lateral design[C]. Paper No.9209103, presented at Agricultural Engineering International Conference, Uppsala, Sweden,1992b.
    [117]Wu I P. Microirrigation design for trees[C]. ASAE Paper No.93-2128, presented at the ASAE Summer Meeting, Spokane, Washington, June 20-23,27 pp,1993.
    [118]Wu I P, Barragan J. Design criteria for Microirrigation systems[J]. Transactions of the ASAE,2000, 43(5):1145-1154.
    [119]Wu I P, Feng J S, Yabusaki K. Emitter spacing and uniformity of irrigation application[C]. ASAE Paper No.89-2080, presented at the ASAE Summer Meeting, Quebec, Canada,15pp,1989.
    [120]Wu I P, Gitlin H M. Design of drip irrigation lines[Z]. HAES Tech. Bull.96, Univ. of Hawaii, Honolulu, Hawaii,29pp,1974a.
    [121]Wu I P, Gitlin H M. Drip irrigation design based on uniformity [J]. Transactions of the ASAE,1974b, 17(3):429-432.
    [122]Wu I P, Gitlin H M. Energy gradient line for drip irrigation laterals[J]. Journal of the Irrigation and Drainage Division,1975a,101(4):321-326.
    [123]Wu I P, Gitlin H M. Design of drip irrigation submain[J]. Journal of the Irrigation and Drainage Division,1977a,103(2):231-243.
    [124]Wu I P, Gitlin H M. Design of drip irrigation lines with varying pipe sizes[J]. Journal of the Irrigation and Drainage Division,1977b,103(4):499-503.
    [125]Wu I P, Gitlin H M. Drip irrigation design on nonuniform slopes[J]. Journal of the Irrigation and Drainage Division,1979,105(3):289-303.
    [126]Wu I P, Irudayaraj J M. Evaluation of uniformity parameters for drip irrigation design[C]. ASAE Paper No.87-2522, presented at the 1987 ASAE Winter meeting, Chicago, Illinois.25pp,1987.
    [127]Wu I P, Irudayaraj J M, Feng J S. Grouping effect on the uniformity of drip irrigation[C]. Paper No. 10-4, Congress Proceedings, Vol.1, Fourth International Micro-Irrigation Congress, Albury-Wodonga, Vie.,23-28 October,5 pp,1988.
    [128]Wu I P, Yabusaki K Y, Irudayaraj J M. Computer simulation of total emitter flow variation[C]. Drip/Trickle Irrigation in Action, Proc.3rd Int'l. Drip/Trickle Irrigation Congress,2:873-886,1985.
    [129]Yitayew M. Simplified method for sizing laterals with two or more diameters[J]. Journal of Irrigation and Drainage Engineering, ASCE,2009,135(1):111-114.
    [130]Zemel A, Ben-Asher J, Charach C, et al. Solute transfer and extraction from trickle irrigation source: the effective hemisphere mode[J]. Water Resources Research,1987,23(11):2091-2096.
    [131]白丹.多孔管的优化设计[J].农业机械学报,1994,25(2):56-59.
    [132]白丹.灌溉管网优化设计[M].西安:陕西科学技术出版社,1998.
    [133]白丹,王新.基于遗传算法的多孔变径管优化设计[J].农业工程学报,2005,21(2):42-45.
    [134]陈家宙,林丽蓉,吕国安,等.红壤施氮对玉米水分胁迫指数的影响[J].植物营养与肥料学报,2010,16(5):1114-1119.
    [135]陈渠昌,郑耀泉.微灌工程设计灌水均匀度的选定[J].农业工程学报,1995,11(2):128-132.
    [136]陈四龙,裴冬,王振华,等.华北平原膜下滴灌棉花水分利用效率及产量对供水方式响应研究[J].干旱地区农业研究,2005,23(6):26-31.
    [137]陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995.
    [138]程先军,许迪.地下滴灌土壤水运动和溶质运移数学模型及验证[J].农业工程学报,2001,17(6):1-4.
    [139]冯绍元,丁跃元,曾向辉.温室滴灌线源土壤水分运动数值模拟[J].水利学报,2001,32(2):59-64.
    [140]虎胆·吐马尔白,王一民,牟洪臣,等.膜下滴灌棉花根系吸水模型研究[J].干旱地区农业研究,2012,30(1):66-70.
    [141]焦艳平.干旱区盐碱地覆膜滴灌土壤水盐调控及其作物生长的影响[D].北京:中国科学院研究生院,2007.
    [142]康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996.
    [143]康跃虎.微灌系统水力学解析和设计[M].西安:陕西科学技术出版社,1999.
    [144]雷廷武.微灌果园的SPAC系统模拟研究及其应用[D].北京:北京农业工程大学,1988.
    [145]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [146]李光永,曾德超.滴灌土壤湿润体特征值的数值算法[J].水利学报,1997,28(7):1-6.
    [147]李久生.灌水均匀度与深层渗漏量关系的研究[J].农田水利与小水电,1993,(1):1-4.
    [148]李久生.喷灌均匀系数对作物产量影响的模拟研究[J].农业工程学报,1996,12(4):102-107.
    [149]李久生.喷灌均匀系数对土壤水分空间分布及作物产量影响的研究现状[J].农业工程学报,1998,14(2):132-137.
    [150]李久生,陈磊,栗岩峰.地下滴灌灌水器堵塞特性田间评估[J].水利学报,2008,39(10):1272-1278.
    [151]李久生,杜珍华,栗岩峰.地下滴灌系统施肥灌溉均匀性的田间试验评估[J].农业工程学报,2008,24(4):83-87.
    [152]李久生,饶敏杰.喷灌洒水与施肥均匀性对冬小麦产量的影响[J].水利学报,2002,33(1):28-34.
    [153]李久生,饶敏杰,李蓓.喷灌施肥灌溉均匀性对土壤硝态氮空间分布影响的田间试验研究[J]. 农业工程学报,2005,21(3):51-55.
    [154]李久生,饶敏杰,张建君.土壤及喷灌水量不均匀性对干旱区春小麦产量影响的试验研究[J].农业工程学报,2002,18(3):15-21.
    [155]李久生,王迪,栗岩峰.现代灌溉水肥管理原理与应用[M].北京:黄河水利出版社,2008.
    [156]李久生,尹剑锋,张航,等.滴灌均匀系数对土壤水分和氮素分布的影响[J].农业工程学报,2010,26(12):27-33.
    [157]李久生,尹剑锋,张航,等.滴灌均匀系数和施氮量对白菜生长及产量和品质的影响[J].农业工程学报,2011,27(1):36-43.
    [158]李久生,张建君,饶敏杰.滴灌施肥灌溉的水氮运移数学模拟及试验验证[J].水利学报,2005,36(8):932-938.
    [159]李久生,张建君,薛克宗.滴灌施肥灌溉原理与应用[M].北京:中国农业出版社,2003.
    [160]李明思,郑旭荣,贾宏伟,等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电,2001,(11):13-15.
    [161]李现平,石国元,韩晓玲,等.棉花膜下滴灌土壤水盐运移规律浅析[J].中国农村水利水电2004,8:14-15.
    [162]栗岩峰.滴灌水肥管理对土壤水氮动态及番茄生长的影响[D].北京:中国水利水电科学研究院,2006.
    [163]栗岩峰,李久生.再生水加氯对滴灌系统堵塞及番茄产量与氮素吸收的影响[J].农业工程学报,2010,26(2):18-24.
    [164]刘宁.中国水文水资源常态与应急综合管理探析[J].水科学进展,2013,24(2):280-286.
    [165]刘培斌,丁跃元,张瑜芳.田间一维饱和一非饱和土壤中氮素运移与转化的动力学模式研究[J].土壤学报,2000,37(4):490-498.
    [166]刘淑慧.松嫩平原苏打盐碱地滴灌土壤水盐调控机制与盐碱化草场恢复重建方法研究[D].北京:中国科学院研究生院,2012.
    [167]刘晓英,杨振刚,王天俊.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990,21(1):11-22.
    [168]刘玉春.层状土壤条件下番茄对地下滴灌水氮管理措施的响应特征及其调控[D].北京:中国水利水电科学研究院,2010.
    [169]吕殿青,王全九,王文焰,等.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-801
    [170]牛文全,吴普特,范兴科.微灌系统综合流量偏差率的计算方法[J].农业工程学报,2004,20(6):85-88.
    [171]牛文全,吴普特,范兴科.微灌系统综合流量偏差率与灌溉均匀度模拟计算[J].灌溉排水学报,2005,24(1):69-71.
    [172]裴鹿成,王仲奇.蒙特卡罗方法及其应用[M].北京:海洋出版社,1998.
    [173]苏德荣.微灌系统压力变化对出流均匀度影响的概率分析[J].水利学报,1991,22(12):31-35.
    [174]宿梅双.喷灌均匀系数对土壤水氮淋失及作物生长影响的田间试验研究[D].北京:中国农业大学,2005.
    [175]孙林,罗毅.膜下滴灌棉田土壤水盐运移简化模型[J].农业工程学报,2012,28(24):105-114.
    [176]谭军利.滴灌重度盐碱地开发利用过程中土壤环境及生产力变化过程研究[D].北京:中国科学院研究生院,2008.
    [177]田长彦,宋郁东,胡明芳.新疆荒漠化现状、成因及对策[J].中国沙漠,1999,19(3):214-218.
    [178]王浩.中国未来水资源情势与管理需求[J].世界环境,2011,(2):16-17.
    [179]王建众,牛文全,吴普特,等.滴灌毛管灌水均匀度试验研究[J].人民黄河,2008,30(3):56-57.
    [180]王全九,王文焰,吕殿青,等.膜下滴灌盐碱地水盐运移特征研究[J].农业工程学报,2000,16(4):54-57.
    [181]王若水.内陆干旱区重度盐碱地滴灌土壤水盐调控机制与农业利用方法研究[D].北京:中国科学院研究生院,2012.
    [182]王卫星,宋淑然,许利霞,等.基于冠层温度的夏玉米水分胁迫理论模型的初步研究[J].农业工程学报,2006,22(5):194-196.
    [183]许迪,程先军.地下滴灌土壤水运动和溶质运移数学模型的应用[J].农业工程学报,2002,18(1):27-30.
    [184]袁国富,罗毅,孙晓敏,等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(6):13-17.
    [185]张国祥.微灌毛管水力学研究—微灌水力设计计算方法探讨之一[J].喷灌技术,1990,(3):9-16.
    [186]张国祥.微灌毛管水力设计的经验系数法—微灌水力设计计算方法探讨之三[J].喷灌技术,1991,(1):4-8.
    [187]张国祥.廉价节能高效滴灌系统研究报告[R].杨凌:国家节水灌溉杨凌工程技术研究中心,2002.
    [188]张国祥.考虑三偏差因素的滴灌系统流量总偏差率[J].农业工程学报,2006,22(11):27-29.
    [189]张国祥,申亮.微灌灌水小区水力设计的经验系数法[J].节水灌溉,2005(6):20-23.
    [190]张航,李久生.华北平原春玉米生长和产量对滴灌均匀系数及灌水量的响应[J].农业工程学报,2011,27(11):176-182.
    [191]张航,李久生.华北平原春玉米滴灌均匀系数对土壤水氮时空分布的影响[J].中国农业科学,2012,31(1):4004-4013.
    [192]张航,李久生,栗岩峰.利用电容式传感器连续监测土壤硝态氮质量分数的试验研究[J].灌溉排水学报,2012,31(1):23-28.
    [193]张建君,李久生,任理.滴灌施肥灌溉条件下土壤水氮运移的研究进展[J].灌溉排水,2002, 21(2):75-79.
    [194]张林,范兴科,吴普特,等.均匀坡度下考虑三偏差的滴灌系统流量偏差率的计算[J].农业工程学报,2009,25(4):7-14.
    [195]张林,吴普特,范兴科,等.低压滴灌灌水均匀度试验研究[J].西北农林科技大学学报,2009,37(12):207-212.
    []96]张林,吴普特,牛文全,等.均匀坡度下滴灌系统流量偏差率的计算方法[J].农业工程学报,2007,23(8):40-44.
    [197]张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004,35(9):1-5.
    [198]张振华,蔡焕杰,杨润亚,等.滴灌入渗土壤水分分布的数值研究[J].水土保持研究,2004,11(3):91-94.
    [199]张振华,蔡焕杰,杨润亚,等.膜下滴灌棉花产量和品质与作物缺水指标的关系研究[J].农业工程学报,2005,21(6):26-29.
    [200]张志澍,郑耀泉.灌水器的工作水头对微灌系统灌水均匀度影响的研究[J].内蒙古水利,1996,(1):28-32.
    [201]郑耀泉,陈渠昌.微灌均匀度参数之间的关系及其应用[J].灌溉排水,1994,13(2):7-10.
    [202]郑耀泉,宁堆虎.滴头制造偏差的模拟与滴灌系统随机设计方法的研究[J].水利学报,1991,22(7):1-7.
    [203]郑纯辉,康跃虎,王丹.满足灌水器平均流量和灌水均匀度的微灌系统优化设计方法[J].干旱地区农业研究,2005,23(1):28-33.
    [204]中华人民共和国国家标准GB/T50085-2007.喷灌工程技术规范[S].北京:中国计划出版社,2007.
    [205]中华人民共和国国家标准GB/T50485-2009.微灌工程技术规范[S].北京:中国计划出版社,2009.
    [206]中华人民共和国国家标准GB/T1103-2007.棉花-细绒棉[S].北京:中国标准出版社,2007.
    [207]中华人民共和国水利行业标准SL13-2004.灌溉试验规范[S].江苏:凤凰出版社,2005.
    [208]中华人民共和国水利部.中国水资源公报[M].北京:中国水利水电出版社,2011.
    [209]中华人民共和国水利部.全国水利发展统计公报[M].北京:中国水利水电出版社,2011.
    [210]朱德兰,吴普特,王艳群,等.滴头设计工作压力计算方法研究[J].排灌机械,2005,23(5):31-34.
    [211]朱德兰,吴普特,张青峰,等.微地形影响下滴灌均匀度设计指标研究[J].排灌机械,2006,24(1):22-26.
    [212]左强.改进交替方向有限单元法求解对流-弥散方程[J].水利学报,1993,24(3):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700