用户名: 密码: 验证码:
节能发电调度全过程优化模型与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高电力工业能源使用效率,节约能源,减少环境污染,2007年国家确定江苏、河南、广东、贵州、四川等五个省份开展节能发电调度试点。随着全国节能发电调度工作的逐步开展,电力行业节能减排方面取得了一定的成效,但仍存在一些明显不足。国内的节能发电调度普遍关注的是按照能耗排序的日前节能发电调度算法,即在现有的电网运行条件下对机组的短期发电计划进行优化,但是从节能发电调度的本质和实际效果来看,应该更加重视中长期的调度模型优化,以取得更明显的节能效果。在日前计划编制时,一般把节能作为第一目标;在能耗水平相同时,再根据排放水平进行二次排序,这一步尚未得到充分重视。在实时调度时,普遍关注是否控制性能标准得到满足,而忽略了节能性要求。这些都是目前节能发电调度需要继续深入研究的问题。同时,目前对燃煤机组所做的发电排序大多采用基于设计煤耗的方式,不能真实反映系统的能耗水平,不利于提高节能发电调度的实施效果,应该研究如何采用实测煤耗数据进行发电排序。
     在上述背景下,本文对与节能发电调度有关的一些问题开展了深入研究。针对现有节能发电调度模型的不足,分析了现有节能发电调度模式和方法的特征,对负荷预测方法、煤耗在线计算等关键技术进行了系统研究,提出了节能发电调度全过程优化模式。主要研究内容如下:
     1、通过分析目前节能发电调度模式存在的不足,研究提出覆盖年度、月度、日前、实时等全过程的节能发电调度新理念;利用燃煤机组下降型的负荷-煤耗率曲线特性,研究建立在月度计划范围内优化开机方式、通过合理安排机组停运而提高开机机组负荷率、进而提高整个系统节能性的新型节能发电调度模式;设计了年度、月度、日前和实时等时间尺度节能发电调度计划的编制流程;研究了各级发电计划的协调与衔接。
     2、对节能减排环境下的负荷预测方法进行了研究,比较分析了现有的负荷预测模型和算法,发展了基于量化气象条件影响分析的负荷预测方法,建立了气温对负荷影响的实用化敏感度量化分析方法,提出了基于密度估计的电力负荷异常数据辨识和修正方法。
     3、采用设计煤耗进行节能发电调度排序会产生公平性和有效性问题。构造了反平衡法的燃煤机组煤耗在线计算模型;基于燃煤机组煤耗实测的数据,将离散的煤耗数据处理为机组在不同负荷水平下的煤耗数据,获得机组负荷-煤耗率曲线和负荷-煤耗量曲线。在得到机组的煤耗值和相关指标后,对燃煤机组三级耗差指标体系进行了研究,提出了采用高维自动寻优方法确定机组运行参数目标值的方法。根据求得的煤耗实测数据,提出了细化的燃煤机组排序的实用化方法。
     4、研究了全过程节能发电调度的月度机组组合和日发电计划模型。发展了计及机组启停的月度机组组合模型,综合考虑了机组的最小启停时间、最大启停次数、启动费用等约束条件,对燃煤机组月内的启停状态进行优化。按照节能发电调度节能优先、兼顾环保的要求,建立了基于分层序列法的两阶段发电调度决策模型,第一阶段以节能性为目标,第二阶段考虑环保性。创新性的提出了提出了节能与减排特性相结合的机组特性函数。通过算例验证了所发展的新型节能发电调度模式的有效性。
     5、对AGC总指令动态优化理论进行了研究,提出了以控制功率偏差和能耗指标综合最小的目标函数并考虑多种运行约束的多目标优化模型,并采用基于强化学习的Q算法进行求解。基于Q–学习的优化算法能够动态分配调度中心发出的AGC总调节指令,将机组能耗不同的多台机组进行优化分配,能使各台发电机的出力总和很好地满足CPS标准,并且通过在奖励函数加入节能发电调度的指标达到节能减排的目标。
     最后,对全文的研究工作进行了总结,并简要展望了进一步可以开展的研究工作。
In order to improve energy efficiency of the power industry, save energy and reduceenvironmental pollution, Jiangsu, Henan, Guangdong, Guizhou and Sichuan were selected aspilots to enforce the energy-saving generation dispatch in2007. As the nationwideenergy-saving generation dispatch is carried out progressively, some positive effects onenergy saving and emission reduction have been achieved in the power industry, but there arestill some obvious shortages. Currently the energy-saving generation dispatch is focused onthe energy-saving generation scheduling algorithm based on the merit order of energyconsumption of each generation unit, i.e. optimizing the short-term generation schedule ofeach unit within the operational condition of the existing power system. In fact, the mediumand long-term dispatch shall be paid more attention in the energy-saving dispatch so as toachieve more significant energy-saving effect. In making the current schedule, energy savingis regarded as the first objective; in case the energy consumption is of the same level, thesecond-round rank is based on the emission level. In the real-time scheduling, the satisfactionof CPS standard is generally paid attention, while the requirement of energy-saving is ignored.These are the issues to be further studied in the current energy-saving generation dispatch.Meanwhile, currently most of the generation rank of coal-fired units is based on the designcoal consumption, and can not reflect the consumption level of the whole system actually,thus how to adopt actually measured data of coal consumption to implement generationranking should be studied.
     Therefore, this thesis proceeds deep research into energy-saving generation dispatch, inallusion to the shortages of current energy-saving generation dispatch model, analyzes thecurrent energy-saving generation dispatch model and method, does research concerning keytechnologies of load predicting methods and coal consumption online computation andproposes an optimized model for the whole process of energy-saving generation dispatch.Main research contributions are as follows:
     1. By analyzing the shortages of the current energy-saving generation dispatch model,research a new idea of the whole process of energy-saving generation dispatch covering year,month, day, real-time is presented. Using the curve characteristic of the load-coalconsumption rate of the coal-fired unit descending type, research and establish optimizedstarting up mode in the range of monthly schedule. By reasonably arranging units to beoff-the-line to improve load rate of starting up units, thus improve new type of energy-saving generation dispatch model. Design the time scale of year, month, day, real-time, etc. forpreparing procedure of energy-saving generation dispatch schedule and research coordinationand link up of all levels of generation schedule.
     2. Carry out research into load predict method for environment of energy-saving andemission reduction, compare and analyze model and algorithm of existing load predict,develop the load predicting method based on quantized meteorological condition influenceanalysis, establish practical sensitiveness quantized analysis method for the influence of airtemperature on load, research and propose to identify and amend method for electric loadabnormal data based on density estimation.
     3. The adoption of designed coal consumption to implement energy-saving generationdispatch ranking generates issue on fairness and effectiveness. The research adopts coalconsumption online computing model of anti-balance type of coal-fired unit, after computingthe actually measured coal consumption of coal-fired unit, put forward the method ofhandling discrete coal consumption data into the only coal consumption data under differentload of unit, and get the unit load-coal consumption rate curve and load-coal consumption ratecurve. After getting the coal consumption value and relevant index of unit, carry on researchinto three-level consumption difference index system of coal-fired unit, innovatively putforward the method of adopting high-dimension automatic optimizing method to confirm thedesired value of unit operating parameter. According to the coal consumption actuallymeasured data obtained, put forward the practical method for refined coal-fired unit ranking.
     4. Research into the monthly unit combination and daily generation schedule model ofthe whole process of energy-saving generation dispatch. Put forward emphasis on the monthlyunit combination model of unit shutdown, target function takes unit characteristic functioncombined by energy-saving and emission reduction characteristics into consideration,comprehensively consider the constraint condition of unit’s minimum shutdown time,maximum shutdown times, starting up cost, etc., optimize the monthly shutdown state ofcoal-fired unit. According to the requirements of energy-saving first, give consideration toenvironmental protection for energy-saving generation dispatch, establish two stages ofgeneration dispatch decision model based on layering ordination, the objective of the firststage is energy-saving, the second stage considers environmental protection. The effectivenessof the new energy-saving generation dispatch mode is verified through the computationalexample.
     5. Carry on research into AGC general directive dynamic optimization theory,innovatively put forward multiple target mathematical model of controlling target function of minimal power deviation and comprehensive energy consumption index and consideringvarious operational constraint, and adopt Q algorithm based on reinforced study to solve. Theoptimized algorithm which is based on Q-study can perform dynamic dispatch of AGCgeneral adjusting directive from dispatching center, proceed optimized dispatch to severalunits of different energy consumption, can make contribute total sum of each generator satisfyCPS standard well, and achieve the objective of energy saving and emission reduction byadding energy-saving generation dispatch index to reward function.
     Finally, the major research work carried out in this thesis is summarized, and prospectsfor future research briefly outlined.
引文
[1]国务院办公厅.关于转发发展改革委等部门《节能发电调度办法(试行)》的通知(国发办[2007]53号[Z].北京:国务院办公厅,2007.
    [2]国家发改委.关于印发《节能发电调度试点工作方案和实施细则(试行)》的通知(发改能源[2007]3523号)[Z].北京:国家发展与改革委员会,2007.
    [3]广东省发改委.关于印发《广东省节能发电调度试点工作实施方案》的通知(粤发改能[2008]1241号)[Z].广东省发展与改革委员会,2008.
    [4]尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用[J].电网技术,2007,31(22):58-63.
    [5]胥传普,杨立兵,刘福斌.关于节能降耗与电力市场联合实施方案的探讨[J].电力系统自动化,2007,31(23):99-102.
    [6] Ross D W, Kim S. Dynamic economic disPatch of generation[J]. IEEE Transactions onpower Apparatus and Systems,1980,99(6):2060-2065.
    [7] Wood W G. Spinning reserve constrained statieand dynamie eeonomic dispatch[J]. IEEETransactions on Power Apparatus and Systems,1982,101(2):381-388.
    [8] Bareelo W R, Rastgoufard P. Control area performance improvement by extendedsecurity constrained economic dispatch[J]. IEEE Transactions on Power Systems,1997,12(1):120-128.
    [9]王楠.发电调度优化模型与方法研究[D].北京:华北电力大学,2011.
    [10]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986:21-25.
    [11]张力,刘俊勇,刘继春.火电机组年合同电量的编制与分解算法研究[J].继电器,2007,35(4):64-69.
    [12]张粒子,谢国辉,黄仁辉.中国后续电力市场化改革路径构想[J].华北电力大学学报(自然科学版),2005,35(6):17-20.
    [13] Guy J D. Security constrained unit commitment[J]. IEEE Trans on PAS,1971,90(3):1385-1390.
    [14] Su C C, Hsu Y Y. Fuzzy dynamic programming: an application to unit commitment[J].IEEE Trans on PWRS,1991,6(3):.
    [15] Ouyang Z, Shahidehpour S M. An intelligent dynamic programming for unitcommitment application[J]. IEEE Trans on PWRS,1991,6(3):1231-1237.
    [16] Nieva R, Inda A, Guillen I. Lagrangian reduction of search-range for large scale unitcommitment [J]. IEEE Transaction on Ppwer Systems,1987,2(2):465-473.
    [17] Shoults R R, Chang S K, Helmick S, et al. A practical approach to unit commitment,economic dispatch and savings allocation for multiple-area pool operation withimport/export constraints[J]. IEEE Trans on PAS,1980,99(2):625-635.
    [18] Lee F N. Short-term unit commitment-a new method[J]. IEEE Transaction on PowerSystems,1988,3(2):421-428.
    [19]李晓磊,周京阳,于尔铿,等.基于动态搜索线性混合整数法的机组组合新算法[J].电力系统自动化,2008,32(21):18-21,76.
    [20]汪洋,夏清,康重庆.机组组合算法中起作用整数变量的辨识方法[J].中国电机工程学报,2010,30(13):14-19.
    [21]苏济归,舒隽,谢国辉,等.大规模机组组合问题计及网络约束的线性化求解方法[J].电力系统保护与控制,2010,38(18):10-13.
    [22]杨朋朋,韩学山,查浩.一种计及静态安全约束机组组合的有效算法[J].电力系统自动化,2009,33(8):39-43.
    [23] Ma H, ShahidehPour S M, Marwali M K C. Transmission constrained unitcommitment based on Benders decomposition[A]. American Control Conference[C],USA,1997(4):2263-2267.
    [24] Fu Y, ShahidehPour M, Li Z. Security-constrained unit commitment with constraints[J].IEEE Trans on Power Systems,2005,20(3):1538-1550.
    [25] Fu Y, ShahidehPour M, Li Z. AC contingency dispatch based on security-constrainedunit commitment[J]. IEEE Trans on Power Systems,2006,21(2):897-908.
    [26]耿建,徐帆,姚建国.求解安全约束机组组合问题的混合整数规划算法性能分析[J].电力系统自动化,2009,33(21):24-27.
    [27] Steinberg M J, Smith Theodore H. The theory of incremental rates and their practicalapplication to load division-Part1[J]. Transactions of the American Institute ofElectrieal Engineers,1934,53(3):432-445.
    [28] Steinberg M J, Smith Theodore H. The theory of incremental rates and their practicalapplication to load division-Part II[J]. Transactions of the American Institute ofElectrieal Engineers,1934,53(4):571-584.
    [29] Kirchmayer L K, Stagg G W. Analysis of total and incremental losses in transmissionsystems[J].AIEE Traps,1951,70(2):647-653.
    [30] Lohannesen A, Gjelsvik A, Fosso O B. Optimal short term hydro scheduling includingsecurity constraints[J]. IEEE Transactions on Power Systems,1991,6(2):576-583.
    [31] Dy-Liacco T E. Enhancing power system security control[J]. IEEE ComputerApplications in Power,1997,10(3):38-41.
    [32] Lee F N, Lemonidis L. Price-based ramp-rate model for dynamic dispatch and unitcommitment[J]. IEEE Transactions on Power Systems,1999(3):1233-1242.
    [33]韩学山,刘悼.考虑机组爬坡速度和网络安全约束的经济调度解祸算法[J].电力系统自动化,2002,26(13):32-36.
    [34] Farag A, AI-Baiyat S, Cheng T C. Economic load dispatch multiobjectiv optimizationProcedures using linear Programming techniques[J]. IEEE Transactions on PowerSystems,1995,10(2):731-738.
    [35]夏清,康重庆,沈瑜.考虑电网安全约束条件的机组组合新方法[J].清华大学学报(自然科学版),1999,39(9):14-17.
    [36] Wang S J, Shahidehpour S M, Kirschen D S, et al. Short-termgeneration schedulingwith transmission and environmental constraints using an augmented lagrangianrelaxation[J]. IEEE Transactions on Power Systems,1995,10(3):1294-1301.
    [37] Huse E S, Wangensteen I, Faanes H H. Thermal power generation scheduling bysimulated competition[J]. IEEE Transactions on Power Systems,1999,14(2):472-477.
    [38]王雁凌,张粒子,鲍海等.用优化排序法进行日发电计划的计算[J].电力系统及其自动化学报,2000,12(5):32-36.
    [39]王雁凌,丁鹏,刘霞.合同交易量和竞价交易量在日计划中的经济分配[J].电力系统自动化,2002,26(9):45-48.
    [40]马瑞.电力市场中兼顾环境保护和经济效益的双目标模糊优化短期交易计划新模型[J].中国电机工程学报,2002,22(4):104-108.
    [41] Abido M A. Environmental/economic power dispatch using multiobjective volutionaryalgorithms[J]. IEEE Transactions on Power Systems,2003,18(4):1529-1537.
    [42]蒋东荣,刘学军,李群湛.电力市场环境下电网日发电计划的电量经济分配策略[J].中国电机工程学报,2004,24(7):90-94.
    [43]张国立,李庚银,谢宏,等.日前和实时市场统一电能交易模型[J].中国电机工程学报,2006,26(21):50-56.
    [44]初壮,于继来.初期电力市场确定电网日发电计划的模型与方法[J].电力系统自动化,2006,30(22):43-47.
    [45]温步瀛.电力市场条件下发电计划偏差的优化校正研究[J].中国电机工程学报,2007,27(13):111-116.
    [46] Yu Z, Sparrow F T. Long-term hydrothermal scheduling using composite thermal andcomposite hydro representations[J]. IEE Proceedings-Generation, Transmission andDistribution,1998,145(2):210-216.
    [47] Ferrero R W, Rivera J F, Shahidehpour S M. A dynamic programming two-stagealgorithm for long-term hydrothermal scheduling of multireservoir systems[J]. IEEETransactions on Power Systems,1998,13(4):1534-1540.
    [48] Ikuo K, Hiroshi A, Kenji O, et al. Long-term power trade model in electricity marketbased on game theory[C]. IEEE Power Engineering Society Transmission andDistribution Conference, Yokahama, Japan,2002.
    [49] Fu Y, Shahidehpour M, Li Z. Long-term security-constrained unit commitment hybridDantzig-Wolfe decomposition and subgradient approach[J]. IEEE Transactions onPower Systems,2005,20(4):2093-2106.
    [50]王漪,于继来,柳焯.基于月度竞价空间滚动均衡化的年中标电量分解[J].电力系统自动化,2006,30(17):24-27.
    [51]尚金成.基于时间尺度的节能发电优化调度协调模型及算法[J].电网技术,2008,32(15):56-61.
    [52]施建华,谭素梅.节能发电调度发电计划编制算法[J].电力系统自动化,2008,32(24):48-51.
    [53]胡建军,李嘉龙,陈慧坤,等.基于煤耗和排放的日发电曲线编制模型[J].电力系统自动化,2009,33(12):43-45.
    [54]张宁,陈慧坤,骆晓明.广东电网节能发电调度计划模型与算法[J].电网技术,2008,32(23):7-12.
    [55]喻洁,季晓明,夏安邦.基于节能环保的水火电多目标调度策略[J].电力系统保护与控制,2009,37(1):24-27.
    [56]陈皓勇,张森林,张尧.区域电力市场环境下节能发电调度方式[J].电网技术,2008,32(24):16-21.
    [57]温丽丽,刘俊勇.混合系统中、长期节能调度发电计划的蒙特卡罗模拟[J].电力系统保护与控制,2008,36(24):24-29.
    [58]尚金成.基于节能减排的发电权交易理论及应用[J].电力系统自动化,2009,33(12):46-52.
    [59]王超,张晓明,唐茂林,等.四川电网节能减排发电实时调度优化模型[J].电力系统自动化,2008,32(4):89-92.
    [60]孙毅,秦毓毅.节能发电调度下AGC机组的优化调配研究[J].华北电力大学学报,2010,37(3):21-25.
    [61]尚金成,庞博,王清敏,等.节能发电调度经济补偿机制市场模型及算法[J].电网技术,2010,34(4):62-68.
    [62]叶永松,张维.节能发电调度利益补偿机制研究[J].华东电力,2009,37(l):172-175.
    [63]尚金成.基于节能减排的发电权交易理论及应用:(一)发电权交易理论[J].电力系统自动化,2009,33(12):46-52.
    [64]尚金成.基于节能减排的发电权交易理论及应用:(二)发电权交易分析及应用[J].电力系统自动化,2009,33(13):37-42.
    [65]胡建军,胡飞雄.节能发电调度模式下有偿调峰补偿新机制[J].电力系统自动化,2009,33(10):44-49.
    [66]尚金成.兼顾市场机制与政府宏观调控的节能发电调度模式及运作机制[J].电网技术,2007,31(24):55-62.
    [67]尚金成.节能发电调度的经济补偿机制研究(二)基于市场机制的经济补偿机制设计与分析[J].电力系统自动化,2009,33(2):44-45.
    [68]叶永松,张维,张银芽.兼容市场机制的节能发电调度利益补偿机制研究[J].需求侧管理,2008,10(6):7-25.
    [69]赵维兴,胡志淳,王庭飞,等.基于实测煤耗的节能发电调度模式的研究[R].贵阳:贵州省电机工程学会,2010.
    [70]刘杰,卢建刚,刘麟夫,等.节能发电调度煤耗监测系统在广东电网的应用[J].电网技术,2010,34(增刊2):112-117.
    [71]陈亮,刘杰,胡小翠.耗差综合分析系统的应用[J].电网技术,2011,35(增刊1):511-514.
    [72]黎灿斌,刘玙,曹一家,等.低碳发电调度与节能发电调度一致性评估[J].中国电机工程学报,2011,31(31):94-101.
    [73]陈启鑫,周天睿,康重庆,等.节能发电调度的低碳化效益评估模型及其应用[J].电力系统自动化,2009,33(16):24-29.
    [74]骆晓明,马煜华,陈亮.广东省节能发电调度的社会效益评估新方法[J].中国电力,2010,43(9):1-5.
    [75]夏清,陈雨果,陈亮.考虑月度机组组合的节能发电调度模式与方法[J].电网技术,2008,35(6):27-33.
    [76]陈亮,陈雨果.多目标发电调度的策略与方法[J].电力系统自动化,2012,已录用.
    [77]牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
    [78]朱忠烈,杨宗麟,程浩忠,等.节能减排背景下电力需求分析预测研究[J].华东电力,2009,37(5):703-707.
    [79] Vine E, Hamrin J, Eyre N, et al. Public policy analysis of energy efficiency and loadmanagement in changing electricity businesses[J]. Energy Policy,2003,31(5):405-430.
    [80]王昕.高耗能行业节能降耗势在必行[J].经济前沿,2008,(1):32-35.
    [81]高珊.云南高耗能行业继续实行差别电价[J].石油和化工节能,2006,(3):23.
    [82]王云.广东对高耗能行业用电加价[J].广东建材,2010,(9):5.
    [83]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11.
    [84]王强,刘诗宏,林佳,等.考虑节能减排的华东地区电量分解分析及预测[J].水电能源科学,2010,28(9):164-166.
    [85]童述林,文福拴.节能减排环境下广东省年最大降温负荷的测算与分析[J].华北电力大学学报,2010,37(5):32-37.
    [86]康重庆,夏清,刘梅.电力系统负荷预测[M].北京:中国电力出版社,2007.
    [87]谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89.
    [88]蒋建东,程志豪,朱明嘉.考虑积温效应的短期负荷组合预测方法[J].电力自动化设备,2011,31(10):28-31.
    [89]温青,张筱慧,杨旭.基于负荷误差和经济发展趋势的组合预测模型在中长期负荷预测中的应用[J].电力系统保护与控制,2011,39(3):57-61.
    [90]雷绍兰,孙才新,周湶等.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29.
    [91]赵渊,张夏菲,谢开贵.非参数自回归方法在短期电力系统预测中的应用[J].高电压技术,2011,37(2):429-435.
    [92] Pappas S S, Ekonomou L, Karamousantas D C, et al. Electricity demand loads modelingusing Auto Regressive Moving Average (ARMA) models[J]. Energy,2008,33(9):1353-1360.
    [93]刘梦良,刘晓华,高荣.基于相似日小波支持向量机的短期电力负荷预测[J].电工技术学报,2006,21(11):59-64.
    [94]王小刚,石为人,高鹏,等.基于相似日搜索的空调负荷短期预测方法[J].华中科技大学学报(自然科学版),2011,39(12):76-80.
    [95]廖峰,刘清良,贺辉,等.基于改进灰色模型与综合气象因素的母线负荷预测[J].电网技术,2011,35(10):183-188.
    [96]张红旭,姚建刚,曹伟,等.基于改进灰色模型的超短期负荷预测[J].电力系统及其自动化学报,2009,21(6):74-77.
    [97] Liang Rueyhsun, Cheng Chingchi. Short-term load forecasting by a neuron-fuzzy basedapproach[J]. Electrical Power and Energy System,2002,24(2):103-111.
    [98] Huang Shyhjier, Shih Kuangrong. Application of a fuzzy model for short-term loadforecast with group method of data handling enhancement [J]. Electrical Power andEnergy Systems,2002,24(8):631-638.
    [99] Ghiassi M, Zimbra D, Saidane H. Medium term system load forecasting with a dynamicartificial neural network model[J]. Electric Power Systems Research,2006,76(5):302-316.
    [100]牛东晓,王建军,李莉,等.基于粗糙集和决策树的自适应神经网络短期负荷预测方法[J].电力自动化设备,2009,29(10):30-34.
    [101]赵宇红,唐耀庚,张韵辉.基于神经网络和模糊理论的短期负荷预测[J].高电压技术,2006,32(5):107-110.
    [102]顾洁.应用小波分析进行短期负荷预测[J].电力系统及其自动化学报,2003,15(2):40-44.
    [103] Taylor J W, Buizza R. Neural network load forecasting with weather ensembleredictions[J]. IEEE Trans on Power Electron,2002,17(3):626-632.
    [104]康重庆,周安石,王鹏,等.负荷预测中实时气象因素的影响分析及其处理策略[J].电网技术,2006,30(7):5-10.
    [105]朱陶业,李应求,张颖,等.提高时间序列气象适应性的短期电力负荷预测算法[J].中国电机工程学报,2006,26(23):16-19.
    [106]王鹏,邵能灵,王波,等.针对气象因素的短期负荷预测修正方法[J].电力系统自动化,2008,32(13):92-96.
    [107]黎灿兵,杨朋,刘玮,等.短期负荷预测中考虑夏季气温累积效应的方法[J].电力系统自动化,2009,33(9):96-99.
    [108]杨波,赵遵廉,陈允平,等. PSO演化神经网络集成的边际电价预测新方法[J].高电压技术,2007,33(10):162-166.
    [109]万志宏,陈亮,文福拴.计及温度影响的短期负荷预测时间序列模型[J].华北电力大学学报2011,38(3):61-66.
    [110]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用[M].武汉:华中科技大学出版社,2007.
    [111]陶勇,沈颖.夏季气象条件对地区空调负荷的影响[J].华东电力,2006,34(10):29-30.
    [112]赖敏,洪斌.降温采暖负荷对华中电网日负荷特性的影响[J].电力技术经济,2007,19(3):30-33.
    [113]吴蓓,张焰,陈闽江,等.空调负荷对城市电网电压稳定性影响的研究[J].华东电力,2006,34(4):23-27.
    [114] Tomiyama K, Daniel J P, Ihara S. Modeling air conditioner load for power systemstudies [J]. IEEE Transactionson Power Systems,1998,13(2):414-421.
    [115] Zhang Y P, Zhang J H, Huang W, et al. Research on the influence of load characteristicon voltage stability. Proceedings of2006International Conference on Power SystemTechnology, October22-26,2006, Chongqing, China:1-6.
    [116]石峰,吴笛,李宝珠.重庆市夏季空调负荷分析及有效调节空调负荷的措施建议[J].电力技术经济,2008,20(1):42-46.
    [117] Sanhueza S, Tofoli F L, De Albuquerque F L, et al. Analysis and evaluation ofresidential air conditioners for power system studies. IEEE Transactions on PowerSystems,2007,22(2):706-716.
    [118]温权,李敬如,赵静.空调负荷计算方法及应用[J].电力需求侧管理,2005,7(4):16-18.
    [119]邱向京,周峰,刘升,等.福建省年最大降温负荷测算分析与研究[J].华东电力,2005,33(10):86-90.
    [120]岳建霖.莆田地区2006年最大降温负荷研究.电力需求侧管理[J],2007,9(4):56-59.
    [121]翟晶晶,卢毅.基于负荷曲线修复的夏季空调负荷计算[J].电力需求侧管理,2005,7(5):27-29.
    [122]韦钢,王飞,张永健,等.负荷预测中历史数据缺损处理[J].电力科学与工程,2004(1):16-19.
    [123]毛李帆,姚建刚,金永顺,等.中长期负荷预测的异常数据辨识与缺失数据处理[J].电网技术,2010,34(7):148-153.
    [124]叶锋,何桦,顾全,等. EMS中负荷预测不良数据的辨识与修正[J].电力系统自动化,2006,30(15):85-88.
    [125]张国江,邱家驹,李继红.基于人工神经网络的电力负荷坏数据辨识与调整[J].中国电机工程学报,2001,21(8):104-108.
    [126]张晓星,程其云,周湶,等.基于数据挖掘的电力负荷脏数据动态智能清洗[J].电力系统自动化,2005,29(8):60-64.
    [127]顾民,葛良全,秦健.基于改进ART2网络的电力负荷脏数据辨识与调整[J].电力系统自动化,2007,31(16):70-74.
    [128]陈建华,戴铁潮,张宁,等.确定性合同分解中异常负荷数据的辨识与修正[J].电力系统自动化,2009,33(6):21-24,43.
    [129]陈亮,文福拴,童述林.基于密度估计的电力负荷异常数据辨识与修正[J].华南理工大学学报(自然科学版),2011,40(2):124-129
    [130]王扬.一种新颖的基于密度的袪噪声方法[J].自动化学报,2010,36(2):333-346.
    [131]李光珍,刘文颖,云会周,等.母线负荷预测中样本数据预处理的新方法[J].电网技术,2010,34(2):149-154.
    [132]中国电力企业联合会.全国电力工业统计快报(2011年).http://tj.cec.org.cn/tongji/niandushuju/2012-01-13/78769.html,20120113
    [133]李青,公维平.火力发电厂节能和指标管理技术[M].西安:中国电力出版社,2006.
    [134] DL-T904-2004,火力发电厂技术经济指标计算方法[S].北京:国家发展和改革委员会,2004.
    [135]李永华,陈鸿伟,孟凡军.电站锅炉运行参数对经济性的影响[J].节能,2002,244(11):35-36.
    [136]杨军华,陈国慧.一种确定锅炉运行参数基准值的新方法[J].热力发电,1999(02):24-26.
    [137]吴智群,王顶辉,黄廷辉等.火电厂锅炉运行优化目标值计算方法的研究[J].热力发电,2006(09):27-29.
    [138]吴智群.电站锅炉性能诊断与优化分析偏增量法的研究[J].热力发电,2003(05):15-18.
    [139]闪四清,陈茵,程雁.数据挖掘[M].北京:清华大学出版社,2003:146-161.
    [140] Jaleeli N, Vanslyck L S. NERC's new control performance standards[J]. IEEE Trans. onPower Systems,1999,14(3):1091-1099.
    [141] Yao M, Shoults R R, Kelm R. AGC logic based on NERC’s new control performancestandard and disturbance control standard [J]. IEEE Trans. on Power Systems,2000,15(2):852-857.
    [142] Ahamed T P I, Rao P S N, Sastry P S. A reinforcement learning approach to automaticgeneration control[J]. Electric Power Systems Research,2002,63(1):9-26.
    [143]唐悦中,张王俊.基于CPS的AGC控制策略研究[J].电网技术,2004,28(21):75-79.
    [144]高宗和,滕贤亮,涂力群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化,2004,28(1):78-81.
    [145]高宗和,滕贤亮,张小白.互联电网CPS标准下的自动发电控制策略[J].电力系统自动化,2005,29(19):40-44.
    [146]余涛,陈亮,蔡广林.基于CPS标准统计信息自学习机理的AGC自适应控制[J].中国电机工程学报,2008,28(10):82-87.
    [147]张国立,李庚银,谢宏,等.日前和实时市场统一电能交易模型[J].中国电机工程学报,2006,26(21):50-56.
    [148]陈亮,马煜华,骆晓明.广东电网AGC运行需求与控制模式探讨[J].电力自动化设备,2004,24(12):81-83.
    [149] Chen Liang, Li Zhangwen, Yu Tao. Self-optimized fuzzy control on AGC parameters ininterconnected power system based on CPS standard[C]. Power Engineering andAutomation Conference (PEAM),8-9Sept.2011:304-307.
    [150] Tao Yu, Bin Zhou, Ka Wing Chan, Liang Chen, Bo Yang. Stochastic optimal relaxedautomatic generation control in non-markov environment based on multi-step Q(λ)Learning[J]. IEEE Transactions on Power Systems,2011,26(3):1272-1282.
    [151]余涛,王宇名,刘前进.互联电网CPS调节指令动态最优分配Q-学习算法[J].中国电机工程学报,2010,30(7):62-69.
    [152]余涛,王宇名,甄卫国,等.基于多步回溯Q(λ)的CPS指令动态优化分配算法[J].控制理论与应用,2010,28(1):58-64.
    [153] Wang Y M, Liu Q J, and Yu T. A reinforcement learning approach to dynamicoptimization of load allocation in AGC System[J].Proceedings of2009IEEE PESGeneral Meeting:1-6.
    [154] Sutton R S, Barto A G. Reinforcement Learning: an introduction. Cambridge: MIT Press,1998.
    [155]高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100.
    [156]张汝波,顾国昌,刘照德,等.强化学习理论、算法及应用[J].控制理论与应用,2000,17(5):637-642.
    [157] Watkins J C H, Dayan Peter.“Q-learning” machine leaning[M],1992,8:279-292.
    [158] Thathachar M A L, Sastry P S. Estimator algorithm for learning automata[C]. In theProceedings of Platinum Jubilee Systems and Signal Processing Conf,1986:602-606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700