用户名: 密码: 验证码:
锂离子电池安全型电解质的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全性问题是二次锂离子电池进一步发展的重要制约因素,而安全隐患的根源在于电解质。发展更安全的锂离子电池电解质比提高电池的功率及能量密度具有更为迫切的需求。本论文首先研究了两种不同结构的二硫化铌电极在液态有机电解质及常规凝胶态聚合物电解质的脱嵌锂性能,并将较优结构的电极材料应用于钠离子电池的电极材料;接着分别探索了新型凝胶聚合物电解质、抗热收缩的聚合物膜及匹配的不燃不爆离子液体、固体电解质等锂离子电池安全型电解质。
     2H结构的二硫化铌脱嵌锂离子的性能较差,为了提高2H-NbS_2电化学性能,采用固相法分别合成了2H-Li_(0.7)NbS_2(点阵群:P6_3/mmc)和3R-NbS_2(点阵群:R3m)并研究了其脱嵌锂行为,结果表明2H-Li_(0.7)NbS_2和3R-NbS_2可以有效利用Nb(IV)/Nb(III)电对进行可逆的充放电反应。在普通液态电解质中2H-LixNbS_2在0.05C倍率时室温放电容量为169.5mAh g~(-1),而3R LixNbS_2为169.0mAh g~(-1)。1C/1C倍率电流循环200圈后,2H-LixNbS_2容量衰减为9%,3R-LixNbS_2衰减率为14%。因此,2H和3R结构的NbS_2都是很好的脱嵌锂材料,尤其是2H结构显示了优异的电化学性能。接着,探索了两种结构的电极在聚(偏氟乙烯六氟丙烯)(P(VdF HFP))凝胶聚合物电解质中的电化学行为。虽然在PVdF HFP聚合物电解质中的小倍率充放电时具有与液态电解质相似的循环稳定性,但倍率性能较差,尤其在10C时容量还不能达到液态电解质的一半。
     将性能较好的2H-NbS_2结构应用于钠离子电池。参照2H-Li_(0.7)NbS_2的经验,采用固相法合成了Na0.5NbS_2(点阵群:P63/mmc)。在钠离子电池中,2H-Na_xNbS_2电极使用液态有机溶剂电解质的室温放电容量为143.6mAh g~(-1),而在凝胶态PVdF HFP基聚合物电解质的放电容量略低,为141.2mAh g~(-1),在x=0.5处出现明显的Na/空位重排现象。采用量化计算分析了重排后NaxNbS_2可能的结构及相对应的电化学性能。虽然层状NaMS_2体系允许钠离子全部嵌入,层内Na~+-Na~+之间的排斥力明显强于Li~+Li~+,导致整个钠离子层的滑移及钠离子的重新排列,这个过程反映在电压曲线上。
     分别使用添加纳米Al_2O_3的共混聚合物PEO-P(VdF-HFP)及共聚物P(MMA-VAc)-co-PEGDA作为聚合物的基体,使用支撑体支撑后,制备得到凝胶聚合物电解质(GPE)。采用机械拉伸、热重分析、扫描电镜、循环伏安、电化学交流阻抗和充放电测试等对制备得到的聚合物膜及对应GPE进行性能分析。添加纳米颗粒后,两种凝胶聚合物电解质的室温锂离子电导率均可以达到3.8×10~(-3)S cm~(-1),共混物PEO-P(VdF-HFP)的机械强度为14.3MPa,而共聚物P(MMA-VAc)-co-PEGDA为16.2MPa。采用相同结构Li/GPE/LiCoO_2的扣式电池在相同测试条件下,共混物循环50圈后容量保持率为87.2%;而共聚物循环100圈后能够保持初始容量的90.9%。制备得到的新型凝胶聚合物电解质具有较好的循环及倍率性能。
     研究了抗热收缩的纳米颗粒/聚合物隔膜,同时结合离子液体PYR_(14)TFSI及锂盐LiTFSI形成新型凝胶聚合物电解质。结果显示,添加SiO_2纳米颗粒的效果优于纳米Al_2O_3。SiO_2/P(MMA-AN-VAc)+LiTFSI+PYR_(14)TFSI/VC为基体的GPE在室温下锂离子电导率为1.2×10~(-3)S cm~(-1),氧化分解电压为5.3V (vs. Li/Li~-)。装成结构为Li/GPE/LiFePO_4的扣式电池后,0.1C倍率放电初始容量为143.4mAh g~(-1),循环50圈后的容量保持率为99.6%。
     采用高温固相法合成了Li_(3-x)Nb_(1-x)WxO_4(0≤x≤0.1)、Li_(2.9)Nb_(0.9)Mo_(0.1O4)、Li_(6+y)Zr_(2-x)0M_xO_7(M=Y、In、Zn、Ti)等系列固体电解质。空位型锂离子固体电解质Li_(2.9)Nb_(0.9)W_(0.1O4)在300℃时锂离子电导率为3.1×10~(-4)S cm~(-1),比掺杂前的母体Li_3NbO_4的锂离子电导率(300℃,1.4×10~(-6)S cm~(-1))提高了两个数量级。循环伏安扫描表明在0.05-5V时掺杂的W(VI)或者Mo(VI)不会被还原,可以稳定存在于扫描电压范围内。而在间隙型固体电解质Li_(6+x)Zr_(2-x)M_xO_7中,x=0.15Li很容易通过固相化学反应制备得到;室温下Li_(6+x)Zr_(1.5)Ti_(0.5)O_7结构中存在x≈0.17Li。Li_(6.15)Zr_(1.85)Y_(0.15)O_7的锂离子电导率比母体Li_6Zr_2O_7固体电解质提高了两个数量级,因此间隙位锂离子可以有效提高锂离子电导率。
Safety problem has become a major issue that inhibits the further development oflithium ion battery. Among all components in lithium ion battery, electrolyte should beresponsible for this unsafe behavior. Developing a safer electrolyte is more urgent thanimproving the power density and energy density in lithium ion battery. Firstly, two differentstructures of niobium disulfide were used as the host for lithium ion intercalation in theorganic liquid electrolyte and normal gel polymer electrolyte, respectively. The structure withbetter performance was chosen for sodium ion intercalation. Then we investigated the newsafe electrolytes of gel polymer electrolyte (GPE), anti thermal shrinkagable separatorcombined with ionic liquid to form GPE, and solid electrolyte for lithium ion battery.
     2H NbS_2is a potential electrode material for Li~+intercalation but its performance ispoor. In order to improve its electrochemical performance,2H Li_(0.7)NbS_2(space group:P63/mmc) and3R NbS_2(s.g: R3m) were synthesized and characterized as electrode materialsfor a lithium ion battery. Both2H Li_(0.7)NbS_2and3R NbS_2showed reversiblecharge/discharge reactions based on the Nb(IV)/Nb(III) redox couple. The dischargecapacities were169.5mAh g~(-1) for2H LixNbS_2and169.0mAh g~(-1) for3R LixNbS_2at0.05Crate and room temperature. After200cycles at1C/1C rate,9%of capacity fade wasobserved for2H LixNbS_2and14%for3R LixNbS_2. It is proven that NbS_2is a goodLi~+intercalation host regardless of its space group, especially the2H structure exhibitsexcellent electrochemical characterization. Then, two structures of NbS_2were used aselectrodes in the poly(vinylidene fluoride hexafluoropropylene)(PVdF HFP) based gelpolymer electrolyte (GPE). The cyclic capacity of GPE was almost the same with organicliquid electrolyte in small charge/discharge current, but the rate performance was poor in GPE:the capacity is less half at10C rate compared with that of the liquid electrolyte.
     The better performance of2H NbS_2structure was chose as an intercalated host for aNa ion battery. Based on the experience of2H Li_(0.7)NbS_2, the Na0.5NbS_2(space group:P6_3/mmc), was synthesized instead of2H NbS_2, by a conventional solid state reaction. The2H NaxNbS_2electrode shows a specific capacity of143.6mAh g~(-1) in organic liquidelectrolyte and141.2mAh g~(-1) in PVdF HFP based GPE, and the voltage profile occurs asignature of Na/vacancy ordering at x=0.5. First principles calculation was applied to revealpossible structures of NaxNbS_2and describe the corresponding electrochemical properties.Although layered NaMS_2systems allow full sodium intercalation, the stronger Na~+Na~+intralayer interaction compared to Li~+Li~+interaction induces layer gliding and Na ion ordering which can be reflected in the voltage profile.
     Adding nano Al_2O_3in blending polymer PEO P(VdF HFP) and copolymerP(MMA VAc) co PEGDA to form polymer matrix, the gel polymer electrolytes (GPEs)were developed after coating the polymer matrix to mechanical support. The performances ofthe polymer membranes and the corresponding GPEs are characterized with mechanical test,thermogravimetric analyzer, scanning electron microscopy, cyclic voltammetry,electrochemical impedance spectroscopy, and charge/discharge test. With doping~(-1)0wt.%nano Al_2O_3, the ionic conductivity of both GPEs was3.8×10~(-3)S cm~(-1), but the mechanicalstrength was a little different,14.3MPa for blending polymer PEO P(VdF HFP); while16.2MPa for P(MMA VAc) co PEGDA. With the same structure of coin cell, Li/GPE/LiCoO_2,the capacity retention is87.2%for PEO P(VdF HFP) after50cycles; andP(MMA VAc) co PEGDA based GPE can keep90.9%of initial capacity after100cycles.
     A new GPE system was developed by using anti thermal shrinkagablenanoparticles/polymer incorporating with lithium salt LiTFSI in ionic liquid PYR_(14)TFSI. Itseems that nanoparticle of SiO_2exibites better performance than nano Al_2O_3. Roomtemperature lithium ionic conductivity of SiO_2/P(MMA AN VAc)+LiTFSI+PYR_(14)TFSI/VC based GPE is1.2×103S cm1with an oxidative decomposition potential of5.3V (vs. Li/Li~+). The battery Li/GPE/LiFePO4shows high initial discharge capacity of143.4mAh g~(-1) at0.1C rate, and keeps99.6%capacity after50cycles.
     Serial of solid electrolytes, Li3xNb1xWxO4(0≤x≤0.1), Li_(2.9)Nb_(0.9)Mo_(0.1O4)andLi6+yZr2xMxO7(M=Y, In, Zn, Ti) were synthesized by conventional solid state reaction. Thestructure and performance of newly developed solid electrolyte were characterized by powderX ray diffraction, scanning electron spectroscopy, energy dispersive X ray, electrochemicalimpedance spectroscopy, cyclic voltammetry and charge discharge test. The ionicconductivity of Li_(2.9)Nb_(0.9)W_(0.1O4)with vacancy structural solid electrolyte is3.1×10~(-4)S cm~(-1)at300℃, which is two orders of magnitude enhancement compared with the parent Li_3NbO_4(1.4×10~(-6)S cm~(-1)at300℃). Cyclic voltammetry measurement indicates that doping tungsten(VI) or molybdenum (VI) can be stable in the voltage scanning range of0.05V and4.5V.Insertion of x=0.15Li in the form of interstitial structure Li_(6+x)Zr_(2-x)M_xO_7can be obtained bysimple solid state synthesis. Electrochemical insertion into Li_(6+x)Zr_(1.5)Ti_(0.5)O_7of excess Li is atleast x≈0.17at room temperature. The ionic conductivity of Li_(6.15)Zr_(1.85)Y_(0.15)O_7is almost twoorders of magnitude higher than the parent Li_6Zr_2O_7, thus, interstitial site of lithium ion canimprove the ionic conductivity effectively.
引文
[1] Whittingham M.S. Electrical energy storage and intercalation chemistry[J]. Science,1976,192(4244):11261127
    [2] Moon S. I.; Kim J. U.; Jin B. S., et al. Characterization of TiS2composite cathodes withsolid polymer electrolyte[J]. Journal of Power Sources,1997,68(2):660663
    [3] Trevey J.E.; Stoldt C.R.; Lee S. H. High power nanocomposite TiS2cathodes forall solid state lithium batteries[J]. Journal of The Electrochemical Society,2011,158(12): A1282A1289
    [4] Yersak T.A.; Yan Y.; Stoldt C., et al. Ambient temperature and pressuremechanochemical preparation of nano LiTiS2[J]. ECS Electrochemistry Letters,2012,1(1): A21A23
    [5] Ryu H. S.; Kim J. S.; Park J. S., et al. Electrochemical properties and dischargemechanism of Na/TiS2cells with liquid electrolyte at room temperature[J]. Journal ofThe Electrochemical Society,2013,160(2): A338A343
    [6] Holleck G.L.; Driscoll J.R. Transition metal sulfides as cathodes for secondary lithiumbatteries II. titanium sulfides[J]. Electrochimica Acta,1977,22(6):647655
    [7] ōnuki Y.; Inada R.; Tanuma S., et al. Electrochemical characteristics of transition metaltrichalcogenides in the secondary lithium battery[J]. Solid State Ionics,1983,11(3):195201
    [8] Hayashi A.; Matsuyama T.; Sakuda A., et al. Amorphous titanium sulfide electrode forall solid state rechargeable lithium batteries with high capacity[J]. Chemistry Letters,2012,41(9):886888
    [9] Vadivel Murugan A.; Quintin M.; Delville M. H., et al. Entrapment ofpoly(3,4ethylenedioxythiophene) between VS2layers to form a new organic inorganicintercalative nanocomposite[J]. Journal of Materials Chemistry,2005,15(8):902909
    [10] Murphy D.W.; Carides J.N.; Di Salvo F.J., et al. Cathodes for nonaqueous lithiumbatteries based on VS2[J]. Materials Research Bulletin,1977,12(8):825830
    [11] Murphy D.W.; Carides J.N. Low voltage behavior of lithium/metal dichalcogenidetopochemical cells[J]. Journal of The Electrochemical Society,1979,126(3):349351
    [12] Takada K.; Inada T.; Kajiyama A., et al. Research on highly reliable solid state lithiumbatteries in NIRIM[J]. Journal of Power Sources,2001,9798(0):762764
    [13] Kim Y.; Goodenough J.B. Reinvestigation of Li1xTiyV1yS2electrodes in suitableelectrolyte: Highly improved electrochemical properties[J]. Electrochemical andSolid State Letters,2009,12(4): A73A75
    [14] Abraham K.M.; Rupich M.W.; Elliot J.E. Rechargeable sodium batteries VI. Cyclingbehavior of VS2,‘VCl3+nS’ and NbS2Cl2cathodes in molten NaAlCl4[J].Electrochimica Acta,1985,30(12):16351643
    [15] Lee E.; Lee W.C.; Asl N.M., et al. Reversible NaVS2(de)intercalation cathode forNa ion batteries[J]. ECS Electrochemistry Letters,2012,1(5): A71A73
    [16] Kumagai N.; Tanno K.; Kumagai N. Charge discharge characteristics and structuralchange in various niobium sulfide cathodes for lithium nonaqueous secondarybatteries[J]. Electrochimica Acta,1982,27(8):10871092
    [17] Dahn D.C.; Carolan J.F.; Haering R.R. Low temperature specific heat of LixNbS2intercalation compounds[J]. Physical Review B,1986,33(8):52145220
    [18] Fang X.; Hua C.; Guo X., et al. Lithium storage in commercial MoS2in differentpotential ranges[J]. Electrochimica Acta,2012,81(0):155160
    [19] Zhang C.; Wu H.B.; Guo Z., et al. Facile synthesis of carbon coated MoS2nanorodswith enhanced lithium storage properties[J]. Electrochemistry Communications,2012,20(0):710
    [20] Zhang C.; Wang Z.; Guo Z., et al. Synthesis of MoS2C one dimensional nanostructureswith improved lithium storage properties[J]. ACS Applied Materials&Interfaces,2012,4(7):37653768
    [21] Das S.K.; Mallavajula R.; Jayaprakash N., et al. Self assembled MoS2carbonnanostructures: influence of nanostructuring and carbon on lithium batteryperformance[J]. Journal of Materials Chemistry,2012,22(26):1298812992
    [22] Zhou X.; Wan L. J.; Guo Y. G. Facile synthesis of MoS2@CMK3nanocomposite asan improved anode material for lithium ion batteries[J]. Nanoscale,2012,4(19):58685871
    [23] Bindumadhavan K.; Srivastava S.K.; Mahanty S. MoS2MWCNT hybrids as a superioranode in lithium ion batteries[J]. Chemical Communications,2013,49(18):18231825
    [24] Chang K.; Chen W. L cysteine assisted synthesis of layered MoS2/graphene compositeswith excellent electrochemical performances for lithium ion batteries[J]. ACS Nano,2011,5(6):47204728
    [25] Hwang H.; Kim H.; Cho J. MoS2nanoplatesconsisting of disordered graphene likelayers for high rate lithium battery anode materials[J]. Nano Letters,2011,11(11):48264830
    [26] Chang K.; Chen W. Single layer MoS2/graphene dispersed in amorphous carbon:towards high electrochemical performances in rechargeable lithium ion batteries[J].Journal of Materials Chemistry,2011,21(43):1717517184
    [27] Yang L.; Wang S.; Mao J., et al. Hierarchical MoS2/polyaniline nanowires with excellentelectrochemical performance for lithium ion batteries[J]. Advanced Materials,2013,25(8):11801184
    [28] Dusheiko V.A.; Lipkin M.S. Synthesis of sulfide cathodic materials and study of theirphysicochemical properties and electrochemical activity[J]. Journal of Power Sources,1995,54(2):264267
    [29] Wang J.; Ng S.H.; Chew S.Y., et al. Characterization of nanosize molybdenum trisulfidefor lithium batteries and MoS3structure confirmation via electrochemistry[J].Electrochemical and Solid State Letters,2007,10(9): A204A207
    [30] Kim B. C.; Takada K.; Ohta N., et al. All solid state Li ion secondary battery with FeSanode[J]. Solid State Ionics,2005,176(3134):23832387
    [31] Dong C.; Zheng X.; Huang B., et al. Enhanced electrochemical performance of FeScoated by Ag as anode for lithium ion batteries[J]. Applied Surface Science,2013,265(0):114119
    [32] Yufit V.; Freedman K.; Nathan M., et al. Thin film iron sulfide cathodes for lithium andLi ion/polymer electrolyte microbatteries[J]. Electrochimica Acta,2004,50(23):417420
    [33] Strauss E.; Golodnitsky D.; Peled E. Study of phase changes during500full cycles ofLi/composite polymer electrolyte/FeS2battery[J]. Electrochimica Acta,2000,45(89):15191525
    [34] Zhang D.; Mai Y.J.; Xiang J.Y., et al. FeS2/C composite as an anode for lithium ionbatteries with enhanced reversible capacity[J]. Journal of Power Sources,2012,217(0):229235
    [35] Kim T.B.; Choi J.W.; Ryu H.S., et al. Electrochemical properties of sodium/pyritebattery at room temperature[J]. Journal of Power Sources,2007,174(2):12751278
    [36] Han S. C.; Kim H. S.; Song M. S., et al. Nickel sulfide synthesized by ball milling asan attractive cathode material for rechargeable lithium batteries[J]. Journal of Alloys andCompounds,2003,351(12):273278
    [37] Wang J.; Chew S.Y.; Wexler D., et al. Nanostructured nickel sulfide synthesized via apolyol route as a cathode material for the rechargeable lithium battery[J].Electrochemistry Communications,2007,9(8):18771880
    [38] Han S. C.; Kim K. W.; Ahn H. J., et al. Charge discharge mechanism of mechanicallyalloyed NiS used as a cathode in rechargeable lithium batteries[J]. Journal of Alloys andCompounds,2003,361(12):247251
    [39] Aso K.; Hayashi A.; Tatsumisago M. Synthesis of NiS carbon fiber composites inhigh boiling solvent to improve electrochemical performance in all solid state lithiumsecondary batteries[J]. Electrochimica Acta,2012,83(0):448453
    [40] Aso K.; Kitaura H.; Hayashi A., et al. Synthesis of nanosized nickel sulfide inhigh boiling solvent for all solid state lithium secondary batteries[J]. Journal ofMaterials Chemistry,2011,21(9):29872990
    [41] Takeuchi T.; Sakaebe H.; Kageyama H., et al. Preparation of NiS2usingspark plasma sintering process and its electrochemical properties[J]. Journal of TheElectrochemical Society,2008,155(9): A679A684
    [42] Matsumura T.; Nakano K.; Kanno R., et al. Nickel sulfides as a cathode forall solid state ceramic lithium batteries[J]. Journal of Power Sources,2007,174(2):632636
    [43] Wang J. Z.; Chou S. L.; Chew S. Y., et al. Nickel sulfide cathode in combination withan ionic liquid based electrolyte for rechargeable lithium batteries[J]. Solid State Ionics,2008,179(40):23792382
    [44] Kim J. S.; Ahn H. J.; Ryu H. S., et al. The discharge properties of Na/Ni3S2cell atambient temperature[J]. Journal of Power Sources,2008,178(2):852856
    [45] Kim J. S.; Lee S. W.; Liu X., et al. Electrochemical properties of Na/Ni3S2cells withliquid electrolytes using various sodium salts[J]. Current Applied Physics,2011,11(4):S11S14
    [46] Kim J. S.; Cho G. B.; Kim K. W., et al. The addition of iron to Ni3S2electrode forsodium secondary battery[J]. Current Applied Physics,2011,11(1): S215S218
    [47] Wang G.X.; Bewlay S.; Yao J., et al. Tungsten disulfide nanotubes for lithium storage[J].Electrochemical and Solid State Letters,2004,7(10): A321A323
    [48] Feng C.; Huang L.; Guo Z., et al. Synthesis of tungsten disulfide (WS2) nanoflakes forlithium ion battery application[J]. Electrochemistry Communications,2007,9(1):119122
    [49] Wang S.; Li G.; Du G., et al. Synthesis and characterization of cobalt doped WS2nanorods for lithium battery applications[J]. Nanoscale Research Letters,2010,5(8):13011306
    [50] Liu H.; Su D.; Wang G., et al. An ordered mesoporous WS2anode material with superiorelectrochemical performance for lithium ion batteries[J]. Journal of Materials Chemistry,2012,22(34):1743717440
    [51] Morales J.; Vicente Pérez C.; Santos J., et al. Electrochemical characteristics ofcrystalline and amorphous SnS2in lithium cells[J]. Journal of The ElectrochemicalSociety,1996,143(9):28472851
    [52] Zhai C.; Du N.; Yang H.Z.D. Large scale synthesis of ultrathin hexagonal tin disulfidenanosheets with highly reversible lithium storage[J]. Chemical Communications,2011,47(4):12701272
    [53] Liu S.; Lu X.; Xie J., et al. Preferential c axis orientation of ultrathin SnS2nanoplates ongraphene as high performance anode for Li ion batteries[J]. ACS Applied Materials&Interfaces,2013,5(5):15881595
    [54] Zhai C.; Du N.; Zhang H., et al. Multiwalled carbon nanotubes anchored with SnS2nanosheets as high performance anode materials of lithium ion batteries[J]. ACSApplied Materials&Interfaces,2011,3(10):40674074
    [55] Li Y.; Tu J.P.; Wu H.M., et al. Mechanochemical synthesis and electrochemicalproperties of nanosized SnS as an anode material for lithium ion batteries[J]. MaterialsScience and Engineering: B,2006,128(13):7579
    [56] Zhu H. Elevated performances of SnS anodes with MWNTs as conductive agent forrechargeable lithium ion batteries[J]. Ionics,2011,17(7):641645
    [57] Vaughn II D.D.; Hentz O.D.; Chen S., et al. Formation of SnS nanoflowers for lithiumion batteries[J]. Chemical Communications,2012,48(45):56085610
    [58] Zhu J.S.; Wang D.L.; Wang L., et al. Facile synthesis of SnS graphene nanocompositeswith high lithium storage capacity[J]. International Journal of Electrochemical Science,2012,7(10):97329737
    [59] Kang J. G.; Park J. G.; Kim D. W. Superior rate capabilities of SnS nanosheetelectrodes for Li ion batteries[J]. Electrochemistry Communications,2010,12(2):307310
    [60] Hayashi A.; Konishi T.; Tadanaga K., et al. All solid state lithium secondary batterieswith SnS P2S5negative electrodes and Li2S P2S5solid electrolytes[J]. Journal of PowerSources,2005,146(12):496500
    [61] Aso K.; Hayashi A.; Tatsumisago M. Synthesis of Needlelike and Platelike SnS ActiveMaterials in High Boiling Solvents and Their Application to All Solid State LithiumSecondary Batteries[J]. Crystal Growth&Design,2011,11(9):39003904
    [62] Jang J. T.; Jeong S.; Seo J. W., et al. Ultrathin zirconium disulfide nanodiscs[J]. Journalof the American Chemical Society,2011,133(20):76367639
    [63] Huai Y.; Gao J.; Deng Z., et al. Preparation and characterization of a special structuralpoly(acrylonitrile) based microporous membrane for lithium ion batteries[J]. Ionics,2010,16(7):603611
    [64] Ahmad S.; Saxena T.K.; Ahmad S., et al. The effect of nanosized TiO2addition onpoly(methylmethacrylate) based polymer electrolytes[J]. Journal of Power Sources,2006,159(1):205209
    [65] Zhang P.; Zhang H.P.; Li G.C., et al. A novel process to prepare porous membranescomprising SnO2nanoparticles and P(MMA AN) as polymer electrolyte[J].Electrochemistry Communications,2008,10(7):10521055
    [66] Aihara Y.; Arai S.; Hayamizu K. Ionic conductivity, DSC and self diffusion coefficientsof lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of thegels and the diffusion mechanism of the ions[J]. Electrochimica Acta,2000,45(89):13211326
    [67] Gentili V.; Panero S.; Reale P., et al. Composite gel type polymer electrolytes foradvanced, rechargeable lithium batteries[J]. Journal of Power Sources,2007,170(1):185190
    [68] Aravindan V.; Vickraman P. A novel gel electrolyte with lithium difluoro(oxalato)boratesalt and Sb2O3nanoparticles for lithium ion batteries[J]. Solid State Sciences,2007,9(11):10691073
    [69] Aravindan V.; Vickraman P.; Sivashanmugam A., et al. Comparison among theperformance of LiBOB, LiDFOB and LiFAP impregnatedpolyvinylidenefluoride hexafluoropropylene nanocomposite membranes by phaseinversion for lithium batteries[J]. Current Applied Physics,2013,13(1):293297
    [70] Cheng C.L.; Wan C.C.; Wang Y.Y. Microporous PVdF HFP based gel polymerelectrolytes reinforced by PEGDMA network[J]. Electrochemistry Communications,2004,6(6):531535
    [71] Su Y.; Shan F.; Li Z., et al.“Pore/bead” membrane for rechargeable lithium ionbatteries[J]. Journal of Applied Polymer Science,2013,127(5):34853490
    [72] Fan L.; Dang Z.; Nan C. W., et al. Thermal, electrical and mechanical properties ofplasticized polymer electrolytes based on PEO/P(VDF HFP) blends[J]. ElectrochimicaActa,2002,48(2):205209
    [73] Kim H. S.; Kum K. S.; Cho W. I., et al. Electrochemical and physical properties ofcomposite polymer electrolyte of poly(methyl methacrylate) and poly(ethylene glycoldiacrylate)[J]. Journal of Power Sources,2003,124(1):221224
    [74] Xi J.; Qiu X.; Chen L. PVDF PEO/ZSM5based composite microporous polymerelectrolyte with novel pore configuration and ionic conductivity[J]. Solid State Ionics,2006,177(78):709713
    [75] Gopalan A.I.; Santhosh P.; Manesh K.M., et al. Development of electrospun PVdF PANmembrane based polymer electrolytes for lithium batteries[J]. Journal of MembraneScience,2008,325(2):683690
    [76] Idris N.H.; Rahman M.M.; Wang J. Z., et al. Microporous gel polymer electrolytes forlithium rechargeable battery application[J]. Journal of Power Sources,2012,201(0):294300
    [77] Wang F. M.; Wu H. C.; Cheng C. S., et al. High ionic transfer of ahyperbranched network gel copolymer electrolyte for potential electric vehicle (EV)application[J]. Electrochimica Acta,2009,54(14):37883793
    [78] Feng T.; Wu F.; Wu C., et al. A free standing, self assembly ternary membrane withhigh conductivity for lithium ion batteries[J]. Solid State Ionics,2012,221(0):2834
    [79] Kim J. K.; Cheruvally G.; Li X., et al. Preparation and electrochemical characterizationof electrospun, microporous membrane based composite polymer electrolytes forlithium batteries[J]. Journal of Power Sources,2008,178(2):815820
    [80] Kim J. K.; Niedzicki L.; Scheers J., et al. Characterization ofN butyl N methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide based polymerelectrolytes for high safety lithium batteries[J]. Journal of Power Sources,2013,224(0):9398
    [81] Liao C.; Sun X. G.; Dai S. Crosslinked gel polymer electrolytes based on polyethyleneglycol methacrylate and ionic liquid for lithium ion battery applications[J].Electrochimica Acta,2013,87(0):889894
    [82] Wetjen M.; Kim G. T.; Joost M., et al. Temperature dependence of electrochemicalproperties of cross linked poly(ethylene oxide) lithiumbis(trifluoromethanesulfonyl)imide N butyl N methylpyrrolidiniumbis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries[J].Electrochimica Acta,2013,87(0):779787
    [83] Wang Y. P.; Gao X. H.; Wang R. M., et al. Effect of functionalized montmorilloniteaddition on the thermal properties and ionic conductivity of PVDF PEG polymerelectrolyte[J]. Reactive and Functional Polymers,2008,68(7):11701177
    [84] Liu L.; Yang P.; Li L., et al. Application of bis(trifluoromethanesulfonyl)imidelithium N methyl N butylpiperidinium bis(trifluoromethanesulfonyl)imide poly(vinylidene difluoride co hexafluoropropylene) ionic liquid gel polymer electrolytes inLi/LiFePO4batteries at different temperatures[J]. Electrochimica Acta,2012,85(0):4956
    [85] Aono H.; Sugimoto E.; Sadaoka Y., et al. Ionic conductivity of solid electrolytes basedon lithium titanium phosphate[J]. Journal of the Electrochemical Society,1990,137(4):10231027
    [86] Peng H.; Xie H.; Goodenough J.B. Use of B2O3to improve Li+ion transport inLiTi2(PO4)3based ceramics[J]. Journal of Power Sources,2012,197(0):310313
    [87] Schroeder M.; Glatthaar S.; Binder J.R. Influence of spray granulation on the propertiesof wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3(LATP) powders[J]. Solid StateIonics,2011,201(1):4953
    [88] Xie H.; Goodenough J.B.; Li Y. Li1.2Zr1.9Ca0.1(PO4)3, a room temperature Li ion solidelectrolyte[J]. Journal of Power Sources,2011,196(18):77607762
    [89] Hong H.Y.P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4and other newLi+superionic conductors[J]. Materials Research Bulletin,1978,13(2):117124
    [90] Kamaya N.; Homma K.; Yamakawa Y., et al. A lithium superionic conductor[J]. NatureMaterials,2011,10(9):682686
    [91] Ong S.P.; Mo Y.; Richards W.D., et al. Phase stability, electrochemical stability andionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se)family of superionic conductors[J]. Energy&Environmental Science,2013,6(1):148156
    [92] Stramare S.; Thangadurai V.; Weppner W. Lithium lanthanum titanates: A review[J].Chemistry of Materials,2003,15(21):39743990
    [93] Yang K. Y.; Wang J. W.; Fung K. Z. Roles of lithium ions and La/Li site vacancies insinterability and total ionic conduction properties of polycrystalline Li3xLa2/3xTiO3solidelectrolytes (0.21≤3x≤0.50)[J]. Journal of Alloys and Compounds,2008,458(12):415424
    [94] Geng H.; Lan J.; Mei A., et al. Effect of sintering temperature on microstructure andtransport properties of Li3xLa2/3xTiO3with different lithium contents[J]. ElectrochimicaActa,2011,56(9):34063414
    [95] Mei A.; Wang X. L.; Feng Y. C., et al. Enhanced ionic transport in lithium lanthanumtitanium oxide solid state electrolyte by introducing silica[J]. Solid State Ionics,2008,179(39):22552259
    [96] Thangadurai V.; Kaack H.; Weppner W.J.F. Novel fast lithium ion conduction ingarnet type Li5La3M2O12(M=Nb, Ta)[J]. Journal of the American Ceramic Society,2003,86(3):437440
    [97] Thangadurai V.; Weppner W. Li6ALa2Ta2O12(A=Sr, Ba): Novel garnet like oxides forfast lithium ion conduction[J]. Advanced Functional Materials,2005,15(1):107112
    [98] Murugan R.; Thangadurai V.; Weppner W. Fast lithium ion conduction in garnet typeLi7La3Zr2O12[J]. Angewandte Chemie International Edition,2007,46(41):77787781
    [99] El Shinawi H.; Janek J. Stabilization of cubic lithium stuffed garnets of the type“Li7La3Zr2O12” by addition of gallium[J]. Journal of Power Sources,2013,225(0):1319
    [100] Li Y.; Han J. T.; Wang C. A., et al. Optimizing Li+conductivity in a garnetframework[J]. Journal of Materials Chemistry,2012,22(30):1535715361
    [101] Goodenough J.B.; Park K. S. The Li ion rechargeable battery: A perspective[J].Journal of the American Chemical Society,2013,135(4):11671176
    [102] Song J.; Shin D.W.; Lu Y., et al. Role of oxygen vacancies on the performance ofLi[Ni0.5xMn1.5+x]O4(x=0,0.05, and0.08) spinel cathodes for lithium ion batteries[J].Chemistry of Materials,2012,24(15):31013109
    [103] Yang G.; Kim Y.; Goodenough J.B. The influence on Fermi energy of Li site change inLizTi1yNiyS2on crossing z=1[J]. Journal of Materials Chemistry,2011,21(27):1016010164
    [104] Salyer P.A.; Barker M.G.; Blake A.J., et al. Lithium niobium disulfide, Li0.63NbS2[J].Acta Crystallographica Section C,2003,59(1): i4i6
    [105] Salyer P.A.; Barker M.G.; Gregory D.H., et al. Li0.7NbS2: structural effects of increasedalkali metal content[J]. Acta Crystallographica Section E,2003,59(8): i112i115
    [106] Li Y.; Sun C.; Goodenough J.B. Electrochemical lithium intercalation in monoclinicNb12O29[J]. Chemistry of Materials,2011,23(9):22922294
    [107] Wei M.; Wei K.; Ichihara M., et al. Nb2O5nanobelts: A lithium intercalation host withlarge capacity and high rate capability[J]. Electrochemistry Communications,2008,10(7):980983
    [108] Goodenough J.B.; Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry ofMaterials,2009,22(3):587603
    [109] Berthelot R.; Carlier D.; Delmas C. Electrochemical investigation of the P2NaxCoO2phase diagram[J]. Nature Materials,2011,10(1):7480
    [110] Yabuuchi N.; Kajiyama M.; Iwatate J., et al. P2type Nax[Fe1/2Mn1/2]O2made fromearth abundant elements for rechargeable Na batteries[J]. Nature Materials,2012,11(6):512517
    [111] Komaba S.; Yabuuchi N.; Nakayama T., et al. Study on the reversible electrode reactionof Na1xNi0.5Mn0.5O2for a rechargeable sodium ion battery[J]. Inorganic Chemistry,2012,51(11):62116220
    [112] Komaba S.; Takei C.; Nakayama T., et al. Electrochemical intercalation activity oflayered NaCrO2vs. LiCrO2[J]. Electrochemistry Communications,2010,12(3):355358
    [113] Didier C.; Guignard M.; Denage C., et al. Electrochemical Na deintercalation fromNaVO2[J]. Electrochemical and Solid State Letters,2011,14(5): A75A78
    [114] Moreau P.; Guyomard D.; Gaubicher J., et al. Structure and stability of sodiumintercalated phases in olivine FePO4[J]. Chemistry of Materials,2010,22(14):41264128
    [115] Plashnitsa L.S.; Kobayashi E.; Noguchi Y., et al. Performance of NASICON symmetriccell with ionic liquid electrolyte[J]. Journal of The Electrochemical Society,2010,157(4): A536A543
    [116] Omloo W.P.F.A.M.; Jellinek F. Intercalation compounds of alkali metals with niobiumand tantalum dichalcogenides[J]. Journal of the Less Common Metals,1970,20(2):121129
    [117] Salyer P.A.; Barker M.G.; Blake A.J., et al. New metathesis routes to layereddichalcogenides: synthesis, crystal growth and structure of NayNbX2(y=0.5, X=S,Se)[J]. Journal of Materials Chemistry,2003,13(2):175180
    [118] Kohn W.; Sham L.J. Self consistent equations including exchange and correlationeffects[J]. Physical Review,1965,140(4A): A1133A1138
    [119] Kohn W.; Becke A.D.; Parr R.G. Density functional theory of electronic structure[J].The Journal of Physical Chemistry,1996,100(31):1297412980
    [120] Perdew J.P.; Wang Y. Accurate and simple analytic representation of the electron gascorrelation energy[J]. Physical Review B,1992,45(23):1324413249
    [121] Wales D.J.; Doye J.P.K. Global optimization by basin hopping and the lowest energystructures of Lennard Jones clusters containing up to110atoms[J]. The Journal ofPhysical Chemistry A,1997,101(28):51115116
    [122] Park K. S.; Xiao P.; Kim S. Y., et al. Enhanced charge transfer kinetics by anionsurface modification of LiFePO4[J]. Chemistry of Materials,2012,24(16):32123218
    [123] Goedecker S. Minima hopping: An efficient search method for the global minimum ofthe potential energy surface of complex molecular systems[J]. The Journal of ChemicalPhysics,2004,120(21):99119917
    [124] Guignard M.; Didier C.; Darriet J., et al. P2NaxVO2system as electrodes for batteriesand electron correlated materials[J]. Nature Materials,2013,12(1):7480
    [125] Van der Ven A.; Aydinol M.K.; Ceder G., et al. First principles investigation of phasestability in LixCoO2[J]. Physical Review B,1998,58(6):29752987
    [126] Reimers J.N.; Dahn J.R. Electrochemical and in situ X ray diffraction studies oflithium intercalation in LixCoO2[J]. Journal of The Electrochemical Society,1992,139(8):20912097
    [127] Van der Ven A.; Ceder G. Lithium diffusion mechanisms in layered intercalationcompounds[J]. Journal of Power Sources,2001,9798(0):529531
    [128] Henkelman G.; Jonsson H. Improved tangent estimate in the nudged elastic bandmethod for finding minimum energy paths and saddle points[J]. The Journal ofChemical Physics,2000,113(22):99789985
    [129] Henkelman G.; Uberuaga B.P.; Jonsson H. A climbing image nudged elastic bandmethod for finding saddle points and minimum energy paths[J]. The Journal ofChemical Physics,2000,113(22):99019904
    [130] Yao W.; Zhang Z.; Gao J., et al. Vinyl ethylene sulfite as a new additive in propylenecarbonate based electrolyte for lithium ion batteries[J]. Energy&EnvironmentalScience,2009,2(10):11021108
    [131] Rao M.M.; Liu J.S.; Li W.S., et al. Performance improvement ofpoly(acrylonitrile vinyl acetate) by activation of poly(methyl methacrylate)[J]. Journalof Power Sources,2009,189(1):711715
    [132] Rao M.M.; Liu J.S.; Li W.S., et al. Preparation and performance analysis ofPE supported P(AN co MMA) gel polymer electrolyte for lithium ion batteryapplication[J]. Journal of Membrane Science,2008,322(2):314319
    [133] Liao Y.H.; Zhou D.Y.; Rao M.M., et al. Self supported poly(methylmethacrylate acrylonitrile vinyl acetate) based gel electrolyte for lithium ion battery[J].Journal of Power Sources,2009,189(1):139144
    [134] Lu L.; Zuo X.X.; Li W.S., et al. Study on the preparation and performances ofPMMA Vac polymer electrolyte for lithium ion battery use[J]. Acta Chimica Sinica,2007,65(6):475480
    [135] Jiang Z.; Carroll B.; Abraham K.M. Studies of some poly(vinylidene fluoride)electrolytes[J]. Electrochimica Acta,1997,42(17):26672677
    [136] Prosini P.P.; Villano P.; Carewska M. A novel intrinsically porous separator forself standing lithium ion batteries[J]. Electrochimica Acta,2002,48(3):227233
    [137] wierczyński D.; Zalewska A.; Wieczorek W. Composite polymeric electrolytes fromthe PEODME LiClO4SiO2system[J]. Chemistry of Materials,2001,13(5):15601564
    [138] Xi J.; Qiu X.; Cui M., et al. Enhanced electrochemical properties of PEO basedcomposite polymer electrolyte with shape selective molecular sieves[J]. Journal ofPower Sources,2006,156(2):581588
    [139] Song M. K.; Kim Y. T.; Cho J. Y., et al. Composite polymer electrolytes reinforcedby non woven fabrics[J]. Journal of Power Sources,2004,125(1):1016
    [140] Bruce P.G.; Vincent C.A. Steady state current flow in solid binary electrolyte cells[J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1987,225(12):117
    [141] Evans J.; Vincent C.A.; Bruce P.G. Electrochemical measurement of transferencenumbers in polymer electrolytes[J]. Polymer,1987,28(13):23242328
    [142] Tian Z.; He X.; Pu W., et al. Preparation of poly(acrylonitrile butyl acrylate) gelelectrolyte for lithium ion batteries[J]. Electrochimica Acta,2006,52(2):688693
    [143] Shah D.; Maiti P.; Gunn E., et al. Dramatic enhancements in toughness ofpolyvinylidene fluoride nanocomposites via nanoclay directed crystal structure andmorphology[J]. Advanced Materials,2004,16(14):11731177
    [144] Wang Y. J.; Kim D. Crystallinity, morphology, mechanical properties and conductivitystudy of in situ formed PVdF/LiClO4/TiO2nanocomposite polymer electrolytes[J].Electrochimica Acta,2007,52(9):31813189
    [145] Rao M.M.; Liu J.S.; Li W.S., et al. Polyethylene supported poly(acrylonitrile comethyl methacrylate)/nano Al2O3microporous composite polymer electrolyte forlithium ion battery[J]. Journal of Solid State Electrochemistry,2010,14(2):255261
    [146] Nookala M.; Kumar B.; Rodrigues S. Ionic conductivity and ambient temperature Lielectrode reaction in composite polymer electrolytes containing nanosize alumina[J].Journal of Power Sources,2002,111(1):165172
    [147] Dias F.B.; Plomp L.; Veldhuis J.B.J. Trends in polymer electrolytes for secondarylithium batteries[J]. Journal of Power Sources,2000,88(2):169191
    [148] Liao Y.; Rao M.; Li W., et al. Improvement in ionic conductivity of self supportedP(MMA AN VAc) gel electrolyte by fumed silica for lithium ion batteries[J].Electrochimica Acta,2009,54(26):63966402
    [149] Panero S.; Scrosati B.; Sumathipala H.H., et al. Dual composite polymer electrolyteswith enhanced transport properties[J]. Journal of Power Sources,2007,167(2):510514
    [150] Manuel Stephan A.; Nahm K.S.; Prem Kumar T., et al. Nanofiller incorporatedpoly(vinylidene fluoride hexafluoropropylene)(PVdF HFP) composite electrolytes forlithium batteries[J]. Journal of Power Sources,2006,159(2):13161321
    [151] Chung S.H.; Wang Y.; Persi L., et al. Enhancement of ion transport in polymerelectrolytes by addition of nanoscale inorganic oxides[J]. Journal of Power Sources,2001,9798(0):644648
    [152] Stolarska M.; Niedzicki L.; Borkowska R., et al. Structure, transport properties andinterfacial stability of PVdF/HFP electrolytes containing modified inorganic filler[J].Electrochimica Acta,2007,53(4):15121517
    [153] Liu Z.; Huang F.; Yang J., et al. New lithium ion conductor, thio LISICON lithiumzirconium sulfide system[J]. Solid State Ionics,2008,179(2732):17141716
    [154] Sivakumar M.; Subadevi R.; Rajendran S., et al. Compositional effect of PVdF PEMAblend gel polymer electrolytes for lithium polymer batteries[J]. European PolymerJournal,2007,43(10):44664473
    [155] Chen Yang Y.W.; Wang Y.L.; Chen Y.T., et al. Influence of silica aerogel on theproperties of polyethylene oxide based nanocomposite polymer electrolytes for lithiumbattery[J]. Journal of Power Sources,2008,182(1):340348
    [156] Yang C. M.; Kim H. S.; Na B. K., et al. Gel type polymer electrolytes with differenttypes of ceramic fillers and lithium salts for lithium ion polymer batteries[J]. Journal ofPower Sources,2006,156(2):574580
    [157] Jiang Y. X.; Chen Z. F.; Zhuang Q. C., et al. A novel composite microporouspolymer electrolyte prepared with molecule sieves for Li ion batteries[J]. Journal ofPower Sources,2006,160(2):13201328
    [158] Christie A.M.; Christie L.; Vincent C.A. Selection of new Kynar based electrolytes forlithium ion batteries[J]. Journal of Power Sources,1998,74(1):7786
    [159] Ali A.M.M.; Mohamed N.S.; Arof A.K. Polyethylene oxide (PEO) ammonium sulfate((NH4)2SO4) complexes and electrochemical cell performance[J]. Journal of PowerSources,1998,74(1):135141
    [160] Zhang S.S.; Ervin M.H.; Xu K., et al. Microporous poly(acrylonitrile methylmethacrylate) membrane as a separator of rechargeable lithium battery[J].Electrochimica Acta,2004,49(20):33393345
    [161] Li G.; Li Z.; Zhang P., et al. Research on a gel polymer electrolyte for Li ionbatteries[J]. Pure and Applied Chemistry,2008,80(11):25532563
    [162] Uchiyama R.; Kusagawa K.; Hanai K., et al. Development of dry polymer electrolytebased on polyethylene oxide with co bridging agent crosslinked by electron beam[J].Solid State Ionics,2009,180(23):205211
    [163] Ahmad S.; Ahmad S.; Agnihotry S.A. Nanocomposite electrolytes with fumed silica inpoly(methyl methacrylate): thermal, rheological and conductivity studies[J]. Journal ofPower Sources,2005,140(1):151156
    [164] Liao Y.H.; Rao M.M.; Li W.S., et al. Fumed silica doped poly(butylmethacrylate styrene) based gel polymer electrolyte for lithium ion battery[J]. Journalof Membrane Science,2010,352(12):9599
    [165] Croce F.; Appetecchi G.B.; Persi L., et al. Nanocomposite polymer electrolytes forlithium batteries[J]. Nature,1998,394(6692):456458
    [166] Rao M.M.; Liu J.S.; Li W.S., et al. Polyethylene supportedpoly(acrylonitrile co methyl methacrylate)/nano Al2O3microporous compositepolymer electrolyte for lithium ion battery[J]. Journal of Solid State Electrochemistry,2009,14(2):255261
    [167] Li Z. H.; Su G. Y.; Wang X. Y., et al. Ionic conductivity study of PVDF HFPcomposite electrolyte filled with Al2O3nanoparticles[J]. Chemical Journal of ChineseUniversities Chinese,2003,24(11):20652068
    [168] Cheng C.L.; Wan C.C.; Wang Y.Y., et al. Thermal shutdown behavior of PVdF HFPbased polymer electrolytes comprising heat sensitive cross linkable oligomers[J].Journal of Power Sources,2005,144(1):238243
    [169] Park J. H.; Cho J. H.; Park W., et al. Close packed SiO2/poly(methyl methacrylate)binary nanoparticles coated polyethylene separators for lithium ion batteries[J]. Journalof Power Sources,2010,195(24):83068310
    [170] Tian Z.; Pu W.; He X., et al. Preparation of a microporous polymer electrolyte based onpoly(vinyl chloride)/poly(acrylonitrile butyl acrylate) blend for Li ion batteries[J].Electrochimica Acta,2007,52(9):31993206
    [171] Arora P.; Zhang Z. Battery separators[J]. Chemical Reviews,2004,104(10):44194462
    [172] Park J. H.; Park W.; Kim J.H., et al. Close packed poly(methyl methacrylate)nanoparticle arrays coated polyethylene separators for high power lithium ion polymerbatteries[J]. Journal of Power Sources,2011,196(16):70357038
    [173] Jeong H. S.; Hong S.C.; Lee S. Y. Effect of microporous structure on thermalshrinkage and electrochemical performance of Al2O3/poly(vinylidenefluoride hexafluoropropylene) composite separators for lithium ion batteries[J]. Journalof Membrane Science,2010,364(12):177182
    [174] Kalyana Sundaram N.T.; Subramania A. Nano size LiAlO2ceramic filler incorporatedporous PVDF co HFP electrolyte for lithium ion battery applications[J].Electrochimica Acta,2007,52(15):49874993
    [175] Zhang S.S.; Xu K.; Jow T.R. An inorganic composite membrane as the separator ofLi ion batteries[J]. Journal of Power Sources,2005,140(2):361364
    [176] Jeong H. S.; Lee S. Y. Closely packed SiO2nanoparticles/poly(vinylidenefluoride hexafluoropropylene) layers coated polyethylene separators for lithium ionbatteries[J]. Journal of Power Sources,2011,196(16):67166722
    [177] Cho T. H.; Tanaka M.; Onishi H., et al. Battery performances and thermal stability ofpolyacrylonitrile nano fiber based nonwoven separators for Li ion battery[J]. Journalof Power Sources,2008,181(1):155160
    [178] Takemura D.; Aihara S.; Hamano K., et al. A powder particle size effect on ceramicpowder based separator for lithium rechargeable battery[J]. Journal of Power Sources,2005,146(12):779783
    [179] Jeong H. S.; Kim D. W.; Jeong Y.U., et al. Effect of phase inversion on microporousstructure development of Al2O3/poly(vinylidene fluoride hexafluoropropylene) basedceramic composite separators for lithium ion batteries[J]. Journal of Power Sources,2010,195(18):61166121
    [180] Liao Y.H.; Li X.P.; Fu C.H., et al. Polypropylene supported and nano Al2O3dopedpoly(ethylene oxide) poly(vinylidene fluoride hexafluoropropylene) based gelelectrolyte for lithium ion batteries[J]. Journal of Power Sources,2011,196(4):21152121
    [181] Li X.P.; Rao M.M.; Liao Y.H., et al. Non woven fabric supportedpoly(acrylonitrile vinyl acetate) gel electrolyte for lithium ion battery use[J]. Journal ofApplied Electrochemistry,2010,40(12):21852191
    [182] Dalavi S.; Xu M.; Ravdel B., et al. Nonflammable electrolytes for lithium ion batteriescontaining dimethyl methylphosphonate[J]. Journal of The Electrochemical Society,2010,157(10): A1113A1120
    [183] Raghavan P.; Zhao X.; Manuel J., et al. Electrochemical performance of electrospunpoly(vinylidene fluoride co hexafluoropropylene) based nanocomposite polymerelectrolytes incorporating ceramic fillers and room temperature ionic liquid[J].Electrochimica Acta,2010,55(4):13471354
    [184] Li M.; Yang L.; Fang S., et al. Novel polymeric ionic liquid membranes as solidpolymer electrolytes with high ionic conductivity at moderate temperature[J]. Journal ofMembrane Science,2011,366(12):245250
    [185] Xiang H.F.; Yin B.; Wang H., et al. Improving electrochemical properties of roomtemperature ionic liquid (RTIL) based electrolyte for Li ion batteries[J]. ElectrochimicaActa,2010,55(18):52045209
    [186] Navarra M.A.; Manzi J.; Lombardo L., et al. Ionic liquid based membranes aselectrolytes for advanced lithium polymer batteries[J]. ChemSusChem,2011,4(1):125130
    [187] Fernicola A.; Weise F.C.; Greenbaum S.G., et al. Lithium ion conducting electrolytes:From an ionic liquid to the polymer membrane[J]. Journal of the ElectrochemicalSociety,2009,156(7): A514A520
    [188] Yun Y.S.; Kim J.H.; Lee S. Y., et al. Cycling performance and thermal stability oflithium polymer cells assembled with ionic liquid containing gel polymer electrolytes[J].Journal of Power Sources,2011,196(16):67506755
    [189] Shin J.H.; Basak P.; Kerr J.B., et al. Rechargeable Li/LiFePO4cells usingN methyl N butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide LiTFSIelectrolyte incorporating polymer additives[J]. Electrochimica Acta,2008,54(2):410414
    [190] Sun X. G.; Dai S. Electrochemical investigations of ionic liquids with vinylenecarbonate for applications in rechargeable lithium ion batteries[J]. Electrochimica Acta,2010,55(15):46184626
    [191] Guerfi A.; Duchesne S.; Kobayashi Y., et al. LiFePO4and graphite electrodes withionic liquids based on bis(fluorosulfonyl)imide (FSI) for Li ion batteries[J]. Journal ofPower Sources,2008,175(2):866873
    [192] Jin J.; Li H.H.; Wei J.P., et al. Li/LiFePO4batteries with room temperature ionic liquidas electrolyte[J]. Electrochemistry Communications,2009,11(7):15001503
    [193] Sakaebe H.; Matsumoto H. N Methyl N propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI) novel electrolyte base for Libattery[J]. Electrochemistry Communications,2003,5(7):594598
    [194] Fang X.; Yu X.; Liao S., et al. Lithium storage performance in ordered mesoporousMoS2electrode material[J]. Microporous and Mesoporous Materials,2012,151(0):418423
    [195] Kim G.T.; Jeong S.S.; Xue M.Z., et al. Development of ionic liquid based lithiumbattery prototypes[J]. Journal of Power Sources,2012,199(0):239246
    [196] Zhang S.S. A review on the separators of liquid electrolyte Li ion batteries[J]. Journalof Power Sources,2007,164(1):351364
    [197] Kum K. S.; Song M. K.; Kim Y. T., et al. The effect of mixed salts in gel coatedpolymer electrolyte for advanced lithium battery[J]. Electrochimica Acta,2004,50(23):285288
    [198] He X.; Shi Q.; Zhou X., et al. In situ composite of nano SiO2P(VDF HFP) porouspolymer electrolytes for Li ion batteries[J]. Electrochimica Acta,2005,51(6):10691075
    [199] Aravindan V.; Vickraman P. Characterization of SiO2and Al2O3incorporatedPVdF HFP based composite polymer electrolytes with LiPF3(CF3CF2)3[J]. Journal ofApplied Polymer Science,2008,108(2):13141322
    [200] Maldonado Manso P.; Losilla E.R.; Martínez Lara M., et al. High lithium ionicconductivity in the Li1+xAlxGeyTi2x y(PO4)3NASICON series[J]. Chemistry ofMaterials,2003,15(9):18791885
    [201] Norhaniza R.; Subban R.H.Y.; Mohamed N.S. Ion conduction in vanadium substitutedLiSn2P3O12electrolyte nanomaterials[J]. Journal of Materials Science,2011,46(24):78157821
    [202] Murayama M.; Kanno R.; Kawamoto Y., et al. Structure of the thio LISICON,Li4GeS4[J]. Solid State Ionics,2002,154155(0):789794
    [203] Mizumoto K.; Hayashi S. Conductivity relaxation in lithium ion conductors with theperovskite type structure[J]. Solid State Ionics,2000,127(34):241251
    [204] Xie H.; Alonso J.A.; Li Y., et al. Lithium distribution in aluminum free cubicLi7La3Zr2O12[J]. Chemistry of Materials,2011,23(16):35873589
    [205] McLaren V.L.; Kirk C.A.; Poisot M., et al. Li+ion conductivity in rock salt structurednickel doped Li3NbO4[J]. Dalton Transactions,2004,0(19):30423047
    [206] Ukei K.; Suzuki H.; Shishido T., et al. Li3NbO4[J]. Acta Crystallographica Section C,1994,50(5):655656
    [207] Mather G.C.; Dussarrat C.; Etourneau J., et al. A review of cation ordered rock saltsuperstructure oxides[J]. Journal of Materials Chemistry,2000,10(10):22192230
    [208] Shaju K.M.; Bruce P.G. Nano LiNi0.5Mn1.5O4spinel: a high power electrode for Li ionbatteries[J]. Dalton Transactions,2008,0(40):54715475
    [209] Ohzuku T.; Ueda A.; Yamamoto N. Zero strain insertion material of Li[Li1/3Ti5/3] O4for rechargeable lithium cells[J]. Journal of the Electrochemical Society,1995,142(5):14311435
    [210] Ganter M.J.; DiLeo R.A.; Schauerman C.M., et al. Differential scanning calorimetryanalysis of an enhanced LiNi0.8Co0.2O2cathode with single wall carbon nanotubeconductive additives[J]. Electrochimica Acta,2011,56(21):72727277
    [211] Padhi A.K.; Nanjundaswamy K.S.; Goodenough J.B. Phospho olivines aspositive electrode materials for rechargeable lithium batteries[J]. Journal of theElectrochemical Society,1997,144(4):11881194
    [212] Rao R.P.; Reddy M.V.; Adams S., et al. Preparation and mobile ion transport studies ofTa and Nb doped Li6Zr2O7Li fast ion conductors[J]. Materials Science and Engineering:B,2012,177(1):100105
    [213] Zocchi M.; Sora I.N.; Depero L.E., et al. A single crystal X ray diffraction study oflithium zirconate, Li6Zr2O7, a solid state ionic conductor[J]. Journal of Solid StateChemistry,1993,104(2):391396
    [214] Abrahams I.; Lightfoot P.; Bruce P.G. Li6Zr2O7, a new anion vacancy ccp basedstructure, determined by ab initio powder diffraction methods[J]. Journal of Solid StateChemistry,1993,104(2):397403
    [215] Czekalla R.; Jeitschko W. Preparation and crystal structure of Li6Zr2O7andLi6Hf2O7[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1993,619(12):20382042
    [216] Chen K.; Huang M.; Shen Y., et al. Enhancing ionic conductivity of Li0.35La0.55TiO3ceramics by introducing Li7La3Zr2O12[J]. Electrochimica Acta,2012,80(0):133139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700