用户名: 密码: 验证码:
同杆双回线故障稳态分析及其单端量选相的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同杆并架双回线路因具有节约土地、建设周期短、输送能力强、节省投资等优点,已被广泛应用于电网。但是由于同杆并架双回线的两回线间距相对较小,易于发生跨线故障,而且由于两回线间的互感耦合明显,可能的故障种类繁多,故障特征更加复杂,传统的基于单回线单端电气量的保护选相难以正确反应故障。因此,论文从同杆双回线故障稳态分析入手,围绕双回线单端电气量选相开展研究,主要工作和创新性成果如下:
     针对回线间距的紧凑型窄双回线更易于发生跨线故障,基于此类易于发生跨线故障的同杆双回线杆塔结构,本文提出了一种基于互感均值的双回线故障定性分析方法,可以分析计算同杆双回线上的所有单回线短路及跨线故障。利用窄线间距双回线互感均值替代数值彼此差异较小的相间互感和线间互感,进而可将双回线上的任一短路故障简化为一个等效的单回线故障,用对称分量即可分析解算,最后将所得电气量代入原双回线系统解算出双回线各相线的故障电气量,解决了此类双回线故障特征定性分析困难的问题。
     针对目前已公开的文献中对双回线故障分析不完整或缺乏定量的电气量表达式推导的情况,本文利用六序分量分析法对一般同杆双回线模型所有20类短路故障进行了故障分析,故障分析过程中考虑了过渡电阻的影响,并推导了完备的保护相关的故障电气量表达式。通过对故障分析所得的电气量表达式进行分析和研究,总结了双回线故障点六序电流分量、保护安装处六序电流分量、保护安装处同向反向电流相分量、保护安装处各回线同名相电流相分量等电流故障量的故障特征,以及双回线保护安装处电压的序分量特征和相分量特征,给之后提出新的双回线选相原理提供了理论依据。
     提出了一种利用双回线单端故障电流相分量选相的新原理,首先利用故障后双回线同名相电流和的相分量选出故障相别;然后通过同名相电流相位确定是否为近端故障,若为近端故障,则通过比较同名相电流大小和相位来选出具体的故障相线;若判断为非近端故障,则比较故障相的两同名相电流的接近程度,即利用故障相的同名相电流差与同名相电流和的比值选出故障同名相。该原理简单易行,无需长数据通道,能够对双回线上各种故障进行选相,尤其对跨线故障有较好的选择性,可用于保护Ⅰ段选相,弥补了目前应用于双回线上的其他选相方法选相功能不全面甚至误选相的弊端。
     提出了新的适用于现场应用的综合选相元件。首先引入了电压辅助选相,即故障后初始阶段利用电压选相和电流选相共同确定故障相别,之后再利用电流选相判断具体的故障相线,解决了单纯电流选相时因电流互感器(current tranformer, CT)饱和而漏选故障相的问题;其次提出了一种反向同向相电流比值门槛的自适应机制并引入到非近端故障下的电流选相中,增强了电流选相的适应性和可靠性;再次改进了近端故障判别的原则,避免了线路“近端”与“非近端”临界处故障时误选相。本文提出的综合选相元件能够很好的适应现场的复杂情况,且不受线间互感的影响,具有良好的选相能力。
Common-tower double-circuit line has been widely used in power system, due to the advantages of low occupancy of land, short constructing period, high transmission capacity and saving money. But the span between the parallel lines is small, which may more likely to lead to the interline fault. The mutual inductance coupling between parallel lines is obvious, and the fault characteristics are more complicated under various faults. Therefore, when the phase selector for traditional distance protection which only uses single-circuit line's one-terminal electrical quantities is applied to parallel transmission lines, it may lead to mal-operation. The dissertation begins with fault steady-state analysis and focuses on phase selection research using parallel transmission lines'one-terminal electrical quantities. They are mainly including:
     Aiming at the parallel lines which have narrow line-to-line distance have more risks on interline fault, a qualitative analysis approach for fault on parallel lines using average mutual inductance has been proposed based on the tower configurations of these double-transmission lines. Through this approach, all the simple faults and interline faults can be anglicized and calculated. Using the average mutual inductance substitutes for mutual inductance between lines and mutual inductance between phases which are little different, the parallel lines'model can be simplified using the average mutual inductance. Via equivalent simplification, the interline fault can be simplified to a virtual single-circuit-line fault form for calculation, and the achieved electric quantities can be used in the original network for calculating those of the parallel lines. It solves the problem that the qualitative analysis for fault on these parallel lines is difficult.
     Aiming at in the open literature the fault analysis for fault on parallel lines is not complete and lack of deducing electrical quantity expression, based on the method of six sequence fault component, all the20kind of fault on normal parallel lines has been analyzed. The analysis process considered the transition resistance, and deducing integrated electrical quantity expressions which are related to protection. Via analyzing the achieved electrical quantity expressions, the fault characteristics of six sequence currents at fault point and the measuring point have been researched, so have those of same-direction currents (T-currents). opposite-direction currents (F-currents) and phase-currents'phase components at the measuring point. Besides, the sequence voltages and phase voltages at the measuring point have been studied also. All the theoretical analysis and research provided theoretical foundation for proposing new phase selection scheme for double-circuit line in later study.
     A new fault phase selection scheme using parallel lines'one-terminal fault components of phase currents has been proposed. Firstly, select the fault phase using the sum-currents of parallel lines'same-name phases. Then, judge the fault is at the parallel lines near-terminal or not. If it is true, select the fault phase lines via comparing the fault component values and phases of same-name-phase currents; if it is false, select the fault phase lines via comparing the closeness of fault phases' same-name-phase currents, or in other words identify the fault phase lines using the phase component value of F current/T current. The scheme is simple and easy to carry out with no need for long data channels. It can serve for the relay protection's first section. Moreover, it can deal with all kind of short faults on same-tower double circuit lines, especially has better performance for interline fault. It is better than other phase selection methods applied to double-circuit line, which can't deal with complex interline fault even lead to select wrong phases.
     A novel comprehensive phase selector which is suitable for applying in on-the-spot application has been presented. Firstly, phase selection with assistant voltages has been brought in, namely after fault happenning phase selector selects the fault phases using voltages and currents separately and gets a result by cooperation, then using currents to judge the specific fault phase lines. In this way, it solves the problem that phase selector which only uses currents misses fault phases because of CT saturation. Secondly, an adaptive mechanism of using the ratio of F current and T current has been proposed and brought in for selecting fault phase lines using currents when the fault is not at the near-terminal. It improves the adaptability and reliability of the phase selection scheme. Thirdly, the rule for judging near-terminal fault has been improved, avoiding unwanted phases selected when the fault point is at the end position of the near-terminal. In general, the presented comprehensive phase selector can fit the complicate working environment well and has remarkable ability for phase selection, without influence of mutual inductance between lines.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [2]葛耀中.新型继电保护与故障测距原理与技术(第二版)[M].西安:西安交通大学出版社,2007
    [3]法伊比索维奇(?)著,李声权译.日本东京电力公司[J].水电科技进展,2002,2:17-21
    [4]Sargent M. A., Darveniza M.. Lightning Performance of Double Circuit Transmission Line[J]. IEEE Transaction on Power Apparatus and Systems, 1970,89(5):913-924
    [5]朱声石.高压电网继电保护原理与技术(第三版)[M].北京:中国电力出版社,2005
    [6]俞波.超高压同杆并架双回线路微机保护的研究[D].北京:华北电力大学博士学位论文,2002
    [7]刘万顺,黄少锋,徐玉琴.电力系统故障分析(第三版)[M].北京:中国电力出版社,2010
    [8]俞波,杨奇逊,李营,等.同杆并架双回线保护选相元件研究[J].中国电机工程学报,2003,23(4):38-42
    [9]刘千宽,黄少锋,王兴国.同杆并架双回线基于电流突变量的综合选相[J].电力系统自动化,2007,31(21):53-57
    [10]吴麟琳,黄少锋.零序互感对相邻线路纵联零序方向保护的影响[J].电力系统保护与控制,2011,39(3):24-28
    [11]H. Shateri, S. Jamali. Measured Impedance for Inter Phase Faults on Next Line and Second Circuit of a Double Circuit Line[C].5th International Conference on Electrical and Computer Engineering(ICECE 2008),2008: 333-336
    [12]郑军,邓妍,邰能灵.适用于同杆并架双回线路的零序距离保护研究[J].水电能源科学,2006,24(1):15-18
    [13]唐宝锋.输电线路故障选相新方法的研究[D].北京:华北电力大学,2004
    [14]李永斌,刘千宽,黄少锋.基于稳态量的同杆并架双回线综合选相[J].继电器,2007,35:63-67
    [15]M. A. Laughton. Analysis of unbalanced polyphase networks by the method ofphase co-ordinates-Part 1[J]. Proc of IEE,1968,115(8):1163-1172
    [16]M. A. Laughton. Analysis of unbalanced polyphase networks by the method of phase co-ordinates-Part 2[J]. Proc of IEE,1969,116(5):857-865
    [17]邱关源.电路(第四版)[M].北京:高等教育出版社,1999
    [18]傅旭,王锡凡.同杆双回线跨线短路故障计算的等值双端电源相分量法[J].电力系统自动化,2004,28(7):54-57
    [19]Takaaki, Toshihisa. A new analytical method for cross-country multi fault in double-circuit transmission line and operation of a distance relay[J]. T.IEE Japan,1992,112-B(2):138-146
    [20]索南加乐,葛耀中,陶惠良.六序故障分量及其在同杆双回线的故障特征[J].电力系统自动化,1989,13(4):44-51
    [21]索南加乐,葛耀中,陶惠良,等.同杆双回线的六序选相原理[J].中国电机工程学报,1991,11(6):1-9
    [22]索南加乐,葛耀中,陶惠良.用六序复合序网法分析同杆双回线的一些特殊问题[J].继电器,1991,18(1):2-14
    [23]王春,刘焕章.用补偿法进行跨线故障计算[J].武汉水利电力大学学报,1993,26(3):324-329
    [24]曹国臣,张洪波.采用虚拟网络加网络操作法的双回线故障计算方法[J].中国电机工程学报,2006,26(2):71-77
    [25]陈青,徐文远.同杆双回线故障分析新方法研究[J].中国电机工程学报,2005,25(20):68-71
    [26]Anning Wang, Qing Chen. A New Algorithm for Faults on Double-Circuit Lines in Phase Coordinates[C]. Power & Energy Society General Meeting (PES '09),2009
    [27]王安宁,陈青,周占平,等.改进的相分量法求解同杆双回线故障新算法[J].电力系统自动化,2009,33(13):58-62
    [28]刘为雄,蔡泽祥,邱建.融合对称分量法与相分量法的大规模电力系统跨线故障计算[J].电工技术学报,2007,22(5):140-145
    [29]Roy L., Generalized Polyphase Fault Analysis Program:Calculations of Cross Country Fault[J]. Proc.IEE,1979,126(10):995-1001
    [30]Berman A, Xu Wilsun. Analysis of faulted power systems by phase coordinates[J]. IEEE Transactions on Power Delivery,1998,13(2):587-595
    [31]D.G. Triantafyllidis, G.K. Papagiannis, D.P. Labridis. Calculation of Overhead Transmission Line Impedances A Finite Element Approach [J]. IEEE Transactions on Power Delivery,1999,14(1):287-293
    [32]R. H. Galloway, W. B. Shorrocks, L. M. Wedepohl. Calculation of Electrical Parameters for Short and Long Polyphase Transmission Lines [J]. Proc IEE,1964,111:2051-2059
    [33]J. A. Brandao Faria, J. Briceno Mendez. On the Modal Analysis of Asymmetrical Three-phase Transmission Lines using Standard Transform-ation Matrices[C]. IEEE Winter Meeting(97WMIEEE-PES),1997
    [34]M. Kato, T. Hisakado, H. Takani, et al. Live line measurement of untransposed three phase transmission line parameters for relay settings [C].2010 IEEE Power and Energy Society General Meeting,2010:1-8
    [35]齐亮.同杆双回线自适应重合闸的研究[D].天津:天津大学硕士学位论文,2008
    [36]李博通.同塔多回线智能跳合闸方案的研究[D].天津:天津大学硕士学位论文,2009
    [37]郑玉平,黄震,张哲,等.同杆并架双回线自适应重合闸的研究[J].电力系统自动化,2004,28(22):58-62
    [38]杨奇逊,黄少锋.微型机继电保护基础(第二版)[M].北京:中国电力出版社,2005
    [39]Thomas D. W. P., Jones M.S., Christopoulos C.. Phase Selection Based on Superimposed Components[J]. IEE Proceedings Generation, Transmission & Distribution,1996,1433(3):295-299
    [40]Benmouyal G., Mahseredjian J.. A Combined Directional and Faulted Phase Selector Element Based on Incremental Quantities[J]. IEEE Transactions on Power Delivery,2001,16(4):478-484
    [41]Apostolov A. P., Tholomier D., Richards S. H.. Superimposed Components Based Sub-cycle Protection of Transmission Lines[C]. IEEE PES Power Systems Conference and Exposition,2004,1:592-597
    [42]鲁文军,林湘宁,黄小波,等.一种自动适应电力系统运行方式变化的新型突变量选相元件[J].中国电机工程学报,2007,27(28):53-58
    [43]徐振宇,杨奇逊,刘万顺,等.一种序分量高压线路保护选相元件[J].中国电机工程学报,1997,17(3):214-216
    [44]许庆强,索南加乐,宋国兵,等.一种电流故障分量高压线路保护选相元件[J].电力系统自动化,2003,27(7):50-54
    [45]柏红,王毅.一种新型序分量高压线路保护选相元件[J].电力系统自动化,2007,32(12):64-67
    [46]Mechraoui A., Thomas D. W. P.. A New Blocking Principle With Phase and Earth Fault Detection During Fast Power Swings for Distance Protection [J]. IEEE Transactions on Power Delivery,1995,10(3):1242-1248
    [47]索南加乐,许庆强,宋国兵,等.电力系统振荡过程中序分量选相元件动作行为分析[J].电力系统自动化,2003,27(2):52-55
    [48]毛鹏,董肖红,杜肖功,等.输电线路复故障情况下选相元件研究[J].电力系统自动化,2005,29(1):53-56,82
    [49]Huang S. F., Chen Z. H., Zhang Y. P., et al. Adaptive Residual Current Compensation for Robust Fault-Type Selection in Mho Elements[J]. IEEE Transactions on Power Delivery,2005,20(2):573-578
    [50]钱国明,何奔腾.一种改进的高压线路保护选相元件[J].电力自动化设备,1999,8(10):20-24
    [51]常宝波,段玉倩,贺家李.一种用于零、负序电流纵差保护的实用选相元件[J].电力系统自动化,2005,29(20):17-19
    [52]Lin X. N., Zhao M. H., Alymann K., et al. Novel Design of a Fast Phase Selector Using Correlation Analysis[J]. IEEE Transactions on Power Delivery,2005,20(2):1283-1290
    [53]黄少锋,王兴国,刘千宽.一种基于固有频率的长距离输电线路保护方案[J].电力系统自动化,2008,32(8):59-63
    [54]黄少锋,王兴国.一种基于固有频率的超高压线路相间保护方案[J].电力系统自动化,2008,32(19):58-62,103
    [55]王兴国,黄少锋.基于固有频率的超高压线路选相方法[J].高电压技术,2009,35(6):1502-1508
    [56]董新洲,贺家李,葛耀中,等.基于小波变换的行波故障选相研究[J].电力系统自动化,1999,23(1):20-22
    [57]林湘宁,刘沛,程时杰.电力系统振荡中轻微故障识别的小波算法研究[J].中国电机工程学报,2000,20(3):39-44
    [58]Samantaray S. R., Dash P. K.. Wavelet Packet-Based Digital Relaying for Advanced Series Compensated Line[J]. IET Generation, Transmission & Distribution,2007,1(5):784-792
    [59]Dong X. Z., Kong W., Cui T.. Fault Classification and Faulted-Phase Selection Based on the Initial Current Traveling Wave[J]. IEEE Transactions on Power Delivery,2009,24(2):552-559
    [60]Pang C. Z., Kezunovic M.. Fast Distance Relay Scheme for Detecting Symmetrical Fault During Power Swing[J]. IEEE Transactions on Power Delivery,2010,25(4):2205-2212
    [61]徐振宇.新一代微机高频方向保护的研究[D].北京:华北电力大学,1996
    [62]焦邵华,刘万顺,杨奇逊,等.用模糊集合理论识别电力系统振荡中的短路的研究[J].中国电机工程学报,1998,18(6):443-448
    [63]焦邵华.电网智能保护新技术的研究[D].北京:华北电力大学,2000
    [64]Ferrero A., Sangiovanni S., Zappitelli E.. A Fuzzy-set Approach to Fault-Type Identification in Digital Relaying[J]. IEEE Transactions on Power Delivery,1995,10(1):169-175
    [65]Youssef O. A. S.. A Novel Fuzzy-Logic-Based Phase Selection Technique for Power System Relaying[J]. Electric Power Systems Research,2004, 68(3):175-184
    [66]Reddy M. J., Mohanta D. K.. Adaptive-Neuro-Fuzzy Inference System Approach for Transmission Line Fault Classification and Location Incorporating Effects of Power Swings[J]. IET Generation, Transmission & Distribution,2008,2(2):235-244
    [67]Sidhu T. S., Singh H., Sachdev M. S.. Design, Implementation and Testing of an Artificial Neural Network Based Fault Direction Discriminator for Protecting Transmission Lines[J]. IEEE Transactions on Power Delivery,1995,10(2):697-706
    [68]Dalstein T., Kulicke B.. Neural Network Approach to Fault Classification for High Speed Protective Relaying[J]. IEEE Transactions on Power Delivery,1995,10(4):1002-1009
    [69]Dalstein T., Friedrich T., Kulicke B., et al. Multi Neural Network Based Fault Area Estimation for High Speed Protective Relaying[J]. IEEE Transactions on Power Delivery,1996,11(2):740-747
    [70]Wang H., Keerthipala W. W. L.. Fuzzy-Neuro Approach to Fault Classifi-cation for Transmission Line Protection[J]. IEEE Transactions on Power Delivery,1998,13(4):1093-1104
    [71]Websper S., Dunn R. W., Aggarwal R. K., et al. Feature Extraction Methods for Neural Network-based Transmission Line Fault Discrimination [J]. IEE Proceedings-C:Generation, Transmission and Distribution,1999, 146(3):209-216
    [72]Abdelaziz A. Y., Ibrahim A. M., Mansour M. M., et al. Modern Approaches For Protection of Series Compensated Transmission Lines [J]. Electric Power Systems Research,2005,75(1):85-98
    [73]Yang Y., Tai N. L., Yu W. Y. ART Artificial Neural Networks Based Adaptive Phase Selector[J]. Electric Power Systems Research,2005, 76(1-3):115-120
    [74]Samantaray S. R., Dash P. K... Transmission Line Distance Relaying Using Machine Intelligence Technique[J]. IET Generation, Transmission & Distri-bution,2008,2(1):53-61
    [75]Shu H. C., Wu Q. J., Wang X., et al. Fault Phase Selection and Distance Location Based on ANN and S-transform for Transmission Line in Triangle Network[C].2011 International Conference on Energy Systems and Electrical Power,2011,13:6024-6030
    [76]邹力,刘沛,赵青春.级联形态梯度变换及其在继电保护中的应用[J].中国电机工程学报,2004,24(12):113-118
    [77]Zou L., Zhao Q. C, Lin X. N., et al. Improved Phase Selector for Unbalanced Faults During Power Swings Using Morphological Technique [J]. IEEE Transactions on Power Delivery,2006,21(4):1847-1855
    [78]王艳,张艳霞,徐松晓.基于广域信息的同杆双回线测距及选相[J].电力系统自动化,2010,34(6):65-69
    [79](日)冈村正已,太宏田次著,牟敦庚译.输电线路继电保护[M].北京:水利电力出版社,1983
    [80]Phadke A. G., Lu J. H.. A New Computer Based Integrated Distance Relay for Parallel Transmission Lines[J]. IEEE Trans Power App. Syst.,1985, PAS-104(2):445-452
    [81]Jones M. S., Thomas D. W. P., Christopoulos C.. A Nonpilot Phase Selector Based on Superimposed Components for Protection of Double Circuit Lines[J]. IEEE Transactions on Power Delivery,1997,12(4):1439-1444
    [82]唐宝锋,徐玉琴.基于相关性分析的同杆双回线故障序分量选相研究[J].继电器,2005,33(9):39-42
    [83]DL/T559-2007 220kV-750kV电网继电保护装置运行整定规程[S].出版社:中国电力出版社,2008
    [84]陈福锋,钱国明.基于同杆双回线跨线故障识别的选相方案[J].电力系统自动化,2008,32(6):66-70
    [85]文明浩,李瑞生.基于阻抗比较的同杆并架选相新方法[J].继电器,2006,34(17):1-3
    [86]杨隽坤,张宏阳,洪海燕.同杆并架双回线保护中的距离保护[J].广东电力,2005,18(10):9-12,34
    [87]李永斌.同杆跨线故障的选相及其单回线故障测距的研究[D].北京:华北电力大学硕士学位论文,2008
    [88]索南加乐,王树刚,张超,等.一种反应环流电流的平行双回线保护选相元件[J].电力系统自动化,2004,28(15):47-52
    [89]余荣云,陈福锋,钱国明.新型同杆并架双回线故障选相方案研究[J].电力系统保护与控制,2007,35(1):5-9
    [90]陈朝晖.同杆并架双回线阻抗选相方法研究[J].广东电力,2009,22(11):24-28
    [91]孟远景,鄢安河,李瑞生,等.同杆双回线的六相序阻抗距离保护方案研究[J].电力系统保护与控制,2010,38(6):12-17
    [92]宋国兵,刘志良,康小宁,等.一种同杆并架双回线接地距离保护方案[J].电力系统保护与控制,2010,38(12):102-106
    [93]栾雪莲.基于九电流的同杆双回线故障选相原理研究[D].北京:华北电力大学硕士学位论文,2011
    [94]Hai Zhang, Shao-Feng Huang. An Approximate Interline Faults Algorithm on Parallel Lines with Narrow Line-to-line Distance [C]. The 4th IEEE Asia-Pacific Power and Energy Engineering Conference APPEEC (APPEEC 2012),2012
    [95]DL/T5092-1999110-500kV架空送电线路设计技术规程[S].出版社:中国电力出版社,1999
    [96]李伟.同杆双回线距离保护研究[D].北京:华北电力大学博士学位论文,2012
    [97]张海,黄少锋.一种适用于低线间距的同杆双回线跨线故障等值算法[J].电力系统保护与控制,2012,40(20):56-61
    [98]张海,黄少锋.利用电压辅助电流选相的同杆双回线单端电气量选相原理[J].中国电机工程学报,2013,33(7):139-148
    [99]周冠波,李晓华,蔡泽祥,等.同杆多回线路不平衡问题分析与对策[J].电力系统自动化,2010,34(16):58-63
    [100]武汉大学.一种基于相序电压幅值比较的故障选相方法及其装置:中国,2012103225474[P].2012-09-03

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700