用户名: 密码: 验证码:
IGCC热力性能的发展潜力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体煤气化联合循环(IGCC)是集成煤气化与燃气轮机的超清洁、高效发电技术,效率提升途径多,潜力大。本文研究了集成中高温干法脱硫、高温离子膜分离(ITM)、先进燃气轮机等新型先进单元技术的IGCC系统及热力性能提升潜力,分析了气化技术对IGCC系统热力性能的影响。主要内容和结果如下:
     1.集成中高温干法净化的IGCC
     分析了氧化锌干法脱硫温度、再生氧气浓度、脱硫效率对IGCC系统热力性能的影响,比较了集成不同净化技术的IGCC系统。结果表明,中温干法净化(脱硫温度350℃)比全湿法净化IGCC供电效率高1.77个百分点,其中干法除尘技术贡献约1个百分点;干法净化温度从200℃升高至650℃,IGCC供电效率提高0.74个百分点,但如考虑燃烧室注蒸汽保持燃烧室相同的当量绝热火焰温度,IGCC供电效率仅上升约0.3个百分点。
     2.集成高温离子膜分离技术(ITM)的IGCC
     研究了集成ITM空分、深冷空分的IGCC热力性能,分析了整体化ITM的氧气分离率、氮气回注温度对IGCC热力性能的影响。结果表明:IGCC供电效率随ITM空分与燃气轮机集成度增加而上升,100%集成度的ITM空分与完全独立ITM空分相比可提高IGCC供电效率1.81个百分点,与完全整体化深冷空分的IGCC相比供电效率高1.11个百分点。
     3.先进燃气轮机IGCC的热力性能
     建立并校验了准一维燃气轮机透平冷却模型。研究了透平冷却技术、材料、热障涂层以及冷却介质对燃气轮机联合循环的影响。
     以F级“冷却-材料”水平为基准,提高燃烧室出口温度,燃机简单循环和联合循环效率先升高后降低,联合循环效率在初温约1700℃,压比约25时最高:提高透平“冷却-材料”水平,相同燃烧室出口温度下,联合循环效率提高,随燃烧室出口温度的提高,提高“冷却-材料”水平对提高联合循环效率的作用越明显。
     GE9G燃机如采用透平首级喷嘴蒸汽冷却,联合循环效率相比于目前透平空气冷却可提高0.6个百分点,采用透平前两级蒸汽冷却(9H)效率可再提高1.7个百分点,如采用透平全蒸汽冷却可进一步提高效率1.1个百分点。
     采用M701G2、9H、M701J燃机的IGCC相比于采用PG9351FA燃机IGCC供电效率分别高2.8、3.3和4.2个百分点。对于1700℃级燃机IGCC系统,如“冷却-材料”水平与M701J燃机相同时,系统供电效率较M701J级燃机IGCC高0.6个百分点;如提高“冷却-材料”水平使冷却空气量与M701J相同时,效率可再提高0.7个百分点,如进一步提高“冷却-材料”水平使冷却空气量相比于M701J下降10%时,可继续提高IGCC系统供电效率0.3个百分点。
     4.气化技术对IGCC系统热力性能的影响
     研究分析了空气气化和纯氧气化的气化温度、碳转化率、汽煤比对IGCC系统热力性能的影响。结果表明:对于氧气气化与空气气化IGCC系统,气化温度每提高100℃,系统供电效率分别下降约0.32~0.49和0.67~0.77个百分点;蒸汽煤比每提高0.1,系统供电效率分别下降0.28-0.36和0.29~0.52个百分点,C转化率每提高1个百分点,系统供电效率分别提高约0.42~0.45和0.41~0.43个百分点。
     空气气化与氧气气化IGCC系统的气化压力对系统热力性能影响显著,其中,常压氧气气化的系统效率明显低于加压氧气气化2.6~3.2个百分点;常压空气气化IGCC系统效率明显低于加压空气气化3.9~4.2个百分点。空气气化的增压流程会影响IGCC供电效率约1.7个百分点。
     5. IGCC热力性能发展潜力预测
     相比于F级燃机、水煤浆气化炉、湿法脱硫、深冷空分IGCC系统,集成了1700℃燃机、干法给料气化、中温干法净化、膜分离空分的IGCC系统供电效率提升约9.6个百分点,达54.8%;进一步集成合成气回热加热气化剂(氧气和水蒸汽)、高温干法净化技术的IGCC可再提升系统供电效率1.5个百分点。
Integrated Gasification Combined Cycle(IGCC) is a kind of super clean and high efficiency power generation technology. There are many ways and huge potential to improve the net efficiency of IGCC. The present work explores how much IGCC can benefit from technologies of warm gas desulfurization, Ion Transport Membrane(ITM), and advanced gas turbine. Influences of key gasification parameters on thermodynamic performance of IGCC plants have been analyzed. The main contents and results are presented as follows:
     1. IGCC integrated with warm gas clean-up(WGCU)
     Four IGCC systems with different gas clean-up processes based on the model of ZnO-desulfurization are established and compared. Impacts of key parameters of WGD on thermodynamic performance of IGCC plants including desulfurization temperature, oxygen concentration in regeneration stream, and H2S removal efficiency are discussed. It is found that the net efficiency of IGCC with full WGCU increases1.77percentage points compared with IGCC with cold gas clean-up(CGCU), among which the dry ash removal contributes about1percentage point. The net efficiency will increase0.74percentage point when the desulfurization temperature increases from200℃to650℃. However, if the way of steam injection were considered to control the same SFT, the net efficiency increases only0.3percentage point.
     2. IGCC integrated with ITM
     The thermodynamic performance of IGCC with different ways of integration between ITM and gas turbine is discussed. In comparison to IGCC system with cryogenic air separation, the net efficiency of IGCC with full integration of ITM technology experiences an improvement of1.11percentage points, and is higher than that of the IGCC with independent ITM by1.81percentage points. In addition, in view of the full integration IGCC, influences of O2separation rate and the N2reinjection temperature on IGCC net efficiency are evaluated.
     3. IGCC with advanced gas turbine
     A quasi-1D turbine cooling model is built and validated. Impacts of turbine cooling techniques such as convection cooling and film cooling, blade material, thermal barrier coating and coolant medium on the thermal performance of GTCC and IGCC are studied.
     With constant "cooling-material" technology(F class), the efficiency of simple gas turbine cycle and combined cycle increases first and then decreases with the increase of combustor exit temperature. For combined cycle, the maximum efficiency appears on the point where the combustor exit temperature is1700℃and the pressure ratio is about25. With constant combustor exit temperature, the net efficiency of GTCC increases following the improvement of the "cooling-material" technology. When the combustor exit temperature increases, the effect of improving "cooling-material" technology on improving the net efficiency of GTCC becomes more obvious.
     Taking GE9G as an example, the performance of turbine adopting steam as the coolant medium is discussed. According to results, the net efficiency of IGCC, which adopts9G gas turbine but steam is taken as the coolant of first nozzle, is higher than that of the IGCC with9G gas turbine by0.6percentage point. When the first two stages adopt steam cooling, the IGCC net efficiency can be further improved by1.7percentage points. Additional1.1percentage points of net efficiency improvement can be obtained by taking steam as coolant of whole turbine.
     The net efficiency of IGCC employing M701G2、9H、M701J gas turbines is higher than that of IGCC employing PG9351FA by2.8、3.3、4.2percentage points respectively. If the "cooling-material" technology of1700℃class gas turbine keeps constant with the M701J, the net efficiency of IGCC with1700℃class gas turbine is higher than that of the M701J-IGCC by0.6percentage point. And if the "cooling-material" technology is improved in order to keep the cooling flow same to the M701J, the net efficiency can be further improved by0.7percentage point. Additional0.3percentage point of net efficiency improvement can be obtained by improving the "cooling-material" technology which can decrease the cooling flow by10%with respect to M701J.
     4. Influences of gasification on thermodynamic performance of IGCC
     Influences of key parameters, including gasification temperature, C conversion, the mass ratio of steam to coal, on thermodynamic performance of IGCC are assessed in view of the air and oxygen blown gasification. Results show that, when the gasification temperature dropped by100℃, the IGCC net efficiency decrease by0.32-0.49and0.67~0.77percentage point respectively for IGCC systems with air and oxygen blown gasification. When the mass ratio of steam to coal increases by0.1, the IGCC net efficiency decreases by0.28~0.36and0.29~0.52percentage point respectively for IGCC systems with air and oxygen blown gasification. When the C conversion efficiency is improved by1percentage point, the IGCC net efficiency can be improved by0.42~0.45and0.41~0.43percentage point respectively for IGCC systems with air-and oxygen gasification.
     There is an obvious advantage in the view of thermal performance for IGCC systems with pressurized gasification with respect to the atmospheric gasification. The IGCC net efficiency of pressurized oxygen blown gasification is higher than that of atmospheric oxygen gasification by2.6~3.2percentage points, and the IGCC net efficiency of pressurized air blown gasification is higher than that of atmospheric air gasification by3.9-4.2percentage points. For pressurized air blown gasification, an efficiency gap about1.7percentage points can be affected by adopting various ways of compression.
     5. Calculating the thermodynamic performance potential of IGCC
     The net efficiency of IGCC system whose key components include1700℃class gas turbine, dry-feed gasifier, warm gas clean-up and ITM air separation unit can reach54.8%, which is higher than the IGCC system integrated by technologies of F class gas turbine, slurry-feed gasifier, cold gas clean-up and cryogenic air separation unit by9.6percentage points. Another1.5percentage points can be further improved by integrating with syngas recirculation and high gas clean-up.
引文
[1]BP. BP Energy Outlook 2030[R].2011.
    [2]IEA. World Energy Outlook 2009[R].2009.
    [3]IEA. World Energy Outlook 2011[R].2011.
    [4]王家诚,赵志林.中国能源发展报告[R].北京,2001.
    [5]中国能源统计年鉴2010.中国统计出版社.北京.
    [6]C.O.Bauer. Roadmap to Core Technologies Workshop-Introduction to Vision 21 Timeline.2002.
    [7]Elaine Everitt. Gasification and IGCC:Status and Readiness[R]. NETL,2007.
    [8]Tomas Ekbom. MAJOR IGCC PROJECTS WORLD-WIDE. Nykomb Synergetics AB,2007. http://www.nykomb.se
    [9]Steve Jenkins. Update on IGCC Technology and Projects[R]. CH2MHILL, 2010.
    [10]焦树建.关于目前世界上IGCC发展情况与趋势的评论[J].燃气轮机技术,2004,17(3):1-5.
    [11]马永贵,钟史明.IGCC电站目前概况与发展趋向[J].燃气轮机发电技术,2002,2:1-10.
    [12]焦树建.日本的IGCC示范工程与研发工作—兼论我国IGCC的发展途径[J].燃气轮机技术,2006,19(1):15-20.
    [13]Koichi Sakamoto. Progress Update of MHI Air-blown IGCC & O2-blown Gasification[R]. MHI,2010.
    [14]Tsutomu Watanabe. Brief Introduction on Nakoso IGCC Demonstration plant Technology and its test results[C]. India Energy Congress.2012.
    [15]F. Hannemann, H. Morehead. Pushing Forward IGCC Technology at Siemens[C], in 2003 Gasification Technologies Conference 2003, California, USA.
    [16]M. Ozawa, R. Matsumoto. Advanced power generation system and related thermal engineering problems[C]. in Proceedings of the ASME/JSME 20118th Thermal Engineering Joint Conference,2011, Honolulu, Hawaii, USA.
    [17]F. Burke. Technology for future generation of electricity from coal[R].2003, CONSOL ENERGY INC.
    [18]DOE/NETL. Shell Gasifier IGCC Base Cases. USA,2000.
    [19]DOE/NETL. Texaco Gasifier IGCC Base Cases. USA,2000.
    [20]DOE/NETL. Transport Gasifier IGCC Bases Cases. USA,2000.
    [21]L. Zheng and E. Furinsky. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations[J]. Energy Conversion and Management,2005,46:1767-1779.
    [22]陈晓利,吴少华,李振中等.整体煤气化联合循环发电系统中气化参数对气化单元性能的影响.中国电机工程学报,2009.29(23):1-6.
    [23]王颖,邱朋华,吴少华等.整体煤气化联合循环系统气化岛特性模拟研究[J].中国电机工程学报,2010.30(2):35-39.
    [24]N. Gnanapragasam, B. Reddy, M. Rosen. Reducing CO2 emissions for an IGCC power genenration system:Effect of variations in gasifier and system operating conditions[J]. Energy Conversion and Management,2009,50(8): 1915-1923.
    [25]H.C.Frey, Y. Zhu. Improved System Integration for Integrated Gasification Combined Cycle(IGCC) Systems[J]. Environ. Sci. Technol,2006,40: 1693-1699.
    [26]Jong Jun Lee, Young Sik Kimet, Kyu Sang Cha et.al. Influence of system integration options on the performance of an integrated gasification combined cycle power plant[J]. Applied Energy,2009,86:1788-1796.
    [27]陈晓利,吴少华,李振中等.整体煤气化联合循环系统变工况特性研究[J].中国电机工程学报,2009,29(14):6-11.
    [28]吕泽华,赵士航.空分系统集成度对IGCC系统性能的影响[J].燃气轮机技术,2000,13(1):28-32.
    [29]王波.基于输运床气化炉的IGCC系统集成研究[D].北京:中国科学院研究生院,2009.
    [30]王颖,邱朋华,吴少华等.整体煤气化联合循环系统中废热锅炉特性研究[J].中国电机工程学报,2010,30(5):54-58.
    [31]陈雷,张忠孝,李振中等.燃气轮机变工况对IGCC系统性能的影响[J].热能动力工程,2009,24(3):313-319.
    [32]焦树建.燃气轮机与燃气-蒸汽联合循环装置(上)[M].北京:中国电力出版社,2007.
    [33]何芬IGCC及多联产若干关键技术的系统集成研究[D].北京:清华大学热能工程系,2012.
    [34]Chris Higman. European Coal Gasification Projects[R]. Future Workshop, Tokyo,2008.
    [35]罗陨飞,杜铭华,李文华.美国未来洁净煤技术研究推广计划概述[J].洁净煤技术.2005,11(4):5-10.
    [36]许世森.中国IGCC现状与发展[R].西安热工研究院.2006.
    [37]H. Kondo. IGCC, IGFC and CCS in Japan.2008[R]. Coal division Agency for Naturral Resources and Energy Ministry of Economy. Trade and Industry Government of Japan.2008.
    [38]Julianne M. Klara, John E. Plunkett. The potential of advanced technologies to reduce carbon capture costs in future IGCC power plants[J]. International Journal of Greenhouse gas control,2010,4(2):112-118.
    [39]J.Simento. N.. Learning from International Coal Gasification and IGCC Experience.
    [40]Neville Holt. IGCC Technology Status, Economics and Needs[R]. IEA Zero Emission Technologies Technical Workshop. Coast, Queensland, Australia, 2004.
    [41]Thomas Berly. ZeroGen:Low Emission Power with Carbon Storage[R]. China Australia Geological Storage of CO2(CAGS) Workshop. Canberra, Australia, 2010.
    [42]Christer Bjorkqvist. Progress Towards Implementation of IGCC-CCS in Europe[R]. International Colloquium on Environmentally Preferred Advanced Power Generation. Costa Mesa, California,2010.
    [43]Juergen Karg/Siemens. IGCC experience and further developments to meet CCS market needs[R]. Coal-Gen EUROPE, Katowice, Poland,2009.
    [44]Centre for sustainable energy solutions:H2-IGCC. [2013-03-15]. www.H2-IGCC.eu
    [45]我国国民经济和社会发展十二五规划纲要(全文).http://news.sina.com.cn/c/2011-03-17/055622129864.shtml.
    [46]焦树建.IGCC的某些关键技术的发展与展望[J].动力工程.2006.26(2).
    [47]DOE/NETL. Current and Future IGCC technologies:A Pathway Study focused on Non-Carbon capture advanced power systems R&D using bituminous coal-Volume 1[R].2008.
    [48]DOE/NETL. Current and Future Technologies for Gasification-Based Power Generation:Volume2:A Pathway study focused on carbon capture advanced power systems R&D using bituminous coal[R].2010.
    [49]L.Schoff. R. The Future of IGCC technology CCPC-EPRI IGCC Roadmap Results.2011.
    [50]IEA. Future development of IGCC.2008.
    [51]林汝谋,徐玉杰,徐钢等.新型IGCC系统的开拓与集成技术[J].燃气轮机技术.2005,1(18):7-15.
    [52]B.Slimane. R., J. Abbasian. Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures[J]. Advances in Environmental Research.2000,4:147-162.
    [53]谢巍,常丽萍,余江龙等.煤气净化中H2S干法脱除的研究进展.化工学报.2006,57(9):2012-2020.
    [54]于芳芳,张志娟,伍健东.高温煤气脱硫剂铁酸锌的性能及再生研究[J].化学与生物工程.2008,25(2):62-65.
    [55]朱永军,上官炬,梁丽彤等.复合ZnO高温煤气脱硫剂的物相、还原及硫化行为.石油学报(石油加工)[J].2009,25(1):108-113.
    [56]L. Li. Overall Warm Syngas Cleanup Research Activity at PNNL[R].北京:中科院工程热物理所,2010..
    [57]L. Li, D. L.King. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today.2006,116:537-541.
    [58]Xuepeng Bu. New development of zinc-based sorbents for hot gas desulfurization. Fuel Processing Technology[J].2007,88:143-147.
    [59]W. F. Elseviers, H. Verelst. Transition metal oxides for hot gas desulphurisation[J]. Fuel.1999,78:601-612.
    [60]R.Monazam. E, L.J.Shadle, D.A.Berry. Modeling and analysis of S-sorption with ZnO in a transport reactor[J]. Chemical Engineering Science.2008.63: 2614-2623.
    [61]R.Monazam.E, L.J.Shadle. Fuel Gas Clean-up in a Transport Reactor:Model Development and Analysis[C]. in Proceedings of FBC2005 18th International Conference on Fluidized Bed Combustion. Canda.2005.
    [62]Nexant. Preliminary Feasibility Analysis of RTI Warm Gas Cleanup(WGCU) Technology[R].2007.
    [63]A. Giuffrida, C.R.Metteo. On the effects of syngas clean-up temperature in IGCCs[C]. in Proceedings of ASME Turbo Expo 2010:Power for Land. Sea and Air. Glasgow. UK.2010.
    [64]A. Giuffrida, C.R.Metteo, G. G.Lozza. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization[J]. Applied Energy.2010.87: 3374-3383.
    [65]S.K.Gangwal. R.Gupta. and W.J.McMichael. Hot-gas cleanup-sulfur recovery technical, environmental, and economic issues[J]. Heat Recovery Systems&CHP.1995,15:205-214.
    [66]周贤.王波.张士杰.输运床气化炉IGCC系统在不同净化方案配置下的热力性能比较.动力工程,2009,29(7):688-693.
    [67]焦树建.论IGCC的空分系统.燃气轮机技术,1998,4(11):1-12.
    [68]Paul N.Dyer, R.E.Richards, S.L.Russek, et al. Ion transport membrane technology for oxygen separation and syngas production[J]. Solid State Ionics, 2000,134:21-33.
    [69]Jaeger H. ITM Oxygen offers 15% more power and over 10% better plant efficiency[J]. Gas Turbine World,2008,38(1):34-38.
    [70]邓世敏,段立强,官亦标等.IGCC中空分系统特性及其对整体性能的影响[J].工程热物理学报,2003,24(2):186-189.
    [71]岳晨,史翔,蔡宁生.整体煤气化联合循环系统空分单元集成特性.中国电机工程学报,2010,30(22):1-7.
    [72]A.R.Smith, J.Klosek. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology, 2001,70:115-134.
    [73]Department of Mech.& Structural Eng. & Material Science. IGCC State-of-the-art report-Low Emission Gas Turbine Technology for Hydrogen-rich Syngas[R]. University of Stavanger, Norway,2010.
    [74]黄美荣,李新贵,董志清.大规模膜法空气分离技术应用进展[J].现代化工,2002,9:10-15.
    [75]李文波,毛鹏生,王长英.空气分离技术进展[J].石化技术,2000,7(3):173-175.
    [76]刑翼腾.空分系统的研究与建模[D].北京:清华大学热能系,2003.
    [77]Air Product:Cryogenic Air Separation Plants. [2013-3-15]. www.airproduc ts.com/ASUsales.
    [78]Air Products and Chemicals, Inc. Method for Predicting Performance of an Ion Transport Membrane Unit-Operation.2002.
    [79]Rahul Anantharaman, Olav Bolland. Integration of oxygen transport membranes in an IGCC power plant wiht CO2 capture[J]. Chemical Engineering Transactions,2011,25:25-30.
    [80]E.Richards Robin. Development of ITM Oxygen Technology for Integrati on in IGCC&Other Advanced Power Generation Systems. Air Products a nd Chemicals Inc,2001. http://www.netl.doe.gov/technologies/coalpower/ga sification/projects/gas-sep/40343.html.
    [81]Kirsten Foy, Jim McGovern. Comparison of Ion Transport Membranes[C]. Fourth annual conference on carbon capture and sequestration DOE/NETL. 2005.
    [82]S.S.Hashim, A.R.Mohamed, S. Bhatia. Current status of ceramic-based membranes for oxygen separation from air[J]. Advances in Colloid and Interface Science,2010,160:88-100.
    [83]Christian Kunze, Sudipta De, Hartmut Spliethoff. A novel IGCC plant with membrane oxygen separation and carbon capture by carbonation-calcinations loop[J]. International Journal of Greenhouse Gas Control,2011,5:1176-1183.
    [84]Adrian Leo, Liu Shaomin, Joao C.Diniz da Costa. Development of mixed conducting membranes for clean coal energy delivery[J]. International Journal of Greenhouse Gas Control,2009,3:357-367.
    [85]S.S.Hashim, A.R.Mohamed, S.Bhatia. Oxygen seperation from air using ceramic-based membrane technology for sustainable fuel production and power genenration[J]. Renewable and Sustainable Energy Re vies,2011,15: 1284-1293.
    [86]左艳波.致密陶瓷透氧膜和固体氧化物燃料电池电极材料研究[D].合肥:中国科技大学,2007.
    [87]NETL. A Pathway Study Forcused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal-Volume 1[R]. DOE/USA,2008.
    [88]Chen Chao. A Technical and Economic Assessment of CO2 Capture Technology for IGCC Power Plants[D]. Carnegie Mellon University:Pittsburgh. Pennsylvania,2005.
    [89]董卫国.GE公司F级燃气轮机[J].电力设备,2002,3(4):66-69.
    [90]Atsushi MAEKAWA, Ryotaro MAGOSHI, Yoichi IWASAKI. Development and In-house Shop Load Test Results of M701G2 Gas Turbine[C]. Proceedings of the International Gas Turbine Congress 2003, Tokyo,2003.
    [91]R.W.Smith, P.Polukort, C.E.Maslak. Advanced Technology Combined Cycle: GER-3936A. GE Energy.
    [92]段立强,林汝谋,杨勇平.燃气轮机采用不同冷却技术对IGCC系统性能的影响[J].工程热物理学报,2005.26(增):17-20.
    [93]EISAKUITO, KEIZO TSUKAGOSHI, YASURO SAKAMOTO. Development of Key Technologies for an Ultra-high-temperature Gas Turbine[J]. Mitsubishi Heavy Industries Technical Review.2011.48(3).
    [94]Frank J.Brooks. GE Gas Turbine Performance Characteristics:GER-3567H. GE Energy.
    [95]M.A.EI-Masri. On the thermodynamics of gas-turbine cycles. Part 1:second law analysis of combined cycles[J]. Journal of Engineering for Gas Turbines and Power,1985,107(4):880-889.
    [96]M.A.EI-Masri. On thermodynamics of gas-turbine cycles. Part 2:A model for expansion in cooled turbines[J]. Journal of Engineering for Gas Turbines and Power.1986.108(1):151-159.
    [97]Maria Jonsson, Olav Bolland, Dominikus Bucker et al. Gas turbine cooling model for evaluation of novel cycles[C]. Proceeding of ECOS 2005: Trondheim, Norway,2005.
    [98]Kristin Jordal, Olav Bollard, Ake Klang. Aspects of Cooled Gas Turbine Modeling for the Semi-Closed O2/CO2 Cycle with CO2 Capture[J]. Journal of Engineering for Gas Turbines and Power,2004,126:507-515.
    [99]J.H.Horlock, D.T.Watson, T.V.Jones. Limitations on Gas Turbine performance Imposed by Large Turbine Cooling Flows[J]. Journal of Engineering for Gas Turbines and Power,2001,123:487-494.
    [100]Leonardo Torbidoni, J.H.Horlock. A new method to calucate the coolant requirements of a high temperature gas turbine blade[C]. Proceedings of ASME Turbo Expo 2004 Power for Land.Sea.and Air2004:Vienna, Austria,2004.
    [101]Leonardo Torbidoni, J.H.Horlock. Calculation of the expansion through a cooled gas turbine stage [C]. Proceedings of GT 2005 ASME Turbo Expo 2005:Power for land. Sea and Air, Reno-Tahoe, Nevada, USA,2005.
    [102]Kristin Jordal, Leonardo Torbidoni, Aristide F.Massardo. Convective blade cooling modelling for the analysis of innovative gas turbine cycles[C]. Proceedings of ASME TURBO EXPO 2001, New Orleans, Louisiana, USA, 2001.
    [103]王德慧,李政,麻林巍等.大型燃气轮机冷却空气量分配及透平膨胀功计算方法研究[J].中国电机工程学报.2004.24(1):180-185.
    [104]李政,江宁,麻林巍等.西门子V94.3燃气轮机冷却空气信息推测.燃气轮机技术[J],2002,15(4):13-15.
    [105]王波,张士杰,肖云汉等.大型燃气轮机透平冷却空气量估算[J].燃气轮机技术,2009,22(3):29-32.
    [106]张丽丽.煤制燃料气燃气轮机建模及性能分析[M].北京:中国科学院工程热物理研究所,2010.
    [107]Sanjay, Onkar Singh, B.N.Prasad. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle[J]. Applied Thermal Engineering,2008.28:2315-2326.
    [108]Najjar, S. H. Yousel, A. S. Alghamdi et al. Comparative performance of combined gas turbine systems under three different blade cooling schemes[J]. Applied Thermal Engineering,2004,24:1919-1934.
    [109]胡宗军,吴铭岚.采用蒸汽冷却的各种燃气轮机循环性能分析[J].上海交通大学学报,1999,33(3):335-338.
    [110]Y.Sanjay, O. Singh, B.N.Prasad. Energy and exergy analysis of steam cooled reheat gas-steam combined cycle[J]. Applied Thermal Engineering,2007,27: 2779-2790.
    [111]Chiesa Paolo, Macchi.Ennio. A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants [J]. Journal of Engineering for Gas Turbines and Power,2004,126(4):770.
    [112]高健,倪维斗,小山智归IGCC系统中空气气化炉与氧气气化炉的对比研究[J].燃气轮机技术,2007,20(2):1-5.
    [113]Antonio Giuffrida. Thermodynamic analysis of air-blown gasification for IGCC applications[J]. Applied Energy.2011.88:3949-3958.
    [114]Siva Ariyapadi, Philip Shires, Manish Bhargava et al. KBR'S transport gasifie(trigtm)-an advanced gasification technology for sng production from low-rank coals[C]. Twenty-fifth Annual International Pittsburgh Coal Conference, Pittsburgh,2008.
    [115]Luke H.Rogers, Alexander K.Bonsu, Joseph D.Eiland et al. Power from PRB-FOUR Conceptual IGCC Plant Designs Using the Transport Gasifier[C]. Twenty-second Annual International Pittsburgh Coal Conference,2005.
    [116]迟金玲.煤基IGCC电站二氧化碳减排研究[D].北京:中国科学院工程热物理研究所,2010.
    [117]于新娜,袁益超.两段式空气气化炉的模拟与研究[J].上海电力,2009,3:249-251.
    [118]赵振可,翁一武,王玉璋等.IGCC系统中空气气化炉的模拟研究[J].华东电力,2010,38(3):412-416..
    [119]DOE. Advanced Gasification Systems Development.2008.
    [120]Osamu Shinada, Akira Yamada, Yoshinori Koyama. The development of advanced energy technologies in Japan IGCC:A key technology for the 21st century[J]. Energy Conversion and Management,2002,43:1221-1233.
    [121]Atsushi Tsutsumi. Advanced Coal Gasification Technology based on Exergy Recuperation[R]. The University of Tokyo Institute of Industrial and Science Collaborative Research Center for Energy Engineering:Tokyo.
    [122]Atsushi Tsutsumi. Exergy Process Engineering[R]. The University of Tokyo Institute of Industrial and Science Collaborative Research Center for Energy Engineering:Tokyo.
    [123]M.C.Romano, G.G.Lozza. Long-term coal gasification-based power with near-zero emmissions. Part B:Zecomag and oxy-fuel IGCC cycles[J]. International Journal of Greenhouse gas control,2010,4:469-477.
    [124]M.C.Romano, G.G.Lozza. Long-term coal gasification-based power plants with near-zero emmissions. PartA:Zecomix cycle[J]. International Journal of Greenhouse gas control,2010,4:459-468.
    [125]Jayanta Deb Mondol, David Mcllveen. Techno-economic evaluation of advanded IGCC lignite coal fuelled power plants with CO2 capture[J]. Fuel, 2009,88:2495-2506.
    [126]Peter Ruprecht, Wolfgang Schafer, Paul Wallacet. A computer model of entrained coal gasification[J]. Fuel,1987,67:739-742.
    [127]M.B.Nikoo, N. Mahinpey. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS[J]. Biomass and Bioenergy,2008,32(12): 1245-1254.
    [128]A.P.Watkinson, J.P.Lucas, C.J.Lim. A prediction of performance of commercial coal gasifiers.1991.
    [129]李政,王天骄,韩志明.Texaco煤气化炉数学模型研究(2)——计算结果及分析.动力工程,2001,21(4):1316-1319.
    [130]李政,王天骄,韩志明.Texaco煤气化炉数学模型的研究-建模部分.动力工程,2001,21(2):1161-1168.
    [131]M.Perez-Fortes, A.D.Bojarski, E.Velo et al. Conceptual model and evaluation of generated power and emissions in an IGCC plant[J]. Energy,2009,34: 1721-1732.
    [132]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004.
    [133]Hassan E.Alfadala, Essa Al-Musleh. Simulation of an Acid Gas Removal Process Using Methyldiethanolamine;an Equilibrium Approach[C]. Proceeding of the 1st Annual Gas Processing Symposium.2009.
    [134]Aspen Plus:Rate-Based Model of the CO2 capture process by MDEA using Aspen Plus. Aspentech. Editor.
    [135]Daniele FIASCHI, Lidia LOMBARDI. Integrated Gasifier Combined Cycle Plant with Integrated CO2-H2S Removal:Performance Analysis, Life cycle assessment and exergetic life cycle assessement[J]. Applied Thermodynamics. 2002.5(1):13-24.
    [136]焦树建.整体煤气化燃气-蒸汽联合循环(IGCC)[M].北京:中国电力出版社,1996.
    [137]李现勇.煤基多联产系统中动力生产过程的分析[D].北京:中国科学院工程热物理研究所,2003.
    [138]E.Macchi, A.Perdichizzi. Efficiency Prediction for Axial-Flow Turbines Operating with Nonconventional Fluids[J]. Journal of Engineering for Power, 1981,103:718-724.
    [139]J.P.Holman. Heat Transfer[M]. New York:McGraw-Hill,1986.
    [140]Stefano Consonni. Performance prediction of gas/steam cycles for power generation[D]. Princeton University,1992.
    [141]M.A.EI-Masri. A modified.high-efficiency.recuperated gas turbine cycle[J]. Journal of Engineering for Gas Turbines and Power,1988,110:233-242.
    [142]杨世铭,陶文铨.传热学[M].高等教育出版社,2006.
    [143]焦树建.论“热电联产”型燃气-蒸汽联合循环的特性[J].燃气轮机技术.2001.14(4):12-19.
    [144]NETL. Cost and Performance Baseline for Fossil Energy Plant Volume 1:Bituminous Coal and Natural Gas to Electricity[R]. DOE/USA,2010.
    [145]ZHAO Jian-tao, Huang Jiejie, Wei Xiao fang et al. Regeneration characteristics of sulfided zinc titanate sorbent for hot gas cleaning. Journal of fuel chemistry and technology.2007.35(1):66-71.
    [146]Yasuo Ohtsuka, Naoto Tsubouchi, Tsubouchi Kikuchi. Recent process in Japan on hot gas cleanup of hydrogen chloride.hydrogen sulfide and ammonia in coal-derived fuel gas[J]. Power Technology,2009,190(3):340-347.
    [147]SukYong Jung, Soo Jae Lee, Jung Je Park et al.. The simultaneous removal of hydrogen sulfide and ammonia over zinc-based dry sorbent supported on alumina[J]. Separation and Purification Technology,2008,63(2):297-302.
    [148]Paolo Chiesa, Giovanni Lozza, Luigi Mazzocchi. Using Hydrogen as Gas Turbine Fuel. Journal of Engineering for Gas Turbines and Power,2005,127: 73-80.
    [149]Timothy Ginter, Olivier Crabos. Uprate Options for the MS6001 Heavy-Duty Gas Turbine. GE Energy,2010.
    [150]刘瑞同.从PG6431A到PG6581B—简介MS6001B燃气轮机的发展历程[J].燃气轮机技术,2001,14(4):29-31.
    [151]杨松鹤.GE公司重型燃气轮机系列发展分析[J].燃气轮机技术,2000,13(1):24-27.
    [152]Gas Turbine World:2012 GTW Handbook.2012,29:70-148.
    [153]郭志刚,王波,王逊等.PG6581B型燃气轮机冷却空气信息推测[J].燃气轮机技术,2008,21(4):46-49.
    [154]崔凝,陆海荣,赵文升.燃气-蒸汽联合循环机组性能分析算法的研究[J].汽轮机技术,2010,52(4):288-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700