用户名: 密码: 验证码:
碟式斯特林热发电熔融盐储热装置及储热腔腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碟式聚光器聚焦的太阳能为热源的斯特林热发电系统称为碟式斯特林热发电系统。它具有效率高、无污染、结构灵活等优点,适宜为空间站及山区、边防哨等偏远地区提供大功率电力。但太阳能具有间歇性特点,在乌云遮挡期和太阳落山后(或地球轨道阴影期),直射辐射中断,系统输出功率降低,甚至直接停机。
     针对这一问题,美国宇航局(NASA)等单位以空间站太阳能热发电系统为对象,已经研究了熔融盐高温相变储热装置。与空间站条件相比,地面上具有乌云出现随机、持续时间不确定等特点;为了民用和大面积推广,还希望系统功率大、成本低。所以,针对在地面上工作的碟式斯特林热发电系统,需要研发一种新型熔融盐高温相变储热装置。目前国内外研究尚属空白。
     本文以现有的单缸和多缸碟式配气活塞斯特林热发电系统为基础,以民用为目标,侧重于成本、大功率等方面的考虑,设计了地面碟式斯特林热发电系统用熔融盐高温相变吸热储热装置。结合钠热管优点,改进得到了一种碟式斯特林热发电系统高温热管吸热储热装置结构。另外,为了减小对储热腔材料高温力学性能的要求,提出了热封装工艺,以便延长吸热储热腔使用寿命,提高设备运行安全性。与NASA设计的空间站储热装置相比,本装置的材料成本降低了35.6%。
     为了分析设计的吸热储热装置性能,优化结构参数,以Fluent CFD软件为平台,研究了吸热储热腔周围的空气无强迫对流时,吸热腔结构(光圈型、风裙型和开口型)、参数(高度、直径、入光孔尺寸)和安装倾角对储热腔及其周围空气的温度场、辐射场、压力场和空气自然对流场的影响规律;分析了这些因素与吸热腔内壁辐射热流密度、温度分布关系。结果表明,吸热腔高度和内径对腔体内壁辐射热流密度、温度及其均方差影响很大,推荐了最优高度和内径关联式;三种结构吸热储热腔辐射场、温度场特征相似,并且周围空气均发生了复杂的自然对流现象,在储热腔外壁附近形成最大流速约1.5m/s的高速空气带;光圈型吸热储热腔结构最佳,并且应采用半锥角为30°的圆锥形反射器;吸热腔内壁平均辐射热流密度和平均温度随光圈直径增大呈指数规律降低;吸热腔倾角在[-π/4,π/4]范围时热损失较低;腔内压强梯度明显,腔体周围压强分布均匀。
     讨论了环境风强迫对流作用下,风速、吸热腔倾角对吸热储热腔及周围空气的辐射场、温度场、压力场和强迫对流场的影响。腔体内压强比较均匀,基本完全是对流区;腔体外迎风侧呈正压,背风侧压强较低,并且形成了巨大的流动漩涡,自然对流特征消失。揭示了风速和吸热储热装置倾角对吸热腔内壁温度的影响规律。对于任一风速,θ∈[-π/2,π/4]时,吸热腔内壁平均温度随吸热腔倾角增加而增加;0=-π/4时,对流热损失最小。然后,分析了吸热储热装置热损失计算公式。
     熔融盐相变吸热储热装置的核心是储热介质。归纳了地面碟式斯特林热发电储热介质选择标准,整理了熔点在100℃~1000℃之间熔融盐数据,筛选出NaCl、 NaF-60%KF和NaF-22CaF2-13MgF2三种无机盐作为高温相变储热介质。针对熔融盐储热介质部分关键参数测量装置复杂,操作麻烦等缺点。研发了测量材料熔化体积变化率的“自加热型探针装置和测量方法”和测量无机盐导热系数的装置。以分析纯NaCl、LiF-CaF2等材料为试样,测量结果与报道值或计算机模拟值一致。
     将熔融盐储热介质盛装在本文设计的吸热储热装置中,并与现有碟式斯特林热发电系统结合,才能实现其价值。所以,结合地面民用特殊性,为了避免现有储热方案“过等待”和“过烧”问题,提供了“两级变能集热储热方案”,分析了集热、储热和用热能量平衡关系。并采用C语言,在Vc++2012平台上设计了“多缸双作用双曲轴碟式斯特林发动机熔融盐相变储热系统设计程序”,它集斯特林发动机结构设计、运行特性分析、储热介质选择、吸热储热装置设计、热损失分析、重量分析、成本预算等功能于一体。采用该程序设计了40kW和20kW熔融盐储热碟式斯特林热发电系统,其中发动机系统的关键参数与文献报道值一致;展示了曲轴转角与容积、压强关系图,P-V图,也与报道值相同。采用的算法收敛性好,计算效率高。该程序降低了系统设计人员的工作强度,有助于提高设计效率。
     熔融盐对储热腔材料的腐蚀是该吸热储热装置最关键的问题。为了明确储热介质NaCl对腔体材料的具体腐蚀行为,选取Fe基、Cr基、Ni基、Co基各一种代表性合金和Fe-24.4wt.%Al合金作为储热腔体材料,揭示了它们在850℃熔融NaCl中短期(15h)和长期(192h)腐蚀特征,分析了主要元素对其耐蚀性的影响。结果表明,试验的五种腔体材料均满足线性腐蚀规律;Cr基试样单位表面积单位时间内质量损失率最大,Fe-24.4wt.%Al试样质量损失率最小。腐蚀15h后,Fe基和Fe-Al试样腐蚀特征不明显,Cr基试样表现出明显的晶间腐蚀特征,但α和γ相分布均匀;Ni基试样腐蚀特征也不明显,但距试样表面约15μm范围内Cr严重贫化,Fe和Ni元素含量变化不大;Co基试样表面形成厚约12μm的层状疏松腐蚀层。腐蚀192h后,Fe基试样表现出非均匀腐蚀特征,腐蚀层附近基体中Cr元素含量严重降低,其余试样均表现出均匀腐蚀特征;Co基试样在整个范围内均发生了严重的晶间腐蚀;Fe-Al试样表面形成了A1203,没有Fe的氧化物;并且由于A1的贫化,在靠近腐蚀层的基体中生成了新相。合金中的Cr元素以气体CrCl3的形式逃逸系统是导致试样质量损失率增大的主要因素。所以,NaCl储热容器材料中应当避免添加Cr元素。
     本研究为在地面工作的熔融盐储热碟式斯特林热发电系统产业化奠定了理论基础,提供了技术支持。
The dish Stirling thermal power system is characterized by taking solar energy with a dish-condenser as thermal resource to maintain Stirling engines. The system has the advantages of high efficient, non-pollution, flexible structure and so on, which is suited to provide powerful electricity for space station and remote areas, such as islet, border post and so on. However, solar energy is an intermittent energy. The output power of the system decrease rapidly, or even shutdown directly after direct radiation is interrupted (when clouds appear, the sun goes down, or orbiting the earth shadow).
     To solve this problem, molten salt solar storage energy devices on space power station has been built by NASA and other organizations. Compared with space station, dark clouds appear randomly and last uncertainly on the ground. For civilian use and large area promotion, high-power and low cost are also wanted. So, for the Dish Stirling thermal power system that service on the ground, a new molten salt thermal storage device is needed. At present, studies at home and abroad are still blank.
     Therefore, based on the single and multiple cylinder displacer piston dish Stirling thermal power system, target for civil use, put particular emphasis on cost and high power, the molten salt heat collection and storage device of dish Stirling thermal power system (work on the ground) was designed. Combine with the advantages of sodium heat pipe, a heat pipe collection and storage device of dish power system was improved. Besides, thermal packaging process was posted to decrease the requirements of high temperature mechanics performance of thermal storage cavity. That will prolong service life and ensure the system run safely. Compared with the thermal storage device that designed by NASA, the material cost of which lowed35.6%.
     In order to analyze the performance of the designed thermal storage device and optimize structure, based on the Fluent CFD platform, the influence of receiver cavity structures (aperture shield type, wind skirt, open cavity), parameters (height, diameter, aperture size) and assemble angles on temperature field of the cavity and the air around it, radiation field and air nature convection field was simulated. The relationships between above-mentioned factors, radiation heat flow density and temperature on the cavity inside surface were analyzed. The results showed that the height and diameter of the heat receiver cavity have obviously influence on radiation heat flow density, temperature and its mean square error. A correlation of the optimal heights and diameters was proposed. The radiation fields and temperature fields of the three kinds of structure heat receiver cavities are similar. Complicated nature convection appeared around the thermal storage cavity. An air band with high velocity of1.5m/s is formed near the outside surface of thermal storage cavity. The aperture shield cavity is the best structure. The conical reflector with30°half cone angle is suggested. The average radiation heat flow density and temperature on the cavity inside surface decreased exponentially with the increase of aperture shield diameter. The heat loss is the lowest when the angle of the heat receiver cavity between-π/4and π/4. The gradient of pressure is evident in the cavity, but pressure is homogeneous around it.
     Under the forced convection of environmental wind, the influence of wind speed, the angle of the receiver cavity on the radiation field, temperature field, pressure field and forced convection felid were discussed. Inside heat receiver cavity, the pressure is homogeneous. What's more, the whole cavity was filled with convection zone. On the outside of the cavity, positive pressure on the windward side and negative pressure on the leeward side is shown. Swirl flow formed on the leeward side and the feature of nature convection disappeared. The influence law of wind speed and the angle of heat receiver cavity on the temperature of cavity inside surface are announced. For a certain wind speed, the temperature on the inside surface of the heat receiver cavity increases with the increase of angle θ∈[-π/2,π/4]. The heat loss is the lowest when θ is π/4. At last, the heat loss calculation rules of the thermal storage device were analyzed.
     Thermal storage material is the core of the molten salt phase change thermal storage device. The choice criterions of molten salt thermal storage material which is used on dish Stirling thermal power system were are summarized. Hundreds of molten salt (melting point between100℃~1000℃) were sorted out. Based on the standards of dish Stirling thermal power system, NaCl, NaF-60%KF and NaF-22CaF2-13MgF2were chosen as thermal storage material. The device, which is used for measuring molting volume change rate and conductivity, has the disadvantages of complicated structure, operation trivial and so on. So, the self-heating probe instrument and method, the equipment of measuring inorganic heat conduction coefficient were invented. The measuring results are consistent with reported or simulated values.
     The value of molten salt thermal storage medium will be realized only when it is contained in the self-designed thermal storage cavity and united with dish Stirling thermal power system. Therefore, combining the characteristic of on land and civil use,'the scheme of thermal collector and storage with two grade energy' was put forward to avoid'waiting too long' or 'temperature too high' of convectional scheme. The energy balance relationships of thermal collector, storage and consumption were analyzed. A program of'The designing of multi-cylinder double-acting double crank dish Stirling engine molten salt phase change thermal storage system' was written in language C on Vc++2012platform. The program is a collection of the Stirling engine structure design, operating characteristic analysis, thermal storage choose, the design of thermal collector and storage, the analysis of heat loss and weight, cost budgeting and so on. A system of40kW and20kW dish Stirling thermal power system with molten salt thermal storage device was designed with the program. Critical parapets of Stirling engine were agreed with reported values. The relationships among crank angle, volume, pressure and P-V were shown. The algorithm employed has a good convergence. The program is helpful to reduce the system design work strength and improve the design efficiency.
     The most crucial problem of the thermal storage device is the corrosion of molten salt on the cavity material, In order to analyze the corrosion behaves of alloy in molten NaCl thermal storage medium, one kind of typical alloy from Fe-based, Cr-based, Ni-based, Co-based respectively and Fe-24.4wt.%Al alloy were chosen as thermal storage container material. The corrosion behaviors of them in850℃molten NaCl at short time (15h) and long time (192h) were studied. The results showed that the corrosion characteristic of the selected alloy follows linear rule. Mass loss rate of Cr-based is the largest and Fe-24.4wt.%Al is the smallest on unit surface at unit time. After corroded15h, corrosion feature of Fe-based and Fe-24.4wt.%Al samples are not obvious. Intergranular corrosion feature on Cr-based sample is evident. α phase and y phase are well-distributed. Corrosion feature is not obvious for Ni-based sample. But the content of Cr decreased severely near sample surface within15μm. The content change of Fe and Ni is not obvious. A corrosion layer about15μm formed on Co-based sample. After corroded192h, no-uniformity corrosion happened on Fe-based sample and uniformity corrosion happened on the other kinds of samples. The content of Cr decreased near corrosion layer. Intergranular corrosion happened within the whole Co-based sample. Al2O3is formed on the surface of Fe-24.4wt.%Al sample, and there is no iron oxide on sample surface. A new phase formed near sample surface on the base of Fe-24.4wt.%Al sample for the deletion of Al. Cr escapes from the corrosion system as gas CrCl3, which is the primary cause of mass loss. Consequently, Cr should be avoid adding in thermal storage cavity material of NaCl.
     The study lays theoretical foundation and provides technical support for industria-lization of dish Stirling thermal power system with molten salt thermal storage device.
引文
[1]汪海贵.采用天然气的小型斯特林三级联供技术研究和应用分析:[哈尔滨工程大学博士学位论文].哈尔滨:哈尔滨工程大学,2004,16-19
    [2]朱榜荣.斯特林机的优化设计及仿真研究:[华北电力大学硕士论文].北京:华北电力大学,2008年,2-3
    [3]宋之平.议分布式能量系统.沈阳工程化学院学报,2005,1(1):12-16
    [4]Wang M, Siddiqui K. The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system. Renewable Energy,2010,35(11):2501-2513
    [5]钱国柱.热气机.第一版.北京:国防工业出版社,1982,189-228
    [6]Mills D. Advances in solar thermal electricity technology. Solar Energy,2004, 76(1-3):19-31
    [7]Medrano M, Gil A, Martorell Ⅰ, et al. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renewable and Sustainable Energy Reviews,2010,14(1):56-72
    [8]Whittenberger J D, Misra A K. Identification of Salt-Alloy Combinations for Thermal Energy Storage Applications in Advanced Solar Dynamic Power Systems. J. Materials Engineering,1987,9(3):293-302
    [9]Asselman G A A. Thermal energy storage unit based on lithium fluoride. Energy Conversion,1976,16(1-2):35-47
    [10]Strumpf H J, Trinh T, Westelaken W, et al. Design and analysis of the aperture shield assembly for a space solar receiver. In:The 32nd Intersociety energy convection engineering conference cosponsored. Washington:National aeronautics and space administration national technical information service,1997, 97347-97357
    [11]Xu E S, Yu Q, Wang Z F. Modeling and simulation of 1 MW DAHAN solar thermal power tower plant. Renewable Energy,2011,36(2):848-857
    [12]Wang Zhifeng. Prospectives for China's solar thermal power technology development. Energy,2010,35(11):4417-4420
    [13]高瑶.5kW点聚焦太阳能斯特林发电系统的性能分析:[南京航空航天大学硕士学位论文].江苏:南京航空航天大学,2006年,2-3
    [14]中国科学院电工研究所.发电系统.http://iee.ac.cn/Website/index.php?pixid=13,2013年3月8日
    [14]Strumpf H J, Trlnh T. On-orbit performance prediction of the heat receiver for the U.S./Russia solar dynamic power flight experiment. In:The 31st Intersociety Energy Convection Engineering Conference Cosponsored. Washington:National Aeronautics and Space Administration National Technical Information Service, 1996,178-184
    [15]候欣宾,李劲东,李亭寒,等.空间太阳能热动力发电系统吸热蓄热器性能研究.航天器工程,2004,13(6):62-69
    [16]邢玉明,崔海亭,袁修干.高温熔盐相变蓄热系统的数值模拟.北京航空航天大学学报,2002,28(3):295-297
    [17]侯欣宾,崔海亭.高温相变容器的传热分析.河北科技大学学报,2002,23(1):28-44
    [18]邢玉明,侯欣宾,栗卫芳,等.空间发电系统热能储存容器的二维模型.航空动力学报,2000,15(3):263-273
    [19]邢玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究.太阳能学报,2003,24(3):325-329
    [20]侯欣宾,王立,朱耀平,等.国际空间太阳能电站发展现状.太阳能学报,2009,30(10):1443-1448
    [21]邢玉明,许听,袁修千,等.高温相变单元管蓄热过程数值模拟.航空动力学报,2002,17(2):231-235
    [22]Tanatsugu N. On-orbit experiment plan on solar thermodynamic power systemt. Acta Astronautica,1989,19(6-7):529-534
    [23]Moreno J, Mehos M, Rawlinson S, et al. Dish/Stirling Hybrid-Heat-Pipe-Receiver Design and Test Results. In:The 37th lntersociety Energy Conversion Engineering Conference,2002,556-564
    [24]Wu Z Y, Caliot C, Bai F W, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Applied Energy,2010,87(3):504-513
    [25]Fend T, Robert-Pitz-Paal, Reutter O, et al. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Solar Energy Materials and Solar Cells,2004,84(1-4):291-304
    [26]Buck R, Barth C, Eck M, et al. Dual-receiver concept for solar towers. Solar Energy,2006,80(3):1249-1254
    [27]Agrafiotis C C, Mavroidis I, Konstandopoulos A G, et al. Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Solar Energy Materials and Solar Cells,2007,91(6): 474-488
    [28]Xu C, Song Z, Chen L D, et al. Numerical investigation on porous media heat transfer in a solar tower receiver. Renewable Energy,2011,36(3):1138-1144
    [29]Kim K, Moujaes S F, Kolb G J. Experimental and simulation study on wind affecting particle flow in a solar receiver. Solar Energy,2010,84(2):263-270
    [30]Melchior T, Perkins C, Lichty P, et al. Solar-driven biochar gasification in a particle-flow reactor. Chemical Engineering and Processing:Process Intensification.2009,48(8):1279-1287
    [31]Klein H H, Karni J, Ben-Zvi R, et al. Heat transfer in a directly irradiated solar receiver/reactor for solid-gas reactions. Solar Energy,2007,81(10):1227-1239
    [32]Melchior T, Perkins C, Weimer A W,et al. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. International Journal of Thermal Sciences,2008,47(11):1496-1503
    [33]Roeb M, Sack J P, Rietbrock P, et al. Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Solar Energy,2011,85(4): 634-644
    [34]Worner A, Tamme R. CO2 reforming of methane in a solar driven volumetric receiver-reactor. Catalysis Today,1998,46(2-3):165-174
    [35]Yang M L, Yang X X, Yang X P, et al. Heat transfer enhancement and performance of the molten salt receiver of a solar power tower. Applied Energy,2010,87(9): 2808-2811
    [36]Verlotski V, Schaus M, Pohl M. A solar thermal MgO-powder receiver with working temperatures of more than 1600℃:Model investigation by using a laser as an irradiation source. Solar Energy Materials and Solar Cells,1997,45(3): 227-239
    [37]Kaushika N D, Reddy K S. Performance of a low cost solar paraboloidal dish steam generating system. Energy Conversion and Management,2000,41(7): 713-726
    [38]Kumar N S, Reddy K S. Comparison of receivers for solar dish collector system. Energy Conversion and Management,2008,49(4):812-819
    [39]Reddy K S, Kumar N S. An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator. Solar Energy,2009,83(10): 1884-1892
    [40]Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy,2008,82(1):13-21
    [41]Kribus A, Doron P, Rubin P,et al. A multistage solar receiver:the route to high temperature. Solar Energy,1999,67(1-3):3-11
    [42]Kalogirou S A. Solar thermal collectors and applications. Progress in Energy and Combustion Science,2004,30(5):231-295
    [43]Prakash M, Kedare S B, Nayak J K. Investigations on heat losses from a solar cavity receiver. Solar Energy,2009,83(2):157-170
    [44]Fang J B, Wei J J, Dong X Y, et al. Thermal performance simulation of a solar cavity receiver under windy conditions. Solar Energy,2011,85(1):126-138
    [45]Wu S Y, Xiao L, Cao Y D, et al. Convection heat loss from cavity receiver in parabolic dish solar thermal power system:A review. Solar Energy,2010,84(8): 1342-1355
    [46]Hasuike H, Yoshizawa Y, Suzuki A, et al. Study on design of molten salt solar receivers for beam-down solar concentrator. Solar Energy,2006,80(10): 1255-1262
    [47]Prakash M, Kedare S B, Nayak J K. Determination of stagnation and convective zones in a solar cavity receiver. International Journal of Thermal Sciences,2010, 49(4):680-691
    [48]Reddy K S, Kumar N S. Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. International Journal of Thermal Sciences,2008,47(12):1647-1657
    [49]Mathieu A, Feidt M, Rochelle P, et al. Preliminary sizing and optimization of a micro solar power plant by a parametric sensitivity study. Environmental Engineering and Management Journal,2010,9(10):1381-1387
    [50]Shamsundar N, Sparrow E M. Effect of density change on multidimensional conduction phase change. Journal of Heat Transfer,1976,98(4):550-557
    [51]Shamsundar N, Sparrow E M. Analysis of Muidimensional Conduction Phase Change Via the Enthalpy Model. Journal of Heat Transfer,1975,97(8):333-340
    [52]Sharma A, Sharma S D, Buddhi D, et al. Effect of thermo physical properties of the PCM and heat exchanger material on the performance of latent heat storage system using an enthalpy method. Int. J. Energy Res,2005,24(2):99-105
    [53]Ren H S. Application of the heat-balance integral to an inverse Stefan problem. International Journal of Thermal Sciences,2007,46(2):118-127
    [54]Voller V. R. Fast implicit finite-difference method for the analysis of phase change problems. Numerical Heat Transfer, Part B:Fundamentals,1990,17(2):155-169
    [55]Hibbert S E, Markatossf N C, Voller V R. Computer simulation of moving- interface, convective. Phase-change Processes,1988,31(9):1785-1795
    [56]Carsie A H, Emmanuel K, Glakpe, et al. Modeling cyclic phase change and energy storage on solar heat receivers. In:The 32nd Thermophysics Conference sponsored by the American Institute of Aeronautics and Astronautics Atlanta, Georgia,1997,1-12
    [57]Yang B, Fu X R, Yang W, et al. Numerical Prediction of Phase-Change Heat Conduction of Injection-Molded High Density Polyethylene Thick-Walled Parts Via the Enthalpy Transforming Model With Mushy Zone. Polymer Engineering and Science,2008,48(9):1707-1717
    [58]Laing D, Steinmann W D, Fib M, et al. Solid media thermal storage development and analysis of modular storage operation concepts for parabolic trough power plants. Journal of Solar Energy Engineering,2007,130(1):5-10
    [59]Buddhi D, Bansal N K, Sawhne R L, et al. Solar thermal storage systems using phase change materials. International Journal of Energy Research,1998,12(3): 547-555
    [60]Costa M, Buddhi D, Oliva A. Numerical simulation of a latent heatthermal energy storage system with enhanced heat conduction. Energy Converse Mgmt,1998, 39(3):319-330
    [61]Cui H T, Xing Y M, Guo Y S, et al. Numerical simulation and experiment investigation on unitheat exchange tube for solar heat receiver. Solar Energy,2008, 82(12):1229-1234
    [62]刘靖,王馨,张寅平,等.高温相变蓄热电采暖器蓄放热特性的实验研究.工程热物理学报,2004,25(增刊):99-102
    [63]刘靖,王馨,张寅平,等.高温相变蓄热电暖器散热功率调节性能试验研究.暖通空调,2006,36(1):51-54
    [64]刘靖,王馨,张寅平,等.高温相变蓄热电暖器蓄放热性能试验研究.暖通空调,2006,36(3):62-52
    [65]程晓敏,官计生,胡胜,等.铝合金高温储热材料及储热系统设计.中国材料科技与设备,2008,2:91-93
    [66]郭茶秀,张务军,魏新利.新型相变储能设备的强化传热研究.冶金能源,2008,27(1):30-34
    [67]郭茶秀,魏新利,刘宏,等.高温储能系统的传热强化和参数化研究.太阳能学报,2008,29(6):684-689
    [68]郭茶秀,张务军,魏新利.新型高温潜热储能系统的性能研究.热力发电,2007,7:13-20
    [69]郭茶秀,张务军,魏新利.一种相变储能设备的强化传热数值研究.暖通空调,2008,38(7):71-74
    [70]郭茶秀,张务军,魏新利,等.板式石蜡储热器传热的数值模拟.能源技术,2006,27(6):243-248
    [71]郭茶秀,张务军,熊辉东,等.共晶盐蓄冷球凝固过程的数值模拟研究.暖通空调,2006,36(3):17-21
    [72]赫俏,陆继东,全兆丰,等.高温相变储能换热器中传热模型的研究.工程热物理学报,1998,19(1):90-93
    [73]Gil A, Medrano M, Martorell Ⅰ, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews,2010,14(1):31-55
    [74]Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews,2009,13(2):318-345
    [75]Wierse M, Werner R. Magnesium hydride for thermal energy storage in a small-scale solar-thermal power station. Journal of the Less-Common Metals, 1991,172-174 (Part 3):1111-1121
    [76]孙建强,张仁元.金属相变储能与技术的研究与发展.材料导报,2005,19(8):99-105
    [77]陈枭,张仁元,李辉鹏.Al基金属相变储能材料的研究与应用进展.材料研究与应用,2009,3(2):73-76
    [78]陈枭.Al-Si相变材料的研究与应用.中国高新技术企业,2010,169(34):52-53
    [79]陈观生.张仁元,李风.金属相变储热技术在太阳能热发电系统中的应用分析.制冷空调,2009,30(2):8-22
    [80]孙建强,张仁元,沈学忠,等.Al-34% Mg-6% Zn和Al-28% Mg-14% Zn合金的热分析研究.广东工业大学学报,2006,23(3):8-15
    [81]陈观生,王波群,张仁元,等.金属相变储热材料铝硅合金储热特性研究.材料研究与应用,2010,4(4):255-259
    [82]柯秀芳,张仁元,陈观生.金属材料直接接触加热熔化过程的研究.铸造,2003,53(8):561-563
    [83]程晓敏,董静,吴兴文,等.Al-Si-Cu-Mg-Zn合金的高温相变储热性能研究.金属热处理,2010,35(3):13-16
    [84]李石栋,张仁元,毛凌波,等.太阳能热发电用Al2Si合金的传热性能试验.华中科技大学学报,2009,37(8):73-76
    [85]王群波,张仁元,祝海云.变质处理及热循环对Al-17% Si合金组织和储热性 能的影响.材料研究与应用,2009,3(4):258-261
    [86]李鹏辉,张仁元,毛凌波,等.铝硅合金热稳定性能的实验研究.广东工业大学学报.2009,26(4):37-41
    [87]柯秀芳,张仁元.高温金属储热元件释热过程的传热研究.华东电力,2002,10:5-8
    [88]周晓霞,张仁元,刘银峁.铝硅合金中铁相存在的形态及影响其形成的因素.2003,13(1):51-54
    [89]孙建强,张仁元,卢国辉,等.共晶铝合金热膨胀系数的测定与回归分析.广东工业大学学报,2006,23(2):12-17
    [90]Mills D. Advances in solar thermal electricity technology. Solar Energy,2004, 76(1-3):19-31
    [91]Birchenall C E, Riechman A F. Heat Storage in Eutectic Alloys. Metallurgical transactions A,1980,11 (A):1415-1420
    [92]Farkas D, Birchenall C E. New eutectic alloys and their heats of transformation. Metallurgical transactions A,1985,16(A):323-328
    [93]Whittenberger J D, Misra A K. Identification of Salt-Alloy Combinations for Thermal Energy Storage Applications in Advanced Solar Dynamic Power Systems. J. Materials Engineering,1987,9(3):293-302
    [94]Hoshi A, Mills D R, Bittar A, et al. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Solar Energy,2005,79(3):332-339
    [95]Kenisarin M M. High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews,2010,14(3):955-970
    [96]Tamme R, Bauer Thomas, Buschle J, et al. Latent heat storage above 120℃ for applications in the industrial process heat sector and solar power generation. International journanl of energy research,2008,32(3):264-271
    [97]李爱菊,张仁元,柯秀芳,等Na2SO4/SiO2定形复合储热材料的性能研究.材料可发与应用,2003,18(6):21-39
    [98]李爱菊,张仁元,黄金.定形相变储憾材料的研究进展及其应用.新技术新工艺,2004,2:45-48
    [99]黄金,张仁元,伍彬.多晶Na2SO4/SiO2复合相变储能材料晶型转变及热膨胀特性分析.材料工程,2006,12:16-20
    [100]黄金,张仁元,伍彬.复合相变储能材料制备工艺对其浸渗率和相对密度的影响.材料科学与工程学报,2006,24(5):653-657
    [101]曾国勋,李爱菊,蔡尚坤,等.烧结温度与时间对Na2SO4/SiO2复合储能陶 瓷储热性能的影响.冶金能源,2003,22(1):16-17,49
    [102]李爱菊,张仁元,周晓霞.化学储能材料开发与应用.广东工业大学学报,2002,19(1):81-84
    [103]朱教群,童雨舟,周卫兵,等,太阳能发电用高温混凝土储热材料的制备及性能研究.节能,2008,8:23-25
    [104]李石栋,张仁元,李风,等.储热材料在聚光太阳能热发电中的研究进展.材料导报,2010,24(11):51-55
    [105]Asselman G A A.Thermal energy storage unit based on lithium fluoride. Energy Conversion,1976,16(1-2):35-47
    [106]Kramer C M, Smyrl W H, Estill W B. Corrosion of Fe Alloys in NaNO3-KNO3-NaNO2 at 823K. Journal of Materials for Energy Systems,1980, 1(4):59-65
    [107]Goods S H. Creep and the Incoloy Alloy Corrosion Characteristics of 800 in Molten Nitrate Salts. Journal of Materials for Energy Systems,1981,3(1):44-50
    [108]Whittenberger J D, Misra A K. Identification of Salt-Alloy Combinations for Thermal Energy Storage Applications in Advanced Solar Dynamic Power Systems. Journal of Materials for energy systems,1987,9(3):44-50
    [109]Whittenberger J D. Mechanical Properties of Haynes Alloy 188 after Exposure to LiF-22CaF2, Air, and Vacuum at 1093 K for Periods up to 10000 Hours. Journal of Materials Engineering and Performance,1992,1(4):469-482
    [110]Whittenberger J D. Mechanical Properties of Haynes Alloy 188 after 22500 Hours of Exposure to LiF-22CaF2 and Vacuum at 1093K. Journal of Materials Engineering and Performance,1994,3(6):754-762
    [111]Whittenberger J D. Tensile Properties of Haynes Alloy 230 and Inconel 617 after Long Exposures to LiF-22CaF2 and Vacuum at 1093K. Journal of Materials Engineering and Performance,1994,3(6):763-774
    [112]Cotton J D, Sedgwick L M. Compatibility of Selected Superalloys With Molten LiF-CaF2 Salt. In:The 24th Thermophysics Conference sponsored by the American Institute of Aeronautics and Astronautics Atlanta, Georgia,1989, 917-921
    [113]张仁元,孙建强,卢国辉.共晶铝-镁-锌储能合金的热稳定性和液态腐蚀性.机械工程材料,2006,30(7):11-18
    [114]孙建强,张仁元,钟润萍A123.4 %Mg26 %Zn合金储热性能和液态腐蚀性实验研究.腐蚀与防护,2006,27(4):163-167
    [115]王丹,李风,张仁元,等Al2Si相变材料与金属容器的相容性及防护涂层的 研究.广东工业大学学报,2009,26(3):5-9
    [116]李辉鹏,张仁元,陈枭,等.盛装储热铝硅共晶合金的容器材料研究.广东工业大学学报,2009,26(2):36-39
    [117]陈枭,张仁元,李风,等.太阳能热发电储热器防护涂层的制备及其性能.材料保护,2010,43(3):59-60
    [118]陈枭,张仁元,李风MoB/CoCr金属陶瓷涂层的制备、组织结构及性能研究.人工晶体学报,2009,38(6):1516-1521
    [119]陈枭,张仁元,李风,等.太阳能热发电中储能容器防护涂层的制备与研究.材料导报,2009,23(8):48-50
    [120]刘靖,王馨,曾大本,等.高温相变材料A1-Si合金选择及其与金属容器相容性实验研究.太阳能学报,2006,27(1):36-40
    [121]G. Walker. Stirling Engines.2nd Edition. New York:The United States by Oxford University Press,1980:304-305
    [122]Kirshenbaum A D, Cahill J A, Mcgonigal P J, et al. The Density of Liquid NaCl and KCl and an Estimate of Their Critical Constants Together With Those of the Other Alkali Halides. Journal of Inorganic and Nuclear Chemistry,1962,24(10): 1287-1296
    [123]Cornwell K. The thermal conductivity of molten salts. Journal of chemical and engineering,1984,29(1):1-3
    [124]Smirnov M V, Khokhlov V A, Filatov E S. Thermal conductivity of molten alkali galides and their mixtures. Electrochimica Acta,1987,32(7):7-14
    [125]Aktay K S C, Tamme R, Muller-Steinhagen H. Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change. International Journal of Thermophysics,2008,29(2):678-692
    [126]杨世铭.传热学.第二版.北京:高等教育出版社,1987,443-444
    [127]特种设备安全监察条例.2003,6
    [128]Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (AHTR). Okk ridge tional laboratory,2006,17-19
    [129]杨征.斯特林发动机及碟式太阳能热发电系统的模拟和优化:[北京工业大学硕士学位论文].北京:北京工业大学,2008,3-5
    [130]Kim K, Moujaes S F, Kolb G J. Experimental and simulation study on wind affecting particle flow in a solar receiver, Solar energy,2010,84(2):263-270
    [131]张春平,刘志刚,赵耀华,等.碟式聚光太阳能热发电系统用腔式吸热器热性能分析.上海理工大学学报,2004,26(4):294-297
    [132]吴玉庭,朱建坤,张丽娜.等.高温熔盐的制备及实验研究.北京工业大学学报,2007,33(1):62-66
    [133]梁红.热传导液标准制定及实施的相关问题.林产工业,2005,32(4):42-45
    [134]程素娟,董其国,王忠华,等.金属熔体原子团簇的围观热收缩机制探讨.稀有金属材料与工程,2010,39(2):219-223
    [135]丁雨田,曹军,胡勇,等.冷变形和热处理对单晶Cu键合丝性能影响.机械工程学报,2009,45(4):83-88
    [136]郑伟涛,余瑞璜.贵金属的结合能、体膨胀系数的研究.金属科学与工艺.1991,10(1):24-28
    [137]边茂恕,陈秋,王景唐.液态Al和Al-Re合金的密度、表面张力及对Bn的润湿性和附着功.金属学报.1988,24(2):B139-B141
    [138]边茂恕,马禄铭,王景唐.高温熔体密度测试心方法,金属学报.1986,22(2):B90-96
    [139]Blumm J, Henderson J B. Measurement of the volumetric expansion and density change of metals in the solid and molten regions. High Tempera-tures-High Pressures,2000,32(1):109-113
    [140]Kirshenbaum A D, Cahill J A, Mcgonigal J, et al. The density of liquid NaCl and KC1 and an estimate of their critical constants together with those of the other alkali halides. Journal of Inorganic and Nuclear Demistry,1962,24(10):1287-1 296
    [141]邢玉明,崔海亭,袁修干,等.微重力下高温固液相变蓄热容器内空穴分布.太阳能学报,2003,24(5):183-188.
    [142]奚同庚.无机材料热物性学.第一版.上海:上海科学技术出版社,1981,161-165
    [143]李亚奇,何亚玲,王巍巍.碟式集热器驱动斯特林热机系统火用效率分析.工程热物理学报,2009,30(6):911-914
    [144]陶文铨.数值传热学.第2版.西安:西安交通大学出版社,2001
    [145]金东寒.斯特林发动机原理,第一版.哈尔滨:哈尔滨工程大学出版社,2006
    [146]谭浩强.C程序设计.第二版.北京:清华大学出版社,1999,26-27
    [147]Yuan L, Wang H M. Hot corrosion behaviors of a Cr13Ni5Si2-based metal silicide alloy in Na2SO4-25 wt.% K2SO4 and Na2SO4-25 wt.% NaCl molten salts. Intermetallics,2010,18(3):324-329
    [148]Zheng L, Zhang M C, Dong J X. Hot corrosion behavior of powder metallurgy rene 95 nickel-based superalloy in molten NaCl-Na2SO4 salts. Materials and Design,2010,32(4):1981-1989
    [149]Shinata Y. Accelerated oxidation rate of chromium induced by sodium chloride. Oxidation of Metals,1987,27(5):315-331
    [150]Shores D A, Mohanty B P. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part II:thermochemical model studies. Corrosion Science,2004,46(12): 2909-2924
    [151]Cho S H, Hur J M, Seo C S, et al. High temperature corrosion of superalloys in a molten salt under an oxidizing atmosphere. Journal of Alloys and Compounds, 2008,452(1):11-15
    [152]Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt. Journal of Fluorine Chemistry,2009,130(1):67-73
    [153]Gonzalez-Rodriguez J G, Haro S, Martinez-Villafane A, Salinas-Bravo V M, Porcayo-Calderon J. Corrosion performance of heat resistant alloys in Na2SO4-V2O5 molten salts. Materials Science and Engineering A,2006,435-436(5): 258-265
    [154]Mohanty B P, Shores D A. Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy, part Ⅰ:experimental studies. Corrosion Science,2004,46(12):2893-2907
    [155]Zhang Zhimin. Corrosion properties of plastically deformed AZ80 magnesium alloy. Transactions of Nonferrous Metals Society of China,2010,20(Supplement 2):s697-s702
    [156]张允书.热腐蚀的熔盐机理及其局限性.中国腐蚀与防护学报,1992,12(1):1-9
    [157]徐博文,赵文月,马岳,等.y-TiAl合金在高温熔盐环境下的腐蚀机理.中国有色金属学报.2010,20(11):2130-2135
    [158]Rapp R A. Hot corrosion of materials:a fluxing mechanism. Corrosion Science, 2002,44(6):209-221
    [159]朱日彰,何叶东,齐慧滨.高温腐蚀及耐高温腐蚀材料.第一版.上海:上海科学技术出版社,1995,26-27
    [160]张启运,庄鸿寿.三元合金相图手册.第一版.北京:机械工业出版社,2011,392-393
    [161]刘智恩.材料科学基础.第二版.西安:西北工业大学出版社,2003,256-257
    [162]康新婷,杨坤,迟煜頔,等.Fe-Al金属间化合物抗氧化性能研究现状.稀有金属材料与工程,2012,41(增刊2):822-826

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700